INVARIANT SUBFIELDS OF RATIONAL FUNCTION FIELDS

By Tsuneo Kanno*

Let K be the rational function field $k(X_1, X_2, \dots, X_n)$ of variables X_1, X_2, \dots, X_n over a field k. Let M be the vector space $\sum_{i=1}^{n} k \cdot X_i$ over k. Let g be a finite group operating on K, induced by a representation ρ of g with representation space M. Let L be the subfield of K consisting of elements which are invariant under g. The problem to consider here is whether L is purely transcendental over k. This problem has been answered affirmatively in the following cases: (0) g is the symmetric group permuting X_1, X_2, \dots, X_n , (1) g is abelian and k is the complex number field, (2) g is a cyclic group of order n, ρ is its regular representation and k contains the primitive n-th roots of unity, provided that the characteristic of k does not divide n (cf. [5]) and (3) k is of characteristic p > 0, g is a p-group and ρ is its regular representation (cf. [2], [3] and [4]). In this note we shall give a principle, written in language of algebraic groups, which covers the three cases (1), (2) and (3), and which may be applied to other cases where g is soluble.

A connected algebraic group G is called k-soluble if there exists a normal chain $G_0 = G \supset G_1 \supset G_2 \supset \cdots \supset G_r = \{e\}$ such that G_i is defined over k and G_i/G_{i+1} is isomorphic to G_a or G_m over k, where G_a and G_m are the additive group of the universal domain Ω and the multiplicative group of non-zero elements of Ω . The following property of k-soluble algebraic groups is used here (cf. [6]): let G be a k-soluble algebraic group; let V be a homogeneous space with respect to G over k, then the function field k(V) over k is purely transcendental over k.

From this we have

(P) Let G be a k-soluble algebraic group such that k(G)=K; let g be a finite subgroup of G which is rational over k such that the invariant subfield of K by the left translations of g is L, then L is purely transcendental over k.

In fact, there exists the quotient variety G/\mathfrak{g} , defined over k, which is a homogeneous space with respect to G over k.

Let us consider the case where \mathfrak{g} is abelian.

LEMMA. Let g be a finite abelian subgroup of GL(n, k) of exponent m. Then, if k contains the primitive m-th roots of unity, there exists $x \in GL(n, k)$ such that $x \cdot g \cdot x^{-1}$ is contained in the set of matrices of the form

Received May 1, 1967.

^{*} This paper was prepared when the author was at University of California, Berkeley, partially supported by NSF GP-1610.

TSUNEO KANNO

 $\left(\begin{array}{ccccc} N_1 & 0 & \cdots & 0 \\ 0 & N_2 & 0 & \cdots & 0 \\ \vdots & & \ddots & & 0 \\ 0 & \cdots & 0 & N_s \end{array}\right)$

where N_i is upper triangular matrix with only one eigenvalue, and further if the characteristic of k does not divide m, g is a group of semisimple matrices and $x \cdot g \cdot x^{-1}$ is diagonal.

The first part follows, for example, from the proof of the Lemma 6.4 of [1]. To prove the second part, take any element $g \in \mathfrak{g}$ and let $g=g_sg_u$ be the multiplicative Jordan decomposition of g; then the orders of g_s and g_u divide that of g. If the characteristic of k is 0, any non-identity unipotent matrix has the infinite order (cf. Prop. 8.1 of [1]); hence g is semisimple; in the characteristic p>0 case, a matrix is unipotent if and only if its order is a power of p (cf. Prop. 8.1 of [1]); hence g is semisimple.

Now we have a proposition which generalizes (1) and (2).

PROPOSITION 1. Let \mathfrak{g} be a finite abelian group of exponent m. If the characteristic of k does not divide m and if k contains the primitive m-th roots of unity, L is purely transcendental over k.

In fact, we may suppose that ρ is faithful and that \mathfrak{g} is a subgroup of GL(M). By the Lemma we have a base Y_1, Y_2, \dots, Y_n of the vector space M such that $Y_i^{\sigma} = \chi_i(\sigma) Y_i$ for $\sigma \in \mathfrak{g}$. Take G = the group of diagonal matrices with coordinate functions Y_1, Y_2, \dots, Y_n , then k(G) = K. We can consider that \mathfrak{g} is the subgroup of G consisting of diagonal matrices $(\chi_1(\sigma), \chi_2(\sigma), \dots, \chi_n(\sigma))$ for $\sigma \in \mathfrak{g}$. Since $Y_i^{\sigma}(g) = \chi_i(\sigma) Y_i(g) = Y_i(\sigma g)$ for $g \in G$, the proposition follows from (P).

Let us consider the case where ρ is the regular representation of \mathfrak{g} . Let $\mathfrak{Q}[\mathfrak{g}]$ be the group ring of \mathfrak{g} over \mathfrak{Q} . Then the unit group of $\mathfrak{Q}[\mathfrak{g}]$ has a structure of a connected algebraic group G defined over the prime field Z_p of k such that k(G) = K and \mathfrak{g} can be imbedded in G by $\sigma \rightarrow 1 \cdot \sigma$. Then, the notation being as above, by (P) we have

PROPOSITION 2. If the algebraic group G is k-soluble, L is transcedental over k.

When \mathfrak{g} is a *p*-group, the following Lemma gives the structure of the algebraic group *G*.

LEMMA. If k is of characteristic p>0 and \mathfrak{g} is a p-group, G is a connected nilpotent algebraic group defined over Z_p and has the direct decomposition $G=G_s\times G_u$ over Z_p , where G_s is central and isomorphic to G_m over Z_p and G_u is the unipotent part of G. Let N be the radical of the algebra $\Omega[\mathfrak{g}]$; let s be a positive integer such that $N^s = \{0\}$. Let $U_i = \{a \in \Omega[\mathfrak{g}] \mid a \equiv e \mod N^i\}$. Then we have

- (i) $(G, G) \subset U_1$,
- (ii) $(G, U_i) \subset U_{i+1}$.

In fact, for any $a = \sum_{\sigma \in g} a_{\sigma} \cdot \sigma$, let $\operatorname{tr}(a) = \sum_{\sigma \in g} a_{\sigma}$, then tr is a rational homomorphism of G onto G_m defined over Z_p ; we have $a = \operatorname{tr}(a)e + \sum_{\sigma \in g} a_{\sigma}(\sigma - e) = \operatorname{tr}(a)e + r(a) \equiv \operatorname{tr}(a)e$, mod N and $a^{-1} = \operatorname{tr}(a)^{-1}(e + \operatorname{tr}(a)^{-1}r(a))^{-1} \equiv \operatorname{tr}(a)^{-1}e$, mod N, where $r(a) \in N$; hence, for $a, b \in G, aba^{-1}b^{-1} \equiv \operatorname{tr}(a)\operatorname{tr}(b)\operatorname{tr}(a)^{-1}\operatorname{tr}(b)^{-1}e = e$, mod N; thus we have (i). To show (ii), take $a \in G$ and $b \in U_i$; then $a = \operatorname{tr}(a)e + r(a)$ and b = e + r(b), where $r(a) \in N$ and $r(b) \in N^i$; then $aba^{-1}b^{-1} = e + (ab - ba)a^{-1}b^{-1} = e + (r(a)r(b) - r(b)r(a))a^{-1}b^{-1} \equiv e$, mod N^{i+1} ; thus we have (ii). Since $U_s = \{e\}$, we have that G is nilpotent. Each element $a \in G$ has a unique expression $a = \operatorname{tr}(a)e \cdot (e + \operatorname{tr}(a)^{-1}r(a))$. It is easily seen that the semisimple part G_s and the unipotent part G_u of G are defined over Z_p and that we have the Lemma.

Since any connected algebraic group of unipotent matrices defined over a perfect field k is k-soluble, we have the following Corollary of the Proposition 2 which is nothing but (3).

COROLLARY. If k is of characteristic p>0 and if ρ is the regular representation of a p-group g, L is purely transcendental over k.

Bibliography

- [1] BOREL, A., Groupes linéaires algébriques. Ann. of Math. 64 (1956), 20-82.
- [2] KUNIYOSHI, H., On a problem of Chevalley. Nagoya Math. Journ. 8 (1955), 65-67.
- [3] KUNIYOSHI, H., On purely transcendency of certain field. Tôhoku Math. Journ.
 6 (1955), 101-108.
- [4] KUNIYOSHI, H., Certain subfields of rational function fields. Proc. International Symp. on Algebraic Number Theory. (1955), 241-243.
- [5] MASUDA, K., On a problem of Chevalley. Nagoya Math. Journ. 8 (1955), 59-63.
- [6] ROSENLICHT, M., Some rationality questions on algebraic groups. Annali di Mat. 43 (1957), 25-50.

DEPARTMENT OF MATHEMATICS, Tokyo Institute of Technology.