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A THEORY OF RULED SURFACES IN E4

BY TOMINOSUKE OrSUKI AND KATSUHIRO SfilOHAMA

Introduction. In 4-dimensional Euclidean space E4, a ruled surface is a surface
generated by a moving straight line depending on one parameter. If we fix a point
on such a straight line, we get a curve called the director curve. Using the ex-
pression of position vectors in E4, we can write a ruled surface as x=y(v)+uζ(v),
where y(v) is a director curve and ξ(v) is the unit tangent vector with the direction
of generator through y(v). On two adjacent generators corresponding to v and
v+Δv, take P and Q, P=(UI, v\ Q=(u2, v-\-Δv) such that PQ is common perpendicular
for these generators, and let Δθ be the angle between ζ(v) and ξ(v+Δv). When Δv
tends to zero, the limit point of P (if there exist) is called the center of the generator
and its orbit the curve of striction of the ruled surface. If

r PQlim-J-L
ΛV-+O Δθ

exist, it is called the distribution parameter.
For a ruled surface in E*, whose distribution parameter is not oo, the ruled

surface is, as is well known, completely determined by the Frenet-frame along its
curve of striction, where there exist three functions characterize it, one of which
is of course distribution parameter.

In § 1, we find the characteristic functions and the curve of striction of a ruled
surface in E4. In § 2, a few examples are shown by giving the special values to
the characteristic functions. In §3, we study relations between the characteristic
functions and the invariants of a surface in E4 for example, Λ, μ, Gaussian curvature,
torsion form, ••-. In §4, we study a condition that a surface in E4 becomes a ruled
surface.

§ 1. Let M* be a surface in E4, and (p, eί9 e*, es, e*) be a Frenet-frame in the
sense of Otsuki [1], then we have the following:

(1.1) deA = Σ ωABeB, o)AB+(t)BA=0,

dωAB=Σ o)Ac/\ωCB, A, B, C=l, 2, 3,4,
c
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ίωi3Λω24
(1. 2)

and

(1. 3) *+μ=G,

where G is Gaussian curvature and ωM is the torsion form of M2.
Especially, if M2 is a ruled surface, then we can take eι such that βι(p) has

the direction of the generator through p. For the above defined elf ω2=0 implies
i=0, accordingly,

(1.4) ωu

Making use of Jω^ωiΛω^-fωgΛ^r^O, r=3, 4, we can put

(1. 5)

(1. 6)

and from (1. 2), (1. 4), (1. 5), (1. 6), we have

(1. 7) /3/4 = 0.

Because Λ^μ and λ=—fl, μ=-fl (1. 7) implies /3=0. Then we get

(1. 8) ;=0,

(1. 9) ft>13=0, ω^—h^ω^

On the other hand, dω1=ωί2/\ω2=f2ω2/\ω2=Q, hence we have locally

(1. 10) o>ι=rf«,

where ^ is a local function on M2.
In the following we assume that μ^O, that is M2 is not locally flat. By our

assumption and (1. 9), (1. 4)

(1. 11) rfω18=/>2Λfi>48=0,

it follows that

(1. 12) ω^—pω^

By the structure equations, (1. 4), (1. 9) ane (1. 12), it follows that

(1.13)
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(1.14) .|L =

(1.15) 2L =

(1.16) - = -i0/2+^/4.

(1. 13), (1. 14) and (1. 15), (1. 16) may be written as follows:

(1.17)

(1.18)

where ?=—1. By integrating (1.17), we get

1
(1.19)

where

(1. 20)

v will mean a parameter of some director curve of the ruled surface. By (1.18),
(1. 20) we get

(1.21)
u—c

Putting Ci~r(v)ei(KV\ we get the following:

/ι oo\ f IΛ jj _ y

.. OON(L23)

Now the line element of M2 is given by ds2—du2-\-g^dv2. We may consider that
ωz=\/g^dv. By the structure equations and (1. 22) we have

(i. 24) g**=[(u-ργ+fy(vγ, /w>o.

THEOREM 1. For a ruled surface which is not locally flat, the curve given by
u—p(ΰ) is its curve of striction and \q\ is the distribution parameter.

Proof. Let v be the arc-length of the curve u=p(v), then by (1. 24)
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(1.25) ds2=du2+[(u-p)2+q2]ί(v)2dv2.

By the hypothesis of v and du=p'dv, it follows that

( x / o \ 2
~) =P'2+q2l2=l.

By using the expression of position vectors in E4, we can put the curve

(1.27) x=y(v).

By the definition of the curve of striction, it is sufficient to show that

/dy_ de1\_(}

\dv' dv /~U

along x=y(v), but along it we get by (1. 22) and (1. 25)

(1.28) ^=Pfe1+qle2ί ^ =^

which shows that y(v) is the curve of striction. Putting

(1.29)

we get by (1. 26) and (1. 28),

<"•»»
which shows that \q\ is the distribution parameter of M2. q.e.d.

Now let w be the arc-length of the curve of the spherical image of elf then
from (1. 30) we get

, sin φ(v)
dw= l-^-

which implies that

(1. 31)

Now for the rest /?4, by using (1. 22), (1. 23), (1. 24) and the structure equations
we get the following:

(1.32)
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where v is the arc-length of the curve of striction. By (1. 22) and (1. 26),

,Λ OON ι —qq'(u—p)+p'(u—p)* . m(v)
(1. oo) /z4= —

Thus p(v\ q(v), r(v), Θ(v) and m(v) are the characteristic functions of the ruled
surface M2 in E* which is not locally flat.

THEOREM 2. For a ruled surface in E* which is not locally flat, the Frenet-
frame along its curve of striction is given by

(1. 34)

~dv

dv —

de,
dv
—~ = — e2rl sin θ

—i= — #!/—eA
\dv \ q

where l=\/\.—p'2lq, conversely (1. 34) determines a ruled surface for any given five
characteristic functions p, q, r, θ, and m.

For a ruled surface which is not locally flat, we can consider two asymptotic
lines with respect to Φ^=ΣιΛuj(t>i^jf as Σ^4ύ ω^=0. Since Φz=h^ω2ω2 and
Am=0, the second fundamental form Φ with respect to any unit normal vector

e=£3 cos φ+e± sin φ is given by Φ=2/4 sin ψω^z + (h& cos ψ + h± sin ψ)ω2ω2, which
shows that a generator is an asymptotic line with respect to the second fundamental
form Φ denned by any unit normal vector e. Let us call the asymptotic line with
respect to Φ4 which is not generator, the half-asymptotic line. It is defined by
2/4^1+4t<y2=0, which is written as

du = -qqf(u-p)+P'(u-p)*
dv

m

by (1.10), (1.22), (1.24) and (1.33). Since the above differential equation is a
Riccati equation, it is clear that the following theorem is true:

THEOREM 3. The compound ratio of four points at which four half-asymptotic
lines intersect a generator, is constant.

§2. We give a few examples of ruled surfaces. In this section v is always
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taken the arc-length of the curve of striction u=p(v).

EXAMPLE 1. We consider the case of locally flat, that is μ=0. Because (1.13)
holds under μ=0 and μ=—fl=Q, we get /2=0 or f2=I/(u—p).

Let us firstly assume that /2=0. Then we have de1=0, which shows that the
ruled surface is a cylinder. In general, a complete surface in E4 which has the
curvatures λ=μ=Q is a cylinder [3].

Let us secondary assume that f2=l/(u—p). Since /ί=μ=Q, we can take ω34=0.
And similarly we get by the structure equations as following:

(2.2) ω2=(u-p)l(υ)dv.

Therefore we get the following:

dp=βιdu+e2(u —p)dv,

dβi— e2l(v)dv,

(2. 3) •{ de2=—ej(v)dv

03= —e2l(v)c(v)dv,

04= —ej(v)m(v)dv.

If p(v) is constant, then the curve defined by u=p(v) is a constant curve. Conse-
quently this ruled surface is a cone in E4. Now suppose that p(v) is not constant,
i.e., />'(#) ̂ 0, then it is clear that this ruled surface is a torse whose edge of re-
gression is defined by u=p(v).

EXAMPLE 2. Let us consider the case of not locally flat and p=Q, q=const.
i^O, ra=0. We may consider that q=l by a suitable similar transformation. Then
we have

= βidu

= 02-

(2. 4)
, u

de2= — / 0 Λ\/u2-\-l

KM cos 0+sin 0) KM sin 0— cos0)

1 7 1 , f(^sin0—cos0)



3 = — e2r sin Θdv — e^r cos Θdv,

4— e^rcosθdv
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Therefore we get along the curve of striction x=y(υ) defined by u=p(v\

dy=e2dv,

(2. 5)

Morever let us assume that p=m=Q, q=l and r=Q. By virtue of (2. 4) it is clear
that this ruled surface is a helicoid in a hyperplane E3 perpendicular to a fixed
unit vector e3, which is written as follows:

(2. 6) x(u, v)=vY+u(Xcos v+Zsin v)

where X, Y,Z is an orthomormal base of EB. And if p=m=θ=Q, q=l, then it is
a helicoid in E4 in the sense that it is generated by a moving straight line
perpendicular to a fixed straight line that the ratio of the velocity of the moving
point of intersection and the angular velocity of its direction is constant. Moreover
if p=m=Q, q=l and θ=π/2, then we get a sort of helicoid in E* which is defined
as follows:

(2. 7) X(u, v)=y(v)+u(Xcos v+ Fsin v),

where y(v) is a plane curve and X, Y are orthogonal unit vectors each of which is
perpendicular to the plane containing the curve x=y(v).

% 3. We study some relations between characteristic functions and the invariants
of M2 in E*. By (1. 8) and (1. 22), we get at once

THEOREM 4. For a ruled surface in E4, it follows that

(3. 1) Λ=0,

— a2

(3.2) μ=G=-/ - * , , gθ.v ' r (u-p)2+q2

Hence there does not exist a ruled surface in E* with constant negative
curvature.

The torsion form ω34 defines a covariant vector field Z=(Zι,Z2), and by (1. 12)
it follows that

(3. 3) Zι=0, Zz=p.

Therefore we get
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(3.4) 11*11=H

THEOREM 5. The divergence and the rotation of torsion vector Z are given as
follows'.

(3.5)

(3.6) --f^ |ί/ι

Proof. For a vector field Z=(ZlfZ2)y we have the following:

(3.7)

(3.8)

where DZl=Zltlω1+Zl,2ω2 (i=l,2) and DZl=dZί+ωJiZj. By (3. 3) we have

which imply that

divZ=-^=|^, and rotZ=-flΛ-|£,
V ί/22 CΦ ί/ίί

From (1. 22) and (1. 23) we have the following:

(3.10) —rot Z= ιγ _/Λ2 I 212—

But (1. 23) shows that

(3.H) hl+p^^-^-

from which we get (3. 6).

§ 4. In this section, we study a necessary and sufficient condition that a surface
in E* becomes a ruled surface. Let (p, eί9 e2, e*, eύ be a Frenet-frame in the sense
of Otsuki for a surface in E*. Put ω^=Zlωί-\-Z2(t)z. We shall introduce two vector
fields P and Q by using torsion form ω34 and the second fundamental forms
ΦB=ΣA*ij<*>i<*>j9 &4=EA4ij<OiO)j, where ωir=ΣArijo>j, (r=3,4, ι,y=l,2). For the
torsion vector Z=Zλe^-\-Z^e^ letZ=Zιe1+Z2e2 be as follows:

(4.1) Zι=-Zi, Z.=Zι.
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We can write Z=iZ, where ?=— 1. Putting Ph=Σ AMZk and Qh=ΣA±hkZk

where h,k=l,2, we obtain two vector fields P and Q by contracting Φ3, Z and
$4, Z respectively, i.e., we have the following:

(4. 2) p=pιeι+p2e2=(φs, Z)=(Φ3y iZ\

(4. 3) Q=Qιe1+Q2e2=(Φ4, Z)=(Φ4, iZ).

Now suppose that M2 is a ruled surface, then (1. 8) and (1. 9) hold. Let us
define two sets:

(4.4)

(4.5)

For any point of MI we have (1. 12), accordingly Zι=0, Z2=p and ASιι=Aaι2=Q,
^322=^3. Therefore it follows that

(4.6) p=(φ,,iZ)=0.

o

For any point of the interior M0 of Mo, we have λ=μ=Q by the definition of M0

and THEOREM 4. Then we can chose a torsionless Frenet-frame. Hence we get
the following:

(4. 7) P=(Φ3, iZ)=0, Q=(Φ4, *Z)=0.

In the following we consider a surface ih E* with the properties:

(4.8) Λ=0, P=(Φ*,iZ)=0.

Let jί> be a fixed point in Mi, and βι be the asymptotic direction with respect to Φ3.
Then we have by the definition of elf Am=0. Since ^=^.311-^322—^.312^321=0, it
follows that ^321=0, from which we have ω13=0, o)2z=h^2. Because P=0, it follows
that Pι=Λ^2Zι— AzUZ2=Q, P2=AQ22Z1—AB2ιZ2=Q from which we have

(4. 9) A8^1=0.

Suppose that hs(p)^0 for peMi. Then by (4. 9) we have Zι=0, i.e., ω34=pω2.
From (1. 2) we have ωι4Λ/?3ft>2=0, i.e., ωl4c=f±ω2. On the other hand, dω13

=a)ι2/\ω23+ωu/\ω4s=Q, from which we get ω12=f2ω2. The above fact shows that
the asymptotic line with respect to Φ3 is a straight line segment in MI.

Suppose that there exists an open set U of Mi in which Λ3=0. Then it follows
that Φ3=0 in U, consequently the hypothesis (Φs,iZ)=Q is trivial in U. Because
μ^Q, there are two asmptotic directions with respect to Φ±. Let e± be one of these
asymptotic direction, it follows that

(4. 10) 0>14
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Since dωιz~ ω^/\ω^=f^ω^f\ω^=^ it follows that ω^=^pω^ But dω2'A
= — |0/4<wιΛ<w2=0. Consequently ,0=0 or ω34=0, from which we have deB=Σ α>8ί^=0.
Therefore U is contained in a hyperplane Es of £4 which is perpendicular to a
constant unit vector #3. Since ω^=f^ω2, the condition that the asymptotic lines
become straight lines or straight line segments, is equivalent to ω12=/2α>2.

In the following we study the condition ω12=f2ω2 in ί/cMi* Let ely e2 be the
principal directions of the second fundamental form Φ4. We have

(4. 11) Φ4ί

Putting

(4.12) Λn=efiϊ, Aw=-eBl

where e=±l. We have the following:

(4. 13) Φ4=£(B2

1ω1ω1-B2

2ω2ω2).

The asymptotic directions βι and e2 with respect to Φ4 is written as

(4.14)
02= —0ι sin Θ+e2 cos 6,

where

/?„
(4.15)

It follows that

(4. 16)
0)2=—o)l sinθ-}-ω2 cos ^?.

Then ω12/\ω2=Q is equivalent to

(4. 17) [(B2dB1-B1dB2)±(Bl+Bl)ω12\A[B1ω1^B2ω2\=0.

But we have

[(B2dB1-B1dB2)-}-(Bl+B2

2)ω12\Λ[B1ω1-B2ω2]

=[B2DB1-B1DB2\/\[B1ω1-B2ω2]

l^—BιB2 rot £>ι
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where B=Bιβι+B2e2. Similarly we get

[(B2dB1-B1dB2)-(Bl+Bΐ)ω12\Λ[B1ω1+B2ω2]

where B?=Blf Bf=~B2 and B*=B*e!+B?e2.
Consequently U is a piece of ruled surface if the following holds:

(4. 18) M4ιι£2,2+ε^422£ι, i-B,B2 rot B] [eAuiBf.i+eAuiBf.i-BfB? rot 5*]=0.

On the other hand, it is clear that the interior of M0 is a piece of a cylinder
or a torse by Example 1 in § 2.

THEOREM 6. // a surface in E* satisfies Λ=0 and (Φ3, £Z)=0, then it is locally
a ruled surface except U and if (4. 18) holds in addition to the above conditions
in U, then U becomes locally a ruled surface where U is the interior point of
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