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ON THE EXISTENCE OF ANALYTIC MAPPINGS, II

BY GENKO HIROMI AND HIDEO Muτό

§ 1. Let R and S be Riemann surfaces which are the proper existence domains
of n- and m-valued entire algebroid functions f ( z ) and F(w), respectively, where /
and F are defined by irreducible equations

where AI, '-,An, Bi, ~ ,Bm-ι and Bm are entire functions.
Let ψ be an analytic mapping of R into S. Let ?$R and ^>s be the projection

maps: (2, f(z))—*z and (w, F(w))-^>w, respectively. If φ preserves the projection
maps, then we say that φ is a rigid analytic mapping. This means that every n-
tuple of points on R having the same projection is carried to an w-tuple of points
on S having the same projection. In this paper we study the analytic mappings
of R into S. In the case of n=m=2, Ozawa obtained several interesting results
[5], [6], [7], [8]. Here an analytic mapping means a non-trivial one.

The authors wish to express their heartiest thanks to Professor M. Ozawa for
his valuable advices.

§ 2. In this section we assume that R and S have an infinite number of
branch points. Put h(z)=^s°φ^R\z). Let E be the projection of all the branch
points of R. Let Zo$E be an arbitrary but fixed point in the z-plane. Let
U(z0\ U(zo)Γ}E=φ be a disk whose center is z0. In U(z0) there exist n analytic
branches of ̂ \z): ^(z)l9 •••, $feXz)n. Put Aι(«)=φ5^^1Wι, -, hn(z)=%oφo^-\z)n.
For these functions we define the fundamental symmetric polynomials:

+hn-ι(z)hn(z),

We can extend these functions over the 2-plane except E. The resulting functions
denoting with the same symbols are single-valued regular functions except E.
Hence h(z) satisfies the equation
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(3) Λ(2)M-£Γι(^)A^r-1 + .-+(-l)n//»(2)=0.

It is easily seen that every point of the set E is a removable singularity of Πj(z)
(j=l,"-,n). Thus h(z) is an entire algebroid (or algebraic) function of z. We
shall prove the following

THEOREM 1. Assume that there exists an analytic mapping φ of R into S. If
n is a prime number, then φ is rigid. If n is not a prime number, then ίhe cor-
responding function h(z) of φ is k-valued where k is a proper divisor of n and φ
may or may not be rigid.

Proof. We shall prove this along the same manner as in [9] pp. 29-34. In
the first place we assume that h(z) is ^-valued. Then R is the proper existence
domain of h(z). Let p0, ^R(PQ)=ZQ be a point on R whose order of ramification is
λpQ—1. Let q0, tys(qo)=Wo be the <p-image of po on S. Then we have

( 4 )

Put

( 5) N(r; q0, S)= —-— \ {n(t\ q0, S)—w(0; #0, S)} — H -̂r̂ — log r,
HΛqQ Jo t HΛqQ

where

n(r, q0, S)=
1

Let qi and q2 be distinct points on S. Then there exists a function u(q; qlt q2)
which is harmonic in q on S save at q± and q2, has a positive normalized logarithmic
singularity at qi and a negative normalized logarithmic singularity at q2 and is
bounded in the complement of some compact neighborhood of {qlt q2} [1];

u((r, 4ι, #2)+ -T— log , . ,

&(#; qίf q2) — log -

are harmonic at qλ and q2, respectively, where Wι and w2 are the projections of qL

and q2, respectively. Let R(r) be the part of R whose projection lies on \z\^r and
Γ(r) be the boundary of R(r). We take a small neighborhood whose projection is
a disk for every #ι- and ^-points of φ and branch points of R. Then we have a
subset R'(r) of R(r) with boundary ^Γx(f). We assume that there are no q±- and q2-
points of φ and no branch points of R on Γ(r). Then we have
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with v(p)=u(φ(p) 9qι9qz\ and

r dμ(r) n(r, ql9 S) __ n(r\ q29 S)
dr nλqι n^Q2 '

where

~9^~ \ύnπ J rζr)

Using the continuity property of μ(r) we have

( 6 ) μ(r)+N(r, qίt S)-N(r; q2, S)=A (const.)

for every r .
Let KQl and Kqz, KQlΓ\Kq2=φ be neighborhoods of qι and q2 whose projections

are disks with finite radii δqι and 5Ϊ2, respectively. We define a function %/#) as
follows:

=0,

We also define a function utί(q) analogously. Put

w(r, tfi, S)=

Using wβ2(#) we also define m(r, #2, S) analogously. By (6) we have

(7) w(r, #ι, S)+N(r9 qi, S)=m(r; q2, S)+N(r, q2,,

where A-B^Q(r)^A+B, B=suρ \u(q; ql9 qj-uqι(q)+uq2(q)\. Let φ(p)*qι9 q>t for
every p with $β(^)=0. Then we have

A= Hm u(r)= - Σ ̂ (̂ (̂ (0); ql9 qύ\

where the summation is taken for all choices of $ (̂0)
From (7) we can derive a simple relation between the sum m(r\ q, S)+JV(r, q, S)

and T(r9 K). In the following m(r, WQ\ N(r; WQ) and T(r, h) are the Nevanlinna-
Selberg corresponding functions for h(z). Let qi,---,qj (j^wΐ) be the points on S
having the same projection w0. Let j=l. Then we have

( 8 ) m(r] ql9 S)+N(r, ql9 S)= — {m(r\ w,}+N(n WQ)} +O(1)= — Γ(r,
m w

Let y>l. Then we have
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m{m(r\ qv, S)+7V(r; qv, S)}= Σ ^{m(r; qlt S)+N(r, qt,
( 9 )

=m(r; w0)+N(r, «;0)+0(l)=T(r,

The above relation (9) holds for all qv (v = l, - ,j^Lrri).
Let {δίUϊiί be the projections of all the branch points {</„} of S. Put

n(r\ Sft)= Σ (τ-1),
Λ(r)

Mr; SΛ)= - J W; SΛ)-«(0; SΛ)} -y- + *(0^S/0 log r,

where τ is the quantity given in (4). By the Nevanlinna-Selberg second funda-
mental theorem applied to h(z) we have

(k-'2n)r(r, h)^ΣN(r, wv)-N(r, SΛ)+O(log r T(r, //))
υ=l

outside a set of finite measure. Using (8) and (9) we have

r, qv, S),
m v=ι / v=ι v=.ι

where kf is the number of branch points which lie over {wv}
k

v^\. Hence we have

< Σ ^Mr; q., S)-N(r, Sh)+O(\og r T(r; A))
w=l

outside a set of finite measure. Since φ is an analytic mapping of R into S we

have

where h(zo)=w^ ^>R(PQ}=ZO and $βs(#o)=tt>o. Hence we have

Consequently we have the following inequality:

-- T(r

outside a set of finite measure. On the other hand >S has an infinite number of
branch points whose order of ramification ^1. This is a contradiction. Hence
h(z)=^soφ°^R1(z) cannot be an z- valued function of z for every analytic mapping
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φ of R into S whenever it exists. Thus the equation (3) is reducible. Therefore
the assertions of theorem 1 is proved by means of the same reason as in the
theory of algebraic functions [2]. This completes the proof of theorem 1.

There exists a pair of Riemann surfaces for which there is a non-rigid
analytic mapping. Let R and S be the proper existence domains of /(z) and F(w)
defined by

respectively. Then there exists an analytic mapping φ of R into S induced by
h(z)=lΓz, that is, φ^^ h ^R.

§ 3. In this section we study the analytic mappings of Rn into Sm where Rn

and Sm are the proper existence domains of n- and w-valued entire algebroid func-
tions f ( z ) and F(w), respectively, defined by irreducible equations

where G and g are entire functions having an infinite number of zeros whose
orders are less than n and m and are coprime to n and m, respectively. Then Rn

and Sm are regularly branched n- and w-sheeted covering Riemann surfaces,
respectively.

We shall give a representation of an entire function f on Rn. Let pι=(z,
p2=(z, ω #G(z)), -,/>„_!=(*, ωn~2?/G(z)) and Pn=(z, ωn~l %/G(z)), where ω=exp(2πi/n).
Put

Now we introduce a local parameter around a branch point of Rn and expand f in
terms of the local parameter. Then the single-valuedness of f3 (j=Q, •••, n— 1) are
easily seen. Hence we have a representation of the form:

where /0 and/i are entire functions of z and /, (;=2, •••, n—Y) are meromorphic func-
tions of z which might have poles only at the zeros of G and the order of pole at
a zero of G with order k is at most [kjlri\, where [ ] denotes the notation of
Gauss. In the subsequent we say that a system of n functions (i.e. L0, •••, Ln_ι)
satisfies the property (A) when L0 and Li are entire functions and Lj (j=2, - ,n—l)
are meromorphic functions which might have poles only at the zeros of G and the
order of pole at a zero of G with order k is at most [kj/n]. We shall prove the

following
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THEOREM 2. Assume thai n is a prime number. Then ί/iere is no analytic
mapping of Rn into Sm, when

Proof. By theorem 1 every analytic mapping ψ of Rn into Sm is rigid whenever
it exists. Hence the corresponding function h(z)^^sm

oφ°^Rn(z) is an entire function
of z. Let 0* be the function of Sm defined by g*=tfjf3$sm. Then we have

(10) g* φ*1&n(z) =

where (Λ, •• ,Λn-ι) satisfies the property (A). On the other hand we have

(ID ^^o^ω-^^^m°^^o^°φ^ω = ̂ ω
By (10) and (11) we have

Since h is an entire function we have

+Viω^ΓG"^

where ω=exp(2πi/ri). Hence at most one of λQί ,λn_z and /ίn-ι does not vanish
identically. We have one of the following functional equations:

g-h(z)=λj(zJnG(zym/n 0=0, — , n-V).

Using the Nevanlinna-Selberg ramification relation we can easily see that g°h(z)
= Λo(2)m cannot hold in our case. Let (n, m)=l. Then Gjm/n cannot reduce to a
single-valued function of z. This is a contradiction. Hence there is no analytic
mapping of Rn into Sm when (n, m) = l. Let cn=m with a integer c^2. Then
we have

goA(*) = ̂ (*)»GWc 0 = 0, •-, n-V).

However, since the orders of all the zeros of g are not divisors of m, by the
Nevanlinna-Selberg ramification relation we can see that such functional equations
cannot hold in our case. Consequently there is no analytic mapping of Rn into Sm

when n is a prime number and

By the quite same method we can prove the following theorem.

THEOREM 3. Suppose that there exists a rigid analytic mapping φ of Rn into
Sm. Then n is an integral multiple of m by an integer c and the corresponding
entire function h(z) satisfy one of the following functional equations:

where k—cj is coprime to m and (/0, •• ,/w-ι) satisfies the property (A).

§ 4. Let Rn and Sm be the regularly branched surfaces defined in § 3. We
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give the following theorems which can be proved by means of the same method
as in [3], [4], [6]. Thus the proofs may be omitted here.

THEOREM 4 (cf. Theorem 3 in [4], Theorem 3 in [6]). Suppose that there
exists a rigid analytic mapping φ of Rn into Sm. Then the corresponding entire
function h(z) satisfies

~ N(r; 0, G)
lim — ™ — γτ — =00.
r_oo Ί\r, h)

Let Gc and gc be canonical products having the same zeros with the same
orders as those of G and g, respectively. Let pGc and pQc be the orders of Gc and
QC, respectively. Then we have the following

THEOREM 5 (cf. Theorem 1 in [3]). Suppose that PGC<°° and 0<io&c<oo and
that there exists a rigid analytic mapping φ of Rn into Sm. Then poc is an in-
tegral multiple of pϋc.

THEOREM 6 (cf. Theorem 2 in [3]). Suppose that there exists a rigid analytic
mapping φ of Rn into itself. Then φ is a univalent conformal mapping of Rn onto
itself and the corresponding entire function h(z) is a linear function of the form

a suifabie rational number p/q.

Recently Ozawa [8] introduced the notion of a finite modification of an ultra-
hyperelliptic surface and proved two interesting theorems. According to his defini-
tion we say that Sn is a finite modification of Rn when G(z) and g(z) have the
same zeros for \z\^Ro for a suitable R0.

THEOREM 7 (cf. Theorem 1 in [8]). Suppose that there exists a rigid analytic
mapping φ of Rn into Sn, which is a finite modification of Rny then the cor-
responding entire function h(z) reduces to the form az-\-b, that is, ψ is a univalent
conformal mapping of Rn onto Sn.

THEOREM 8 (cf. Theorem 2 in [8]). Suppose that there exists a rigid analytic
mapping φ of Rn into Sn, which is a finite modification of Rn and that G and g
have the same number of zeros in \z\<R0, then ψ is a univalent conformal map-
ping of Rn onto Sn and the corresponding entire function h(z) reduces to the form

with a suitable rational number pjq.

§5. Let R be a Riemann surface defined in § 1. Let S* be a Riemann
surface which is the proper existence domain of m-valued algebraic function F*(w)
defined by an irreducible equation

where P3 (j=l, ~ ,m) are polynomials.
Let φ be an analytic mapping of R into S*. Let $#* be the projection map:

(w, F*(w))-+w. As before we define the corresponding function
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Then by the same method as in § 2 we can prove the following

THEOREM 9. Assume that there exists an analytic mapping φ of R into S*,
when the genus of S* is greater than m(n—l)-\-l. If n is a prime number, then φ is
rigid. If n is not a prime number, then the corresponding function h(z) is k-valued
where k is a proper divisor of n and φ may or may not be rigid.

§ 6. Let Rn be a regularly branched Riemann surface defined in § 3. Let S*
be a Riemann surface which is the proper existence domain of an m-valued
algebraic function F*(ιv) defined by

(12) F*m= . \\(w-w i)cJ
J = l

where c/<m are positive integers which are coprimc to m and w^w3 for i^j.
Then Sm* is a closed and regularly branched m-sheeted covering Riemann surface.

Let φ be an analytic mapping of Rn into Sm*. Let n be a prime number. By
theorem 9 the corresponding function h(z)=^s^ψ°^Rn(z) reduces to a single-valued

function of z, when the genus of STO* is greater than m(n—l)+l. Using the same
method as in the proof of theorem 2 we can prove the following

THEOREM 10. Assume that n is a prime number and n^ m. Then there is no
analytic mapping of Rn into Sm*, when the genus of Sm* is greater than m(n—Y) + l.
Furthermore there is no rigid analytic mapping of Rn into Sm*, when the genus of
Sw* is greater than 1.

There exists a pair of Riemann surfaces for which there is a non-rigid analytic
mapping.

EXAMPLE 1 (cf. [4], [6]). Let Rn be the proper existence domain of ^sn z with
Jacobi's sn-function. Let S2* be the hyperelliptic surface which is the proper
existence domain of ^/(Γ11^?71) (I-IΓ2^). It is well-known that

-^/k sn z] (ω-^k sn z) (ωn-l-Hk sn z)

- (-l-tfk sn z) (-ω-ΐlk sn z) (-ωn-l-?lk sn z),

where ω=exp(2πz'/w). This shows that there exists an analytic mapping φ of Rn

into S2*, which is induced by ^sn~ε, that is, h(z~)=tfsn^, <P=^~s*
ΰh°^n> when the

genus of S2* is 2n—l. This mapping is not rigid.

EXAMPLE 2 (cf. [4], [6]). Let Rn be the proper existence domain of j/f(z) with
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Weierstrass' $-f unction with the primitive periods 2α>ι and 2ω2 where n^5 is an
odd integer. Let S2* be the hyperelliptic surface which is the proper existence of
2*j(wn—eι} (wn—e2) (wn—e*\ where £] = ί?(ωι), e2 = $(ω2) and e^ = ̂ (ω}

J

Γω2). Evidently
the genus of S2* is 3ί— 1, when n=2t+l. It is well-known that

-4

where ω=exp(2ττ£/w). This shows that there exists an analytic mapping ψ of #w

into S2*, which is induced by V^ΰ), that is, h(z)=^IW\ ψ=^°h^Rn. This
analytic mapping is not rigid.

EXAMPLE 3 (cf. [4]). Put

dtS
w

oW^

where a1} a2 and as are non-zero distinct complex numbers. Let w=f(z) be the in-
verse function, then it can be continued over the whole plane as a single-valued mero-
morphic function. Let S3* be the regularly branched three-sheeted covering Riemann
surface which is the proper existence domain of ^l{(wn—aί) (wn—a2) (wn—a^}}2. Let
Rn be the proper existence domain of tff(z), then it is a regularly branched n-
sheeted covering Riemann surface. f ( z ) satisfies

where ω=ex.p(2πi/ri). This shows that there exists an analytic mapping φ of Rn

into S3*, which is induced by #/U), that is, h(z)=l/7(z), ^=%*0A°^n, when the
genus of S3* is 3^—2. This analytic mapping is not rigid.

We can prove the following theorem by the same method as in theorem 2.

THEOREM 11. Suppose that there exists a rigid analytic mapping φ of Rn into
Sm*, when the genus of Sm* is greater than 1. Then n is an integral multiple of
m and the corresponding meromorphic function h(z) satisfies one of the following
functional equations:

(13) f(zy*G(zf= ft
,7=1
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where k<m is an integer being coprime to m and f is a meromorphic function.

By this theorem we can prove the following theorem:

THEOREM 12. Suppose that there exists a rigid analytic mapping φ of Rn into
Sm*, when the genus of Sm* is greater than 1. Then the corresponding meromorphic
function h(z) satisfies

Proof. In this case every branch point of Rn has its φ-image on a branch
point of Sm*. This is proved as in [5]. Hence h(z) should be a transcendental
meromorphic function of z. In fact, assume that h(z) is a polynomial. Then every
branch point of Sw* is covered only finitely often by φ(Rn) and every branch point
of Rn is carried to a branch point of Sm*. There is an infinite number of branch
points on Rn. This is a contradiction. Using (13) we have

k N(r, 0, G)^ Σ CjN(r, w,, A)= Σ <
3=1 ' .7=1

Hence we have

r, 0, G) „ * .
T(r h} ' j'7 -»oo ^ I,/, Aίj j^l

Let WI, ,WP-I and ^ be the values defined in (12). Then by the second
fundamental theorem applied to h(z) we have

(p-2)T(r, lι}^ Σ N(r, w}J /?)+O(log r T(r, //))
J = l

outside a set of finite measure. On the other hand we have

Nm(r, w3, h)^N(r, 0, A')^2 T(r,
j=ι

outside a set of finite measure, where Nm-ι denotes the counting function of wr

points whose multiplicities are less than m and Nm that of other ^/-points which
are counted only once, respectively. By (13) we have

.7 = 1

Therefore we have
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T(r h)^k N(r, 0, G)+O(log r T(r, h))
m—1

outside a set of finite measure. Hence we have

/ 2m \ / _ JV(r;Q, G)

This completes the proof.

In the case of n=m=2, Ozawa proved the assertion of theorem 12. Further
he showed the sharpness of the left and right hand side inequalities of (14) [7].

We give the sharpness of the right hand side inequality of (14) in the case of
n=m and the sharpness of the left hand side inequality of (14) in the case of
n=m=3 by the following examples:

EXAMPLE 4. Let G(z) be e**—l and let P(w) be

P P

Y[ (w—Wj) — Yl (w—ωj),

where ω=exp(2πi/p). Let Rn and Sw* be Riemann surfaces which are the proper
existence domains of tfG(z) and tfP(w), respectively. Then there exists a rigid
analytic mapping which is induced by h(z) = ez, that is, φ=<$s*

0h0?$Rn. In this case

N(r, 0, G)=/> T(r, e*)=p T(r, h).

Hence we have

— N(r,Q,G) .
JίΞ T(r,K) =p

EXAMPLE 5. Let G(z) be

where f(z) is the function defined in example 3 and #4, •••, #p are ^—3 different
complex numbers and they are different with alt a2 and a3. Let R$ be the
proper existence domain of \lG(z) and let Sf be the proper existence domain of
3l{(w—a1)(w—a2)'~(w—ap)}2. Then there is an analytic mapping φ whose cor-
responding function is f(z). In this case

2N(r, 0, G)=(£-3) Γ(f; /(«))= (j>- 3) T(r,

Hence

N(r, 0, G) p-3
lim -

r, h)
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