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ON SLIT RECTANGLE MAPPINGS AND CONTINUITY
OF EXTREMAL LENGTH

By NoBUYUKI Surta

§1. Introduction.

1. Let £ be a plane domain and let « be its preassigned boundary component.
When four curves defining vertices on « are given we discussed a conformal
mapping of £ onto a horizontally slit rectangle [11]. The mapping function could
be constructed by means of an exhaustion of £ in the directions to two opposite
edges on a to be mapped into the horizontal sides of its image rectangle. In the
present paper we shall deal with an alternative construction of such a mapping by
means of its exhaustion in the direction to the other two edges. Indeed the limit
function of a sequence of the normalized slit rectangle mappings of the members
of its exhaustion gives a desired slit rectangle mapping, if the sequence of extremal
distances of their two edges is positive and uniformly bounded. We think that these
mapping problems should be discussed in connection with exhaustions or curve
families. Such a consideration is found in Renglli [6]. In the proof of the present
mapping theorem we shall use a conjugate family of the curve family clustering
at the two edges of a which was first introduced by Andereian Cazacu [2] and
used by Marden and Rodin in the circular-radial slit mappings [4].

Our mapping theorem has the following meaning in the problem of the conti-
nuity of extremal distances which was first discussed by Wolontis [12] and later
by Strebel [9]. When we define two boundary parts on a by two defining sequ-
ences the sequence of the extremal distances of the relative boundaries of their
members with the same indices is non-decreasing and its limit value, if of finite
value, is not the extremal length of the family of curves joining these parts but
that of the curve family clustering on them.

In the last section a few examples will be given in which the above phenomina

really occur.

§ 2. Preliminary.

2. We begin with a definition of extremal length. Let I be a family of
locally rectifiable curves, simply called a curve family in the sequel. Let P(")
denote an admissible class of measurable metrics satisfying

(D) Sp]dzlzl, rel.
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The module of I", denoted by mod I, is the quantity

inf [p|®

pEP(I)
and its reciprocial is called the extremal length of I”, denoted by 2(I"). It is often
called the extremal distance of two sets, when I is the curve family joining them
in a suitable sense.

The closure of the intersection of P(I") with the space of Z-metrics is denoted
by P*(I") which is called the l;-admissible class of /". There exists a unique metric
oo in P*(I") such that [|p||?=mod I, if P*(I")#¢. The deviation of pe P*(I") from
0o is evaluated by an inequality [10]

(2) llo—poll*=Iloll*—lloolI*.

3. The inequality (2) is useful for the existence proof of an extremal function.
To this end we remark the following

LemMa 1. Let {2,)5-1 be an increasing sequence of subdomains of £ such
that 2= U2, and let f.(2) be an analytic function defined in 2, with finite norm
| fall- Put po=|fal in 2n and =0 outside of 2,. If {pn} makes a Cauchy sequence,
we can select a convergent subsequence {fn,} from {f} such that || fnv_foHanv—‘)O.

Proof. Since {f,} makes a normal family, we have a subsequence {fn,}
tending to a limit function f, uniformly on any compact subset of £. Then for
any compact Kc®, ||fa,—/foll’s is arbitrarily small for sufficiently large ». Next

we have

||fn,,—fo]|nnv-1{§ [|follo—x+Ilooll 20—+l on,— ool 0-x

where p, is the strong limit of p,. These inequalitics complete the proof of the
lemma.

REMARK.  From the above proof we know lhal any subsequence of {fa.} has
a strong limit and its absolute value is equal Lo p,.

A curve family with vanishing module is called an exceptional family and we
say that a statement about /" holds for almost all y¢/', if it doecs except such a family.

4. We now state a definition of a boundary part. A boundary component «
of 2 is defined by a defining sequence {4,} [1,11]. We first assume the relative
boundary of 4, is an analytic curve. A boundary part 8 on a is a sequence of
subdomains of £, denoted by {S,}, such that any 4, contamns an S, S, has a single
relative boundary, S,D2S.,: and NS,=¢. A topological representation of « (resp.
B) on the Riemann sphere is given by NCl(4,) (resp. NCI(S,)), where CI(*) denotes
the closure taken in the sphere. They are written by the same notations « and
B, if no confusions occur. Their images under a topological mapping arc defined
by the images of their defining sequences.
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A sequence of domains 2,=2—S, is called an exhaustion of £ in the direction
to (or simply “towards”) . Two boundary parts are said to be disjoint, if the
closures of two suitable members of their defining sequences taken in £ are disjoint.

A curve tending to a (resp. §) means a curve whose suitable end arc is con-
tained in every member of its defining sequence.

§3. Slit rectangle mapping.

5. Let y, (1=j=4) be four disjoint analytic curves starting from a point of
and tending to a. Then we can replace the defining sequence by a new sequence
{d,} such that the relative boundary of its every member intersects each 7, pre-
cisely once. If the intersections p;™ are arranged in the negative orientation with
respect to 4,, we say that y,’s define vertices on «. Then we can construct four
defining sequences from 4, and 7,’s as follows. Let S{, (modulo 4) be a subdomain
of 4, whose relative boundary consists of end parts of y, and y,,;C4, and the arc
of the relative boundary of 4, between them. Thus we have two set of boundary
parts a;; and asy and ay; and a,, which are disjoint each other.

6. For simplicity’s sake we assume that 2% oo and « is the outer boundary.
Let {T.} be an exhaustion of 2 towards a,; and a,;. Then there exists a slit
rectangle mapping ¢, such that

i) the image of the outer boundary of 77, under ¢, is the periphery of the
rectangle 0<Re ¢, <1, 0<Im ¢, <%, with possible horizontal incisions emanating
from its vertical sides, where the incisions are the sets ¢n(@12)—[0, i%,] and @u(cs)—
[1, 1+ih,),

ii) the images of the relative boundaries of S and S under ¢, are closed
subarcs in the lower and upper horizontal sides respectively,

iii) the image of the boundary components other than its outer boundary is a
minimal® set of horizontal slits and

iv) the module of the family I', of curves joining a;» and as, within 7, is
equal to /.

The construction of ¢, is achieved by the duplication of 7 with respect to its
relative boundary [11]. The sequence {%,} is an increasing sequence, since I, is
increasing. Suppose lim z,=/,<co. Then ¢, tends to a function ¢, in the sense
that ||’ —oo’||lz,—0. ¢o possesses the above properties i), iii) and iv) when we use
Jio and Ty=UT, instead of 4, and I', respectively. The images ¢oas;) and @olas:)
are continua (or points) on the horizontal sides. As a consequence of this property
the value Im @o(z) tends to hy along 1. and yi, to zero along 7» and ys. These
properties are shown in [11]. The last remark is easily verified from the following

LEMMA 2. Suppose that any z€8 is contained in a curve of I' and a modified
curve of v such that every compact subarc of it is veplaced by any arc with the
same end points remains in I'. Let py be a continuous extremal metric belonging

1) We call a quasi-minimal set 1n [9] a minimal set simply.
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to P(I') and let I'; be its subfamily whose member runs through z. Then we gel

inf S

1€z Jy

The lemma was proven in [9]. In fact the metric po=|¢y’| is an extremal metric

in P*(I’y) and we know that its subfamily 1 of curves along which Tim Re po(2) >0
as z tends to ay, orﬂRe 00(z)<1 as z tends to as; is exceptional, whence p, is
extremal in P(/’y—4) [11]. Then in the image domain ¢o(2) ¢o(I’v—1) is the family
of curves satisfying lim Rew=0 and lim Re w=:1 along them. Since ¢,(£) 1s dense
in the rectangle 0<Rew<1, 0<Im w< /%, we can take a point w with Imw=¢ for
arbitrarily small e. In the w-plane the metric 1 is extremal for the image curve
family and there exists a curve of ¢o(/’y—4) through w and with length arbitrarily
close to one satisfying supImw<2e¢ on it. It belongs to some ¢o(/’,) and hence
©o(S§™), m=n, lies under the line Imw=2¢, which implies the above remark about

2=1.

72 and 7s.
This construction goes if only two boundary parts a,; and «, are given.

When the curve family [7, is replaced by such a curve family that its member
intersects all the curves joining the relative boundaries of Si an S{?, the results
in [11] are valid. The family I', is called the dividing curve family of ay; and as
and ¢, is called an extremal slit rectangle mapping with respect to the dividing

curve family.

7. We now deal with an alternative construction of another type of such a
mapping. A special case in which the same ¢, occurred was discussed in [11].

Let {T } be an exhaustion of £ towards a;; and as, and let {f‘nm} be an ex-
haustion of Tn towards the boundary components other than its outer boundary
and a.; and a,; whose member is relatively compact and finitely connected. There
exists a horizontally slit rectangle mapping ¢.. such that the subarcs of the relative
boundaries of Si’ and S which are the boundaries of T'um correspond to the
vertical sides A[O, zhnm] and [1,1 }—zh,,m] respectively.  Here the image of the relative
boundary of T'.. under ¢y, is given by its extension over the closure of T .
The function ¢, induces two extremal metrics for the following module problems.
The first is Ehe familX of curves joining two edges corresponding to the vertical
sides within T'nm, say ) - The standard method shows that the metric pnm=|¢mml
is extremal for 'y, and mod I'yp="Fnm.

Let 7% be the Stoilow compactification of T [1] and let 1'% be the family

of curves d1v1dmg the same edges within the complement of its outer boundary
W1th respect to T Then the metric fhum=|dfm/ wm| 15 extremal and mod /%
=1/htnm.
Put ﬁn—uﬁn,n A contmulty lemma of the extremal length given n [11]
shows mod I',=1im mod an Suppose mod [, =h,<co. Then Onm tends to an
extremal metric g, for I',. From Lemma 1 and the normalization of Pum WE can
deduce that ¢.. tends to a function ¢, such that |[¢/n—¢a/||7,,—0 as m—co. The
¢, possesses the following properties :
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i) The image of the outer Aboundary of ’f‘n under ¢, is the periphery of the
rectangle 0<Re ¢,<1, 0<Im ¢, <7in,

ii) the images of the relative boundaries of S{ and S{¥ are open vertical
sides (0, iﬁn) and (1, 1+il2n) respectively,

iii) the image of the boundary components other than its outer boundary is
a minimal set of horizontal slits and

iv) mod f’n:!?n, where ﬁn is the family of curves joining the relative bounda-
ries of T', within it. .

P*(f’n) is decreasing with z. Suppose, furthermore, lim mod P.=he>0. Then
the inequality (2) shows that ¢, tends to a metric go. Again Lemma 1 guarantees the
existence of a univalent function ¢, such that ||[¢n'—¢o'llz,—0, l|¢d|[*=%0 and go
=|¢o’l.

The class P*(I'jk,) is increasing with m. Hence pum tend§ to a metric p,
=[gbn’/i2n| with ||pn[|2=1/l2n. Let T'.* be the campactificatian of T', and let I',* be
the dividing curve family of its relative boundaries within the complement of its
outer boundary with respect to 7.*. Then 1 is an extremal metric of P*(I7,*).
In fact the segment L, in the image plane; Rew=2z (0<x<1), 0<Im w<l2,, belongs
to ¢u(I"x*). For any pe P(¢.(I":*)) we have

S rdy=1 and S ‘u?dyZAi

Langn( Lein(T  Ha

from Schwarz’s inequality. We get Hyllzzl/i;n and therefore p, is extremal.

Finally let 2* be the compactification of 2 and let I'y* be the family of curves
divAiding a;; and asy within 2¥—a. Since I'y*=UI'*, mod I',* tends to mod I"p*
=, and p, tends to pozlgbo'/l?o[ which is extremal for I'y* [11]. We obtain

THEOREM 1. Let ¢, be the slit 7’ecz‘angl§ mapping of f‘n with height l?n con-
structed above. If the decreasing sequence I, tends to a positive value fo, ¢n tends
to a univalent function ¢, such that ||¢p.'—¢d|l,—0 and ||¢o’||P=%o. Let I'v* be the
Jamily of curves dividing o, and asy within 2*—a. Then mod I 0*:1/?20 and the
melric yo:igbo’/lzol is extremal for I'y*.

Similar module problems as in the theorem was treated by Andreian Cazacu
[2] and by Marden and Rodin [4].

8. We now investigate the image of 2 under ¢,. We say that a curve clusters
on a boundary part B, if it intersects an infinite number of members of its defining
sequence. We state

THEOREM 2. Suppose mod f <o and limmod o=ho>0. Then o constructed
mn no. 7 has the following properties:

1) ¢o(@) is the periphery of the rectangle 0<Re ¢<1, 0<Im ¢o<ho with possible
horizontal incisions emanating from its vertical sides,

i) golars) and dolass) is the vertical sides [0, iko] and [1, 14-iho] with possible
horizontal incisions emanating from them respectively,
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iil) ¢o(0R—a) is @ minimal set of horizontal slits and
iv) the module of the family of curves clustermg on ay, and ass, denoted by
[y is equal to %o and Bo=|y'| is extremal for ['.

Before proving the theorem we prepare two lemmas.

9. The first is a lemma on a conformal mapping. Let 8={S,} be a boundary
part of the outer boundary component « of a finite domain £. Then we state

LemmA 3. Let {f,} be a convergent sequence of unwalent functions in 2 with
limit fo such that ||f.||<oco, ||/, —So'|>—0, and fo#const. Suppose f.(2) lies in the
upper half plane and f.(B) on the real axis and f,(02—a) is a minimal set of
horizontal slits. If a poinl w of fo(B) has a closed disc C:lw—w|=7, such that
k=CNfoa) has a neighborhood Uy(x) whose intersection with f(2) is contaned in
fo(Sn) and if theve exists a subcontinuum of k., (not a pownt) containing o, then o
is on the veal axis.

Proof. Let K be a closed disc in £. Put Im f.(z2)=v,(2) (v=0,1,---). Let 2%
denote the Stoilow compactification of £. Consider a module problem for the family,
denoted by A%, of curves joining K and g within Q*—a along which Tim v4(z)>0
as z tends to B. Let 4y* be its subfamily consisting of the curves along which
Tim vo(2)>1/k. Since »,(2) is continuous on any curve belonging to 4%, the metric

=2k |grad (v,—wv,)| is admissible for /4;* 1f v is sufficient large and we get mod A;*
=0. Thus 4* is exceptional since A*= U A;*.

Contrary to the assertion, suppose that there exists a wefy(8) with Im o >0 and
satisfying the conditions in the lemma. We may assume that the radius » of the disc
C is less than Im w and the circle |w—w|=7 has a point of f,(2) in the image w-
plane. Let U(fyo(K)) be a simply connected neighborhood of fo(X) contained in
Fo(2). We connect the disc |w—o|<r and U(fo(K)) by a canal within f4(£) so that
the union of these three domains may remain simply connected. Take a continuum
£, containing » and contained the disc |w—w|<7 and consider a module problem
for the curve family joining #, and fo(K) within this domain. Its module has a
positive value, say d. Every curve of it intersects f4(8) and from the assumption
Fo2) N Une)Tfo(Se) we see that the curve contains the intersection of a image
curve of A* with fo(2) as a subset. Hence we get mod 4*=d which contradicts
the exceptionality of A*.

10. The next lemma is originally due to Strebel [7]. It was proven alternatively
by means of a quasiconformal mapping [9] and the method is effective for the
following

LEMMA 4. Let 2 be a finite domain with outer boundary « and let By and p.
be disjoint two boundary parts of «. Suppose 32—« is ¢ minimal set of horizonlal
slits.

We denote by 2 a component of « containing 2. If the line Im z=y, a<y<b,
contains a subarc L, with length I(y) clustering on pi and B. wilthin 2', then we



SLIT RECTANGLE AND EXTREMAL LENGTH 431

have

(3) mod = S l()dy,

where [ is the Samily of curves clustering on B, and B, within £.

Proof. Let {£,} be an exhaustion of 2 towards a. We can make a countably
connected subdomain £2° of 2 with the same outer boundary « containing the rela-
tive boundaries of the defining sequences of B; and B: and (1-+e¢)-quasiconformal
mapping @°(z) of £° such that @°(02°—a) is a countable set of horizontal slits,
@*(a)=a and

sup |9%(z)—z|—0 as n—oo.
0-2,

Their construction was given in [9] and the last property not stated there is easily
verified from the construction. Then the segment L, except a countable number
of y clusters on @*(8,) and 9°(8;) which coincide with 8, and B, as representations.
We have

mod = L Sb La’
=The o i) @
since the curve L, is the image of a curve of P under #*(z). Letting ¢ tend to
zero we get the inequality (3).

11. Proof of Theorem 2. We first show that a point @ of ¢o(ass) (resp. ¢olas))
disjoint from ¢o(asz) U¢@o(ass), if any, lies on the real axis (resp. the line Imw= l?o)
In fact o is not contained in Cl(¢o(S3?) U ¢o(S5r®)) for some 7, and we apply Lemma
3 to the sequence {¢,} in the domain S{#® and the boundary part {S{P} (n=mno-+1).
o has a closed disc C: jw—w|=7 such that CNCl(¢o(SF?) U ¢o(SE?))=¢. Furthermore
we may assume that C is disjoint from the closure of the image of the relative
boundary of S{f®. Let « be the intersection of C with the ¢o-image of the outer
boundary of SE®. « contains a subcontinuum r,3® because the image is a conti-
nuum. « has a positive distance d, from the relative boundary of ¢o(S5), #=1,.
Covering « by a finite number of discs with radius d,/2, we get their union as a
neighborhood U, (k) satisfying ¢,(SF®) N Un(/c)CglJo(S(")) Thus the conditions in Lemma
3 are fulfilled and we obtain Im w=0 (resp. Im w= ho).

Next we see that ¢(a2) and ¢o(ass) contain the vertical sides [0, 1720] and [1, 1+il?o]
respectively. Put d=¢y(2). Let 4* denote the Stoilow compactification of 4.
Similarly as in the proof of Lemma 3 the family of curves dividing ¢¢(a:2) and
do(asy) within 4*—¢y(a) along which Tim Im2w>0 as w tends to Polaszs) or lim Imew
<hy as w tends to ¢o(ayy) is exceptional. On the other hand the module of the dividing
curve family within 4*—g¢,(a) less this family is equal to 1/}?0 from Theorem 1.
There exists a curve y of the family dividing ¢¢(a) and ¢o(as) and satisfying
lim Imw=0 and lim Imw=/, as w tends to ¢y(as;) and g[)o(a“) along it respectively.
The curve y moving from the real axis to the line Im w==%, divides 4 into two sub-
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domains, one of which induces the positive orientation on it, say 4;, and the other
is denoted by 4.. From the normalization of ¢, we see ¢(SP)C4; and ¢o(SE)C ds.
Thus Cl(4:)N (0, iy)=¢, since 7y is a curve only clustering at the points on the
horizontal sides. From the fact shown above therc exists no point of the open
sides (0, i%,) not belonging to ¢olais).

12. Continued. We investigate the shape of each incision which is a com-
ponent of ¢o(ai2)—[0, zh] and ¢o(as)—[1, 1—|—zh0] if any. We prove that it is a harizontal
segment emanating from a vertical side. :I‘o show it, suppose there exists a com-
ponent £ emanating from the side [0, i%,] which is not a segment. FE contains
two points w; and w, such that Im w, >Im w,. Put Im w,—Im w,=4§. There exists
a subcontinuum £, of £ containing w, and .. Since 4 is dense in the rectangle,
we can take a point w, of 4 such that Rew,<Rew for all wek, and Imw, is
sufficiently close to Im (w;+w.)/2. As 1n the proof of Lemma 4 we can construct
a countably connected subdomain 4° of 4 with the same outer boundary ¢,(a)
containing the relative boundaries of ¢(S%”) and ¢o(S{’) and w,, and a (1+¢)-quasi-
conformal mapping @° of it such that @° fixes any boundary part, on ¢y(a) of I,
D04 —do(e)) consists of a countable number of horizontal slits and the image of
w,, denoted by w., is arbitrarily closc to w,. Then any curve running through the
point w. within the complement of ¢,(«) with respect to the compactification of
@*(4) and dividing ¢o(z) and ¢olass) has the length larger than fo--00, where 3, is
a fixed positive number close to d and independent of e. We consider a module
problem of the dividing curve family of ¢o(az) and ¢o(ass) within the above domain
in the compactification. There exists a disc |w—uw.| <7, J]Sn/l?(,<(3,,/2, belonging
to @(4°). Set

J 0 in lw—w.|<z,
=1
[ 1/h elsewhere.
Then p. is admissible and the module does not exceed the value 1/ho—nd2. Every
curve of the dividing curve family 7'¢* of ¢o(a) and ¢o(as) within 4*—dy(a)
contains the counter image of the restriction of a curve of the family in the domain
@*(4°. Hence letting ¢ tend to zero, we get mod I o*gl/ﬁo—m?l?, which contradicts
Theorem 1. Thus we obtain the properties i) and ii).
The property iii) is a common property of minimal sets shown in [5,9].
Finally we show the property iv). Let 4’ be a component of the complement
of ¢o(e) containing 4. Then the intersection of the line Imw=y (0>y>h,) with
4’ is an open segment whose two end points belong to ¢(aiz) and ¢e(as.) since the
incisions are horizontal. We see that the segment clusters on these boundary parts
considered in 4’. To show this we prove

(4) Tim Im w="h, along ¢o(r1) and ¢a(r.)
and

(5) lim Im w=0 along ¢o(r:) and dol(ys).
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For instance suppose lim Im w= h<h, along ¢o(r:). Then Cl(¢o(y1)) contains a point
o of ¢o(a12) with Im w=/%. Considering the orientation of 7,, we can see that the
arc (ih, zko) does not belong to ¢y(a;;) because the incisions are horizontal. This is
contrary to the property ii). The relative boundaries of ¢,(S%) and ¢o(S{P) cluster
on the both horizontal sides and divide the boundary parts ¢o(ez) and ¢o(ass).
Therefore the segment intersects them and hence clusters on these boundary parts.
Then from Lemma 4 we have mod ' 21/120, since l(y)<}20 We have seen in no. 8
that the metrlc Bo=I|¢y’| is the limit of the extremal metrics g,= !gﬁn’leP*(l’n) CP*(PO)
Hence poeP*(Fo) and the equality ||go||>*= l/ho proves mod Fo—l/ho and g, is ex-
tremal.

By the way the equalities (4) and (5) correspond to the remark stated in no. 5.

§4. Extremal property.

13. We call ¢, an extremal hovizontally slit vectangle mapping of £2 with
respect to the clustering curve family of a;; and as;. We gave an extremal pro-
perty to the extremal slit rectangle mapping with respect to the dividing curve
family [11] and we show a similar extremal property for ¢.

Let %(FO) (resp. ¥(7y)) be the family of univalent functions f(z) satisfying
0<Ref(z)<1 inf Im f(2)=0 (ze£2) and lim Re f(2)=0 and lim Ref(z) 1 along almost
all reFO (resp. I') as z tends to ay, and ass respectively, where Fy and Iy are the
clustering curve family of @y, and a4 and the dividing curve family of azs and ay,.
Put H(f)=supIm f(z) (ze£2). We state

THEOREM 3. If mod ﬁo (resp. mod I'y) is finite and positive, the function A¢o
(resp. @o) is the unique function which minimizes the quantity H(f) within F(I'o)
(resp. F(0)).

Proof. The metric go=|¢y’| is extremal and p=|s’| is admissible. The inequality
(2) shows

llo—pol > =Ilpll*—lloo|[* = H(S) — H(gbo).

A domain 2 is said @ minimal hovizontally slit reclangle with respect to ﬁ(,
(resp. I'y) if it is the image of a domain under ¢, (resp. ¢,). For the minimal slit
rectangle the extremal slit rectangle mapping coincides with the identity. We now
give its characterization which is an analogue given in [10].

CoROLLARY 1. Let 2 be a domain whose outer boundary « is the pervibhery of
the rectangle 0<Rez<1, 0<Im z<A with possible horizontal incisions and let a;,
and azy be two disjoint boundary parts containing the vertical sides [0, ih] and
[1, 1+4iA] vespectively. Suppose the extremal distance of the relative boundaries of
the first member of their defining sequences is positive. Then any two of the
Jollowing three imply the minimality of 2 with respect to the clustering curve family
ﬁo Of 44T and M3y,
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i) 0Q—a is minimal, .

ii) lim Rez=0 and lim Rez=1 along almost all yel'y as z lends to a, and
asy vespectively, and

iy mod I'y=A.

Conversely the minimal slit vectangle with respect to the clustering curve family
has all the above properties.

Proof. The assumption about the extremal distance is needed for the con-
struction of ¢,. We first assume the conditions ii) and iii). From ii) the metric
po=1 (=|grad Re z|) is l,-admissible. The equality |[po||>=7% shows the extremality
of po and we get ¢o=

Next from i) and Lemma 4 we have mod Fl.::lz Then ii) implies the extre-
mality of p, as before.

Finally suppose i) and iii). From iii) and Lemma 4 we can deduce that the pro-
jectiop of the set of all incisions into the imaginary axis has a vanishing measure.
Let I'” denote the subfamily of r, satisfying the conditions in ii). Then Lemma 4
(shghtly modxﬁed) is applied and we get mod ["=/4. The metric 0o is extremal
for I and med I'"=h. Since I CFO having the same module, both families have
the common extremal metric p,. The converse is a direct consequence of Theorem
2.

Similarly we have

COROLLARY 2. Let 2 be the domain given in Corollary 1 and let a.s and aq,
be two boundary parts of « contawned in the hovizontal sides [0,1] and [ih, 14ik]
vespectively. Then any two of the three conditions in Corollar;g 1 imply the mini-
mality of 2 with respect to the dividing curve family I'y when L'y is replaced by I',.

Conversely the minimal slit rectangle has all the above properties.

§5. Examples.

14. Let y,’s be four curves defining vertices on a. In general the slit rectangle
mapping ¢, with respect to the dividing curve family of ay; and ay does not
coincide with the function ¢, with respect to the clustering curve family of ai.
and ag. It is shown by the following

ExampLeE 1. Let £ be the square with vertices at 7, 0, 1 and 14: and let
7,’s be

P mO= iy 6T Ty 2= (L0 sin ),

7’3:23()})=1+%e"3”/4t, n:a(t)zl%—i—{—%eﬁ‘”“t O<t<).

The domain £ is a minimal slit rectangle (without slits) with respect to the
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clustering curve family of @, and as, since the conditions i) and ii) of Corollary 1 is
complied. But it is not minimal with respect to the dividing curve family of a,;
and ., because ay; is the union of the segments [0, 7/2] and [0, 1] and the assump-
tion a,3[0,1] does not hold. Thus @o#¢o=2.

This example shows a discontinuity of the extremal distance. To see it let
{S&} and {S{’} be defining sequences of a;,; and as. Let y be the family of
curves joining a;» and ass defined by these defining sequences. It is a subclass of
the family I’y defined in no. 6. Then we have

mod I'y=mod x <lim mod f’nzmod ﬁo.
In fact we know from Theorems 2 and 3 that
mod I"y=/,<lim mod [*,=mod ﬁo,

where h,=H(¢,) is the height of the image rectangle of £. The equality H(p,)=
mod ¥ was proved in [11], since any curve of y joins two edges in a member of
{T%}.

15. Next we construct a minimal slit rectangle with respect to the dividing
curve family of ay; and a4, one of which is a point.
ExampPLE 2. Let E be a countable number of segments
1 i 1 2
= - <= (1—
s TS W=3 <1 nt1

and let 2 be the complement of E with respect to the square in Example 1. Let
71 and 74 be the curves in Example 1 and let

7o 2a()=e%t{4 and 7s: zs(f)=e¥ /4.

) =120,

@z is the point at the origin, a4 is the segment [7,1+¢] and £ is a minimal
slit rectangle with respect to the dividing curve family of them. In fact the set
of countable slits is minimal [9]. Let {73} be an exhaustion of £ towards @.; and
ay. Let I', be the dividing curve family of the relative boundaries of 7. Then
any curve of I', not tending to the both vertical sides clusters either at an inner
point of the lower horizontal side or at the origin. The family of the former curves
is exceptional since they have an infinite length while so is the latter family since
the extremal distance of the vertical side [0,:] and the boundary element at the
origin in the Carathéodory sense not contained in a;, in the interior of the outer
bounday of T is infinite. Then the conditions i) and ii) of Corollary 2 is satisfied
and £ is minimal.

For this domain £ the extremal slit rectangle mapping with respect to the
clustering curve family of a;, and as can not be constructed by the procedure in
no. 7. Indeed let {’_f‘n} be an exhaustion of towards a;, and ass and let I', be the
family of curves joining the relative boundaries of A Any 7', contains a sector

2

5 and 0<|z|<0n, 0,>0.

3
10 n<arg z<
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For every ,oeP(ﬁn) Schwarz’s inequality shows

T

107

2z
j " ore) rd o= O<r<an.

37/10
Thus we get [|p|[*=co and mod /',=co, which denies the construction of ¢, by
means of an exhaustion.

On the other hand we can see that the module of the clustering curve family

I'y of ai, and s remains finite and is equal to one. To show it we have from
Lemma 4 modI'y=1. We set for r<e™*

{ llz]log |z]I”*  in  [2]<7,
or=

1 elsewhere.

or is admissible for I, since o-=1, the length of a curve clustering at a point of
(0,1) is infinite and for a curve y tending to the origin

S o-|dz| ‘Z‘j opr dr=co, r,=sup |z|.
v 0 Z€y

Hence we have mod ;=1 since o IP—1 as r—0.
This example shows the following discontinuity ;
Although a;, and a;, are disjoint

mod ﬁ0<lim mod ﬁnroo.

In the original formulation of Strebel’s continuity lemma [8] the defining sequ-
ence of a boundary component satisfies 4,54,,, and in our definition of boundary
part it is replaced by 4,D4,,.. We can easily modify the defining sequences of
the boundary parts of two examples in such a way that the above strictly decreas-
ing condition is satisfied.

16. Our last example is a minimal slit rectangle such that a;, is the point at
the origin, ¢, exists and coincides with o,.

ExampLE 3. Take a square with vertices at 7, 0, 1 and 147 and curves in
Example 2. Put

A=X2"" t,=A—-22"" and a,=z(t.) (n=1,2,--)
v=1 v=1
Let L, be a segment on y; with center @, such that L, is disjoint from the other
a, and the module of the family, say I',!, of curve joining L, and 7. is less than
1/n?. We denote by L, the open complementary segment between L, and L,
and its center by b,. We take a point b,” on the ray b,+s (s>0) in such a way
that the distance of y. and the circle |z—b5,/|=2" is equal to 2" We replace
the segment L,’ by a rectilinear curve consisting of two horizontal segments he-
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tween the end points of L,’ and the vertical diameter of the circle and its subarc
between these horizontal segments. We consider two sufficiently short vertical
segments emanating below and above from the upper and lower end points of L,’
such that the module of the family, say /7,% of the curves joining 7, and these
segments is less than 1/#2. Take two horizontal slits between the end points of
these vertical segments and the circle and let £, be the union of them. We
denote by 7s* the union of these rectilinear curves and L,’s and connect the end
points of 7s* and 7, in the square less £; by an analytic curve such that the union
of these three is a Jordan arc. It divides the square into two domains. In the
domain disjoint from £E; we can take a set E; of a countable number of horizontal
slits which is closed in it and makes every point of (0,1) inaccessible.

Let 2 be the complement of the union of E; and E; with respect to the square
and let 7, 72, 7s* and 7. be the curves defining the vertices. Then £ is a minimal
slit rectangle for the both family dividing ass and a4 and clustering on a;, and as,.
From the construction a,; is the point at the origin.

In fact similarly as in Example 2 we have the minimality of 2 for the dividing
curve family and mod I,=1. We only verify the construction of ¢o. By Hersch’s
lemma [3] it is sufficient to prove the module of the family P, of curves joining
y2 and 7s* is finite. Any curve of [, intersects at least one of the L,’s, the
auxiliary vertical segments and the circles |z—&’|=2""". The family of the third
curves, denoted by I',?, has an admissible metric p,=(|z| log 2"*-")~1. We get

or
3
mod I's?= (n*—n)log 2°

By the same Hersch’s lemma we have
mod ﬁléz mod I','+ Y, mod I',2+ > mod 17,2,

The three series in the right hand are convergent. We obtain the minimality of
2 with respect to the clustering curve family of a;» and as,.
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