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ON SLIT RECTANGLE MAPPINGS AND CONTINUITY
OF EXTREMAL LENGTH

BY NOBUYUKI SUITA

§ 1. Introduction.

1. Let Ω be a plane domain and let a be its preassigned boundary component.
When four curves defining vertices on a. are given we discussed a conformal
mapping of Ω onto a horizontally slit rectangle [11]. The mapping function could
be constructed by means of an exhaustion of Ω in the directions to two opposite
edges on a to be mapped into the horizontal sides of its image rectangle. In the
present paper we shall deal with an alternative construction of such a mapping by
means of its exhaustion in the direction to the other two edges. Indeed the limit
function of a sequence of the normalized slit rectangle mappings of the members
of its exhaustion gives a desired slit rectangle mapping, if the sequence of extremal
distances of their two edges is positive and uniformly bounded. We think that these
mapping problems should be discussed in connection with exhaustions or curve
families. Such a consideration is found in Renglli [6]. In the proof of the present
mapping theorem we shall use a conjugate family of the curve family clustering
at the two edges of a which was first introduced by Andereian Cazacu [2] and
used by Marden and Rodin in the circular-radial slit mappings [4].

Our mapping theorem has the following meaning in the problem of the conti-
nuity of extremal distances which was first discussed by Wolontis [12] and later
by Strebel [9]. When we define two boundary parts on a by two defining sequ-
ences the sequence of the extremal distances of the relative boundaries of their
members with the same indices is non-decreasing and its limit value, if of finite
value, is not the extremal length of the family of curves joining these parts but
that of the curve family clustering on them.

In the last section a few examples will be given in which the above phenomina
really occur.

§ 2. Preliminary.

2. We begin with a definition of extremal length. Let Γ be a family of
locally rectifiable curves, simply called a curve family in the sequel. Let P(Γ)
denote an admissible class of measurable metrics satisfying

(1) (p\dz\^l, γeΓ.
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The module of Γ, denoted by mod Γ, is the quantity

inf Ml2

and its reciprocial is called the extremal length of Γ, denoted by λ(Γ). It is often
called the extremal distance of two sets, when Γ is the curve family joining them
in a suitable sense.

The closure of the intersection of P(Γ) with the space of /2-metrics is denoted
by P*(jΓ) which is called the /2-admissible class of Γ. There exists a unique metric
^o in P*(Γ) such that ||/>0 | |

2=modΓ, if P*(Γ)Φφ. The deviation of ^eP*(Γ) from
^o is evaluated by an inequality [10]

(2) ll/>-^o||2^|IHI2-IM2.

3. The inequality (2) is useful for the existence proof of an extremal function.
To this end we remark the following

LEMMA 1. Let {Ωn}%=1 be an increasing sequence of subdomains of Ω such
that Ω=(jΩn and let fn(z) be an analytic function defined in Ωn with finite norm
\\fn\\. Put pn=\fn\ in Ωn and =0 outside of Ωn. If {pn} makes a Cauchy sequence,
we can select a convergent subsequence {fnv} from { f n } such that \\fnv— fo\\Ωnv— »0.

Proof. Since { f n } makes a normal family, we have a subsequence { f n v }
tending to a limit function /0 uniformly on any compact subset of Ω. Then for
any compact Kc:Ω, \\fnv—fo\\2κ is arbitrarily small for sufficiently large v. Next
we have

\\fnv— fo\\Ωnυ-κ^\\fo\\Ω-κ+ \\Po\\a-K+\\pnv — PO\\Ω-K

where pΌ is the strong limit of pn. These inequalities complete the proof of the
lemma.

REMARK. From the above proof we know thai any subsequence of \fn] lias
a strong limit and its absolute value is equal to po.

A curve family with vanishing module is called an exceptional family and we
say that a statement about Γ holds for almost all γsl\ if it does except such a family.

4. We now state a definition of a boundary part. A boundary component a
of Ω is defined by a defining sequence {Δn} [1,11]. We first assume the relative
boundary of Δn is an analytic curve. A boundary part β on a is a sequence of
subdomains of Ω, denoted by {Sn}, such that any Δu contains an Sm, Sn has a single
relative boundary, Sn^Snn and Π5?i=0. A topological representation of a. (resp.
β) on the Riemann sphere is given by Π C\(Δn) (resp. Π C1(SW)), where Cl(*) denotes
the closure taken in the sphere. They are written by the same notations a and
β, if no confusions occur. Their images under a topological mapping are defined
by the images of their defining sequences.
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A sequence of domains Ωn=Ω— Sn is called an exhaustion of Q in the direction
to (or simply "towards") β. Two boundary parts are said to be disjoint, if the
closures of two suitable members of their defining sequences taken in Ω are disjoint.

A curve tending to a (resp. β) means a curve whose suitable end arc is con-
tained in every member of its defining sequence.

§3. Slit rectangle mapping.

5. Let γ3 (l^/sΞ4) be four disjoint analytic curves starting from a point of Ω
and tending to a. Then we can replace the defining sequence by a new sequence
{Δn} such that the relative boundary of its every member intersects each γ3 pre-
cisely once. If the intersections />/Λ) are arranged in the negative orientation with
respect to Δn, we say that j /s define vertices on α. Then we can construct four
defining sequences from Δn and j /s as follows. Let SJft (modulo 4) be a subdomain
of Δn whose relative boundary consists of end parts of γ3 and γJ+lc.Δn and the arc
of the relative boundary of Δn between them. Thus we have two set of boundary
parts αi2 and aM and #23 and α41 which are disjoint each other.

6. For simplicity's sake we assume that ί2$oo and a is the outer boundary.
Let {Tn} be an exhaustion of Ω towards a2S and a41. Then there exists a slit
rectangle mapping φn such that

i) the image of the outer boundary of Tn under φn is the periphery of the
rectangle 0<Re^<l, 0<Im φn<hn with possible horizontal incisions emanating
from its vertical sides, where the incisions are the sets φnfaiz)— [0, ihn] and φn(^u)~
[1, l+ihnl

ii) the images of the relative boundaries of S23
(π) and S4ι

cw) under φn are closed
subarcs in the lower and upper horizontal sides respectively,

iii) the image of the boundary components other than its outer boundary is a
minimal1) set of horizontal slits and

iv) the module of the family Γn of curves joining alz and au within Tn is
equal to hn

The construction of φn is achieved by the duplication of Tn with respect to its
relative boundary [11]. The sequence {hn} is an increasing sequence, since Γn is
increasing. Suppose Iimfιn=h0<oo. Then φn tends to a function φϋ in the sense
that \\ψn — ψ*\\τn-*® Ψ* possesses the above properties i), iii) and iv) when we use
7/o and Γ 0^UΓπ instead of hn and Γn respectively. The images ^ofes) and ^0(«4i)
are continua (or points) on the horizontal sides. As a consequence of this property
the value Im φQ(z) tends to ho along γl and γ^ to zero along γ2 and γ%. These
properties are shown in [11]. The last remark is easily verified from the following

LEMMA 2. Suppose that any zεΩ is contained in a curve of Γ and a modified
curve of γ such that every compact subarc of it is replaced by any arc with the
same end points remains in Γ. Let pQ be a continuous extremal metric belonging

1) We call a quasi-minimal set in [9] a minimal set simply.
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to P(Γ) and let Γz be its subfamily whose member runs through z. Then ive get

— 1.inf \ pQ\dz\

The lemma was proven in [9]. In fact the metric pQ = \φ0

f\ is an extremal metric
in P*(Γ0) and we know that its subfamily 1 of curves along which lim Remote) >0
as z tends to α12 or lim Re j00(g)<l as £ tends to cxΆί is exceptional, whence pQ is
extremal in P(ΓQ—Λ) [11]. Then in the image domain φ0(Ω) φ()(I\~Λ) is the family
of curves satisfying lim Re w=0 and lim Re w=^l along them. Since φQ(Ω) is dense
in the rectangle 0<Rew<l, 0<Im^<Λ0, we can take a point M; with Imw—ε for
arbitrarily small e. In the ^-plane the metric 1 is extremal for the image curve
family and there exists a curve of ψ^Γ^—Λ) through w and with length arbitrarily
close to one satisfying suplmw;<2ε on it. It belongs to some φQ(Γn) and hence
φo(S£*)> m^n, lies under the line lmιv-=2ε, which implies the above remark about
7-2 and 7-3.

This construction goes if only two boundary parts a^ and a^ are given.
When the curve family Γn is replaced by such a curve family that its member
intersects all the curves joining the relative boundaries of Sg} an S£°, the results
in [11] are valid. The family Γ0 is called the dividing curve family of α23 and α4ι
and φ0 is called an extremal slit rectangle mapping with respect to the dividing
curve family.

7. We now deal with an alternative construction of another type of such a
mapping. A special case in which the same φQ occurred was discussed in [11].

Let {Tn} be an exhaustion of Ω towards alz and α34 and let {Tnm} be an ex-
haustion of Tn towards the boundary components other than its outer boundary
and α23 and α'41 whose member is relatively compact and finitely connected. There
exists a horizontally slit rectangle mapping φnm such that the subarcs of the relative
boundaries of S1?

) and S£° which are the boundaries of Tnm correspond to the
vertical sides [0, ihnm\ and [1, l-\-ϊknm] respectively. Here the image of the relative
boundary of Tnm under ψnm is given by its extension over the closure of Tnm-
The function ψnm induces two extremal metrics for the following module problems.
The first is the family of curves joining two edges corresponding to the vertical
sides within Γwm, say Γnm. The standard method shows that the metric pnm=\Φίm\
is extremal for Γnm and moάΓnm=hnm.

Λ Λ

Let Tnm be the Stoϊlow compactification of Tnm [1] and let Γn* be the family
of curves dividing the same edges within the complement of its outer boundary
with^ respect to Tn*. Then the metric μ,m=|^W 7?rml 1S extremal and mod Γn*,

n = u ι m . A continuity lemma of the extremal length given in [11]
shows modZ\=lim modΓnm. Suppose modΓn=&w<°°. Then βnm tends to an
extremal metric pn for Γn From Lemma 1 and the normalization of ψnm we can
deduce that ψnm tends to a function ψn such that \\ψήm--ψn\\τnm-^§ as m-^co. The
φn possesses the following properties:
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i) The image of the outer boundary of Tn under ψn is the periphery of the
rectangle 0 < Re ψn < 1 , 0 < Im ψn < £ n,

ii) the images of the relative boundaries of S$} and S3

(J° are open vertical
sides (0, ihn) and (1, l+ihn) respectively,

iii) the image of the boundary components other than its outer boundary is
a minimal set of horizontal slits and

iv) modf*n=bn, where Γn is the family of curves joining the relative bounda-
ries of Tn within it.

P*(Γn) is decreasing with n. Suppose, furthermore, l immodΓ w — /?0>0. Then
the inequality (2) shows that pn tends to a metric ρQ. Again Lemma 1 guarantees the
existence of a univalent function φ0 such that \\φn'— Ψo'\\τn-*Q, ll^o'll^^o and />0

The class P*(Γ^) is increasing with ra. Hence μnm tends to a metric μn

= \φnΊhn\ with \\μn\\2=l/hn. Let f»* be the campactificatian of fn and let Γn* be
the dividing curve family of its relative boundaries within the complement of its
outer boundary with respect to Tn* Then μn is an extremal metric of P*(Γn*).
In fact the segment Lx in the image plane; Rew=x (0<#<1), 0<Imw<hn belongs
to ψn(Γn*\ For any μeP(φn(Γn*ϊ) we have

\ μdy^l and V
Jj^n^CTV,) JLX

from Schwarz's inequality. We get \\μ\\2^l/hn and therefore μn is extremal.
Finally let Ω* be the compactification of Ω and let jΓ0* be the family of curves

dividing alz and a^ within Ω*—a. Since /"o* — U/V*, mod Γn* tends to mod A*
=#o and μn tends to μo=\ψo'lho\ which is extremal for Γ0* [11]. We obtain

THEOREM 1. Let ψn be the slit rectangle mapping of Tn with height J:n con-
structed above. If the decreasing sequence l:n tends to a positive value ho, ψn tends
to a univalent function φ0 such that \\φn—ψof\\τn-*Q and ll^o'l^ίo. Let Γ0* be the
family of curves dividing a12 and aS4 within Ω* — a. Then mod Γ0* — l/h0 and the
metric μo=\φQ/lho\ is extremal for Γ0*.

Similar module problems as in the theorem was treated by Andreian Cazacu
[2] and by Marden and Rodin [4].

8. We now investigate the image of Ω under ψQ. We say that a curve clusters
on a boundary part β, if it intersects an infinite number of members of its defining
sequence. We state

THEOREM 2. Suppose mod/τι<oo and lim modΓΓ

ri=^0>0. Then ψQ constructed
in no, 7 has the following properties'.

i) ψo(ά) is the periphery of the rectangle 0<Re</>0<l, 0<Im ψo<ho with possible
horizontal incisions emanating from its vertical sides,

ii) ^0(^12) and ψo(a^) is the vertical sides [0, iho] and [1, l+ih0] with possible
horizontal incisions emanating from them respectively,
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iii) ψQ(dΩ—ά) is a minimal set of horizontal slits and
iv) the module of the family of curves clustering on a12 and α34, denoted by

Γ0 is equal to 7/0 and βo=\ψo'\ is extremal for ΓQ.

Before proving the theorem we prepare two lemmas.

9. The first is a lemma on a conformal mapping. Let β={Sn] be a boundary
part of the outer boundary component a. of a finite domain Ω. Then we state

LEMMA 3. Let {fv} be a convergent sequence of univalent functions in Ω with
limit /o such that ||//||<oo, ||//-/0'||

2->0, and f.Φconst. Suppose fv(Ω) lies in the
upper half plane and fv(β) on the real axis and fv(3Ω~a) is a minimal set of
horizontal slits. If a point ω of /0(/5) has a closed disc C:\w-ω\^r, such that
κ=Cr\fo(ot) has a neighborhood Un(κ) whose intersection with f0(Ω) is contained in
fo(Sn) and if there exists a subcontinuum of κω (not a point) containing ω, then ω
is on the real axis.

Proof. Let K be a closed disc in Ω. Put ϊmfv(z)=vv(z) (y=0,1, •-•). Let β*
denote the Stoϊlow compactification of Ω. Consider a module problem for the family,
denoted by Λ*, of curves joining K and β within Ω*—a along which ΐirn 00(2)>0
as z tends to β. Let A* be its subfamily consisting of the curves along which
lim y0(X)>l/&. Since vv(z) is continuous on any curve belonging to Λ*, the metric
pv=2k\graά(v0—vv)\ is admissible for A* if v is sufficient large and we get mod A*
=0. Thus A* is exceptional since A*=\jAk*.

Contrary to the assertion, suppose that there exists a ω€/0(/3) with Imύ)>0 and
satisfying the conditions in the lemma. We may assume that the radius r of the disc
C is less than 1m ω and the circle \w—ω\=r has a point of f0(Ω) in the image w-
plane. Let U(fo(K)) be a simply connected neighborhood of fo(K) contained in
/0(β). We connect the disc \w—a)\<r and U(fQ(K)) by a canal within fQ(Ω) so that
the union of these three domains may remain simply connected. Take a continuum
κω containing ω and contained the disc \w—ω\<r and consider a module problem
for the curve family joining κω and fo(K) within this domain. Its module has a
positive value, say d. Every curve of it intersects /0(/3) and from the assumption
fo(Ω)nUn(κ)c:fo($n) we see that the curve contains the intersection of a image
curve of A* with f0(Ω) as a subset. Hence we get mod/ί*^6/ which contradicts
the exceptionality of A*.

10. The next lemma is originally due to Strebel [7], It was proven alternatively
by means of a quasiconformal mapping [9] and the method is effective for the
following

LEMMA 4. Let Ω be a finite domain with outer boundary a and let β{ and βz

be disjoint two boundary parts of a. Suppose dΩ—a. is a minimal set of horizontal
slits.

We denote by Ω' a component of of containing Ω. If the line Imz=y, a<y<.b,
contains a subarc Lv ivith length /(?/) clustering on βι and β > within Ωf', then we
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have

(3)

where Γ is the family of curves clustering on βι and β2 within Ω.

Proof. Let {Ωn} be an exhaustion of Ω towards a. We can make a countably
connected subdomain Ωε of Ω with the same outer boundary a containing the rela-
tive boundaries of the defining sequences of βι and β2 and (l+e)-quasiconformal
mapping Φ\z) of Ω' such that Φε(dΩε—ά) is a countable set of horizontal slits,
Φ\a)=a and

sup \Φ\z} — z\— >0 as n— >oo.
Ω-Ωn

Their construction was given in [9] and the last property not stated there is easily
verified from the construction. Then the segment Ly except a countable number
of y clusters on Φε(βι) and Φε(β2) which coincide with βι and β2 as representations.
We have

-dy

since the curve Ly is the image of a curve of f1 under Φ*(z). Letting ε tend to
zero we get the inequality (3).

11. Proof of Theorem 2. We first show that a point ω of φQ(a2B) (resp. φQ(a^)
disjoint from ^0(^12)11^0(^34), if any, lies on the real axis (resp. the line Imw=&0).
In fact ω is not contained in Cl(^0(Sι(?0)) U ^oCSs?0')) for some nϋ and we apply Lemma
3 to the sequence [ψv] in the domain Sg0) and the boundary part {S^} (n^nQ+l).
ω has a closed disc C: \w-ω\^r such that CnCl(^0(Sί?0))U^0(S0)))=^ Furthermore
we may assume that C is disjoint from the closure of the image of the relative
boundary of Sg0). Let K be the intersection of C with the ^0-image of the outer
boundary of Sg0). K contains a subcontinuum κω3ω because the image is a conti-
nuum. K has a positive distance dn from the relative boundary of ψϋ(S™\ n^n0.
Covering K by a finite number of discs with radius dn/2, we get their union as a
neighborhood Un(κ) satisfying ^0(Sg0))Π Un(κ)(^φo(S(

2T). Thus the conditions in Lemma
3 are fulfilled and we obtain Imco=0 (resp. Imω=h0).

Next we see that φ^(al2} and φo((χ^) contain the vertical sides [0, iho] and [1, \-\-iho\
respectively. Put Δ=φ0(Ω). Let J* denote the Stoϊlow compactification of Δ.
Similarly as in the proof of Lemma 3 the family of curves dividing φo(al2) and
^0(^34) within Δ*—ψύ(ά) along which lim Imw>0 as w tends to φ0(a2S) or lim Imw
<ho as w tends to ^o(<^4i) is exceptional. On the other hand the module of the dividing
curve family within Δ*—φQ(ά) less this family is equal to 1///0 from Theorem 1.
There exists a curve γ of the family dividing φ0(a12) and ^0(^34) and satisfying
lim Im^^O and lim Im^=/2o as w tends to φo(a2S) and ^0(^1) along it respectively.
The curve γ moving from the real axis to the line Im w—-ho divides Δ into two sub-
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domains, one of which induces the positive orientation on it, say Λlf and the other
is denoted by J2. From the normalization of ψn we see ψo(S[^)^^ι and ψo(S£^c:Λ2.
Thus Cl(Λ2)n(0, ίh0)=φ, since γ is a curve only clustering at the points on the
horizontal sides. From the fact shown above there exists no point of the open
sides (0, ih0) not belonging to φo(a12).

12. Continued. We investigate the shape of each incision which is a com-
ponent of ψo(a12)—[0, iho] and ψ0(aS4) —[1,l + z&o], if any. We prove that it is a harizontal
segment emanating from a vertical side. To show it, suppose there exists a com-
ponent E emanating from the side [0, iho] which is not a segment. E contains
two points αji and ω2 such that Imωι>Imω 2 . Put Imω1 — lmω2 = δ. There exists
a subcontinuum Eι of E containing ωι and ω 2. Since Δ is dense in the rectangle,
we can take a point w0 of Δ such that Re^0<Reω for all ωzEi and lmwQ is
sufficiently close to Im (ω^ω^/2. As in the proof of Lemma 4 we can construct
a countably connected subdomain Δε of J with the same outer boundary φϋ(ά)
containing the relative boundaries of φo(S[^) and φo(S^) and w0, and a (1+e)-quasi-
conformal mapping Φε of it such that Φε fixes any boundary part, on ψQ(ά) of Jc,
Φε(dΔε—φβ(a)) consists of a countable number of horizontal slits and the image of
Wo, denoted by wε, is arbitrarily close to w0. Then any curve running through the
point w~ within the complement of φQ(a) with respect to the compactification of
Φε(Δε) and dividing O0(n12) and φo(a'M) has the length larger than ft(>+<5o, where δ() is
a fixed positive number close to <5 and independent of ε. We consider a module
problem of the dividing curve family of φo(a^ and φ^a^ within the above domain
in the compactification. There exists a disc w — w\ <η, <5ι-i^/fro<rto/2, belonging
to Φε(Δε). Set

ί 0 in w—ιι\\<.η,
p,= \

( I/ho elsewhere.

Then pε is admissible and the module does not exceed the value l/ho — no^. Every
curve of the dividing curve family /7

0* of φo((x12) and φo(au) within J* — φϋ(a)
contains the counter image of the restriction of a curve of the family in the domain
Φ\Δε). Hence letting ε tend to zero, we get mod jΓ0*<Ξl/£o—πdi2, which contradicts
Theorem 1. Thus we obtain the properties i) and ii).

The property iii) is a common property of minimal sets shown in [5,9].
Finally we show the property iv). Let Δ' be a component of the complement

of φo(a) containing Δ. Then the intersection of the line lmιv=y (0>τ/>A0) with
Δr is an open segment whose two end points belong to φ0(a12) and ψQ(a^ since the
incisions are horizontal. We see that the segment clusters on these boundary parts
considered in Δ'. To show this we prove

( 4 ) l imlm^=^o along ψQ(γι) and ψQ(γ^

and

( 5 ) lim Imw=Q along ^0(^2) and φo(γ*).
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For instance suppose l i m l m ^ = ^ < 0 along ψo(γι). Then Cl(ψ0(γι)) contains a point
ω of ψo(<*i2) with lmω=h. Considering the orientation of γlt we can see that the
arc (ih, iho) does not belong to φQ(a12) because the incisions are horizontal. This is
contrary to the property ii). The relative boundaries of ψo(Si^) and ψo(S^) cluster
on the both horizontal sides and divide the boundary parts ψo(a12) and φo(aSί).
Therefore the segment intersects them and hence clusters on these boundary parts.
Then from Lemma 4 we have modΓ0^l/fto, since I(y)^h0. We have seen in no. 8
that the metric fa=\ψo'\ is the limit of the extremal metrics βn= \φn'\ €P*(^«) cP*(Λ)
Hence |do€P*(Γo) and the equality | |po||2=l/&o proves modF0=l/&o and p0 is ex-
tremal.

By the way the equalities (4) and (5) correspond to the remark stated in no. 5.

§ 4. Extremal property.

13. We call ψQ an extremal horizontally slit rectangle mapping of Ω with
respect to the clustering curve family of aί2 and aM. We gave an extremal pro-
perty to the extremal slit rectangle mapping with respect to the dividing curve
family [11] and we show a similar extremal property for ψ0.

Let S(Γ0) (resp. f?(Γ0)) be the family of univalent functions f(z) satisfying
0<Re/(z)<l, inf Imf(z)=0 (zsQ) and lim Re /(z)=0 and lim Re /(*)=1 along almost
all γςΓo (resp. Γ) as z tends to a12 and α34 respectively, where Γ0 and Γ0 are the
clustering curve family of α12 and α34 and the dividing curve family of a2$ and α41.
Put H(f)= sup Im/(z) (zsΩ). We state

THEOREM 3. If mod Γ0 (resp. mod Γ0) is finite and positive, the function
(resp. <po) is the unique function which minimizes the quantity H(f) within g(
(resp. 8f(Γ0)).

Proof. The metric ̂ o^l^o'l is extremal and p=\f is admissible. The inequality
(2) shows

A domain Ω is said a minimal horizontally slit rectangle with respect to Γ0

(resp. ΓQ) if it is the image of a domain under ψ0 (resp. φQ). For the minimal slit
rectangle the extremal slit rectangle mapping coincides with the identity. We now
give its characterization which is an analogue given in [10].

COROLLARY 1. Let Ω be a domain whose outer boundary a is the periphery of
the rectangle 0<Rβ2<l, 0<Ini2</z with possible horizontal incisions and let a12

and <*34 be two disjoint boundary parts containing the vertical sides [0, ih\ and
[1, \+ih\ respectively. Suppose the extremal distance of the relative boundaries of
the first member of their defining sequences is positive. Then any two of the
following three imply the minimality of Ω with respect to the clustering curve family
* o of a iz and α34.
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i) dΩ—a is minimal,
ii) l imRez=0 and l imRe^=l along almost all γ^Γ0 as z tends to aί2 and

#34 respectively, and
iii) modF0=/z.
Conversely the minimal slit rectangle with respect to the clustering curve family

has all the above properties.

Proof. The assumption about the extremal distance is needed for the con-
struction of ψ0. We first assume the conditions ii) and iii). From ii) the metric
^o^l (=|grad Re 21) is 4-admissible. The equality \\po\\2 = h shows the extremality
of ^o and we get ψo=z.

Next from i) and Lemma 4 we have mod Γ0^//. Then ii) implies the extre-
mality of ^o as before.

Finally suppose i) and iii). From i i i ) and Lemma 4 we can deduce that the pro-
jection of the set of all incisions into the imaginary axis has a vanishing measure.
Let Γ' denote the subfamily of Γ0 satisfying the conditions in ii). Then Lemma 4
(slightly modified) is applied and we get moάΓ'^h. The metric ^o is extremal
for Γf and modΓ'=k. Since ΓxcΓ0, having the same module, both families have
the common extremal metric ,o0. The converse is a direct consequence of Theorem
2.

Similarly we have

COROLLARY 2. Let Ω be the domain given in Corollary 1 and let α23 and aΛ1

be two boundary parts of a contained in the horizontal sides [0,1] and [ih, 1 + ih]
respectively. Then any two of the three conditions in Corollary^ 1 imply the mini-
mality of Ω with respect to the dividing curve family Γ0 when Γ0 is replaced by /V

Conversely the minimal slit rectangle has all the above properties.

§ 5. Examples.

14. Let r/s be four curves defining vertices on a. In general the slit rectangle
mapping φQ with respect to the dividing curve family of a^ and a41 does not
coincide with the function ψQ with respect to the clustering curve family of <xlz

and α34. It is shown by the following

EXAMPLE 1. Let Ω be the square with vertices at i, 0, 1 and 1+z and let
7/s be

-f) sin ί^+ϊ),

The domain Ω is a minimal slit rectangle (without slits) with respect to the
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clustering curve family of a12 and au since the conditions i) and ii) of Corollary 1 is
complied. But it is not minimal with respect to the dividing curve family of az?>
and α4ι, because α23 is the union of the segments [0, i/Z] and [0,1] and the assump-
tion α23c[0,1] does not hold. Thus φ^φφ^—z.

This example shows a discontinuity of the extremal distance. To see it let
{S2°} and {SS°} be defining sequences of a12 and au. Let χ be the family of
curves joining a12 and au defined by these defining sequences. It is a subclass of
the family Γϋ defined in no. 6. Then we have

mod Γ0=mod χ<lim mod Γn=moά Γ0.

In fact we know from Theorems 2 and 3 that

mod Γ0=/zo<lim mod /*TO=mod F0,

where hQ=H(φ0) is the height of the image rectangle of Ω. The equality H(φ0) =
modχ was proved in [11], since any curve of χ joins two edges in a member of

{Tn}.

15. Next we construct a minimal slit rectangle with respect to the dividing
curve family of α23 and «4ι, one of which is a point.

EXAMPLE 2. Let E be a countable number of segments

(w=l,2, ),

and let Ω be the complement of E with respect to the square in Example 1. Let
7Ί and 7-4 be the curves in Example 1 and let

γ2: z2(t)=ei2π/5t/4: and γ,: z,(t)=e^/10t/4,.

#23 is the point at the origin, a^ is the segment [i, 1-j-z] and Ω is a minimal
slit rectangle with respect to the dividing curve family of them. In fact the set
of countable slits is minimal [9]. Let [Tn] be an exhaustion of Ω towards a2B and
α4ι. Let Γn be the dividing curve family of the relative boundaries of Tn. Then
any curve of Γn not tending to the both vertical sides clusters either at an inner
point of the lower horizontal side or at the origin. The family of the former curves
is exceptional since they have an infinite length while so is the latter family since
the extremal distance of the vertical side [0, i] and the boundary element at the
origin in the Caratheodory sense not contained in a12 in the interior of the outer
bounday of Tn is infinite. Then the conditions i) and ii) of Corollary 2 is satisfied
and Ω is minimal.

For this domain Ω the extremal slit rectangle mapping with respect to the
clustering curve family of a12 and α34 can not be constructed by the procedure in
no. 7. Indeed let {fn} be an exhaustion of towards a12 and aM and let Γn be the

Λ Λ

family of curves joining the relative boundaries of Tn Any Tn contains a sector

3 2
— π<arg<r<— and 0<\z\<δn,δn>0.
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For every p€P(Γn) Schwarz's inequality shows

ί
9_/[

3jr/; 10 r
(0<r<δn).

Thus we get |H|2=oo and modΓπ=oo, which denies the construction of ψo by
means of an exhaustion.

On the other hand we can see that the module of the clustering curve family
FO of 0:12 and au remains finite and is equal to one. To show it we have from
Lemma 4 mod/^l. We set for r<e~1

g l z l l - 1 in \z\<r,

elsewhere.

pr is admissible for Γ0 since pr=l, the length of a curve clustering at a point of
(0, 1) is infinite and for a curve γ tending to the origin

Hence we have modΓ0=l since H^H2-^! as r—»0.
This example shows the following discontinuity
Although a12 and ct34 are disjoint

mod Γ0<lim mod Γw—oo.

In the original formulation of StrebeΓs continuity lemma [8] the defining sequ-
ence of a boundary component satisfies Jnz>Jn+ι and in our definition of boundary
part it is replaced by Δn~DΔn+l. We can easily modify the defining sequences of
the boundary parts of two examples in such a way that the above strictly decreas-
ing condition is satisfied.

16. Our last example is a minimal slit rectangle such that alz is the point at
the origin, ψQ exists and coincides with φQ.

EXAMPLE 3. Take a square with vertices at z, 0, 1 and 1 +i and curves in
Example 2. Put

and an=z*(tn) («=l,2,- )

Let Ln be a segment on γ3 with center an such that Ln is disjoint from the other
av and the module of the family, say Γn

l, of curve joining Ln and γ2 is less than
l/n2. We denote by Ln' the open complementary segment between Ln and Ln+ι
and its center by bn. We take a point bn

r on the ray bn-\-s (s>0) in such a way
that the distance of γz and the circle \z—bn

f\=2~n* is equal to 2~n. We replace
the segment Ln

r by a rectilinear curve consisting of two horizontal segments be-
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tween the end points of Ln

r and the vertical diameter of the circle and its subarc
between these horizontal segments. We consider two sufficiently short vertical
segments emanating below and above from the upper and lower end points of Ln

f

such that the module of the family, say /V, of the curves joining γ2 and these
segments is less than l/n2. Take two horizontal slits between the end points of
these vertical segments and the circle and let Ei be the union of them. We
denote by 7-3* the union of these rectilinear curves and Ln's and connect the end
points of 7-3* and 7-4 in the square less EI by an analytic curve such that the union
of these three is a Jordan arc. It divides the square into two domains. In the
domain disjoint from £Ί we can take a set E2 of a countable number of horizontal
slits which is closed in it and makes every point of (0,1) inaccessible.

Let Ω be the complement of the union of Eι and E2 with respect to the square
and let γ1} γ2,7-3* and 7-4 be the curves defining the vertices. Then Ω is a minimal
slit rectangle for the both family dividing α23 and α41 and clustering on alz and α34.
From the construction a2Z is the point at the origin.

In fact similarly as in Example 2 we have the minimality of Ω for the dividing
curve family and mod A=l We only verify the construction of ψ0. By Hersch's
lemma [3] it is sufficient to prove the module of the family A of curves joining
7-2 and 7-3* is finite. Any curve of A intersects at least one of the Ln's, the
auxiliary vertical segments and the circles \z—b'\=2~n*. The family of the third
curves, denoted by Γn

3, has an admissible metric pn=(\z\ log 2nZ~n)~l. We get

modΓn

8:g-
*— 72) log 2 *

By the same Hersch's lemma we have

modΛ^Σ mod/Y + Σ mod/V+Σ mod/V.

The three series in the right hand are convergent. We obtain the minimality of
Ω with respect to the clustering curve family of aίz and α34.

REFERENCES

[ 1 ] AHLFORS, L., AND L. SARIO, Riemann surfaces. Princeton Univ. Press (I960).
[ 2 ] ANDREIΛN CAZACU, C., Uberlagerungseigenschaf ten Riemannscher Flachen. Rev.

Math. Pures Appl. 6 (1961), 685-702.
[ 3 ] HERSCH, J., Longueurs extremales et theoπe des functions. Comment. Math.

Helv. 29 (1955), 301-337.
[ 4 ] MARDEN, A., AND B. RODIN, Extremal and conjugate extremal distance on open

Riemann surfaces with application to circular-radial slit mapping. Acta Math.
115 (1966) 237-269.

[ 5 ] OIKAWA, K., Minimal slit regions and linear operator method. Kδdai Math. Sem.
Rep. 17 (1965), 187-190.

[ 6 ] RENGLLI, H., Zur konformen Abbidung auf Normalgebiete. Comment. Math.
Helv. 31 (1956), 5-40.



438 NOBUYUKl SU1TA

[ 7 ] STREBEL, K., A remark on the extremal distance of two boundary components.
Proc. Nat. Sci. U.S.A. 40 (1954), 942-844.

[ 8 ] , Die extremale Distanz zweier Enden emer Riemannschen Flache. Ann.
Acad. Sci. Fenn. 179 (1955), 21.

[ 9 ] SUITA, N., Minimal slit domains and minimal sets. Kδdai Math. Sem. Rep. 17
(1966), 166-186.

[10] , On radial slit disc mappings. Ibid. 18 (1965), 219-228.
[11] , On a continuity lemma of extremal length and its applications to con-

formal mappings. Ibid. 19 (1967), 125-137.
[12] WOLONTIS, W., Properties of conformal invariants. Amer. J. Math. 74 (1952),

587-606.

DEPARTMENT OF MATHEMATICS,
TOKYO INSTITUTE OF TECHNOLOGY.




