A THEORY OF RULED SURFACES IN \boldsymbol{E}^{4}

By Tominosuke Ōtsuki and Katsuhiro Shiohama

Introduction. In 4 -dimensional Euclidean space E^{4}, a ruled surface is a surface generated by a moving straight line depending on one parameter. If we fix a point on such a straight line, we get a curve called the director curve. Using the expression of position vectors in E^{4}, we can write a ruled surface as $x=y(v)+u \xi(v)$, where $y(v)$ is a director curve and $\xi(v)$ is the unit tangent vector with the direction of generator through $y(v)$. On two adjacent generators corresponding to v and $v+\Delta v$, take P and $\mathrm{Q}, \mathrm{P}=\left(u_{1}, v\right), \mathrm{Q}=\left(u_{2}, v+\Delta v\right)$ such that PQ is common perpendicular for these generators, and let $\Delta \theta$ be the angle between $\xi(v)$ and $\xi(v+\Delta v)$. When Δv tends to zero, the limit point of P (if there exist) is called the center of the generator and its orbit the curve of striction of the ruled surface. If

$$
\lim _{\Delta v \rightarrow 0} \frac{\mathrm{PQ}}{\Delta \theta}
$$

exist, it is called the distribution parameter.
For a ruled surface in E^{3}, whose distribution parameter is not ∞, the ruled surface is, as is well known, completely determined by the Frenet-frame along its curve of striction, where there exist three functions characterize it, one of which is of course distribution parameter.

In $\S 1$, we find the characteristic functions and the curve of striction of a ruled surface in E^{4}. In §2, a few examples are shown by giving the special values to the characteristic functions. In §3, we study relations between the characteristic functions and the invariants of a surface in E^{4} for example, λ, μ, Gaussian curvature, torsion form, \cdots. In $\S 4$, we study a condition that a surface in E^{4} becomes a ruled surface.
§ 1. Let M^{2} be a surface in E^{4}, and ($p, e_{1}, e_{2}, e_{3}, e_{4}$) be a Frenet-frame in the sense of O$t s u k i$ [1], then we have the following:

$$
\left\{\begin{array}{l}
d p=\omega_{1} e_{1}+\omega_{2} e_{2}, \tag{1.1}\\
d e_{A}=\sum_{B} \omega_{A B} e_{B}, \quad \omega_{A B}+\omega_{B A}=0, \\
d \omega_{A B}=\sum_{C} \omega_{A C} \wedge \omega_{C B}, \quad A, B, C=1,2,3,4,
\end{array}\right.
$$

Received March 13, 1967.

$$
\left\{\begin{array}{l}
\omega_{13} \wedge \omega_{24}+\omega_{14} \wedge \omega_{23}=0 \tag{1.2}\\
\omega_{13} \wedge \omega_{23}=\lambda \omega_{1} \wedge \omega_{2}, \quad \omega_{14} \wedge \omega_{24}=\mu \omega_{1} \wedge \omega_{2}
\end{array}\right.
$$

and

$$
\begin{equation*}
\lambda+\mu=G, \quad \lambda \geqq \mu, \tag{1.3}
\end{equation*}
$$

where G is Gaussian curvature and ω_{34} is the torsion form of M^{2}.
Especially, if M^{2} is a ruled surface, then we can take e_{1} such that $e_{1}(p)$ has the direction of the generator through p. For the above defined $e_{1}, \omega_{2}=0$ implies $d e_{1}=\sum \omega_{1 i} e_{i}=0$, accordingly,

$$
\begin{equation*}
\omega_{12}=f_{i} \omega_{2}, \quad i=2,3,4 \tag{1.4}
\end{equation*}
$$

Making use of $d \omega_{r}=\omega_{1} \wedge \omega_{1 r}+\omega_{2} \wedge \omega_{2 r}=0, r=3,4$, we can put

$$
\begin{align*}
& \omega_{23}=f_{3} \omega_{1}+h_{3} \omega_{2} \tag{1.5}\\
& \omega_{24}=f_{4} \omega_{1}+h_{4} \omega_{2} \tag{1.6}
\end{align*}
$$

and from (1.2), (1.4), (1.5), (1.6), we have

$$
\begin{equation*}
f_{3} f_{4}=0 \tag{1.7}
\end{equation*}
$$

Because $\lambda \geqq \mu$ and $\lambda=-f_{3}^{2}, \mu=-f_{4}^{2},(1.7)$ implies $f_{3}=0$. Then we get

$$
\begin{gather*}
\lambda=0, \tag{1.8}\\
\omega_{13}=0, \quad \omega_{23}=h_{3} \omega_{2} \tag{1.9}
\end{gather*}
$$

On the other hand, $d \omega_{1}=\omega_{12} \wedge \omega_{2}=f_{2} \omega_{2} \wedge \omega_{2}=0$, hence we have locally

$$
\begin{equation*}
\omega_{1}=d u \tag{1.10}
\end{equation*}
$$

where u is a local function on M^{2}.
In the following we assume that $\mu \neq 0$, that is M^{2} is not locally flat. By our assumption and (1.9), (1.4)
(1.11)

$$
d \omega_{13}=f_{4} \omega_{2} \wedge \omega_{43}=0
$$

it follows that
(1.12)

$$
\omega_{34}=\rho \omega_{2}
$$

By the structure equations, (1.4), (1.9) ane (1.12), it follows that

$$
\begin{equation*}
\frac{\partial f_{2}}{\partial u}=-f_{2}^{2}+f_{4}^{2} \tag{1.13}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial f_{4}}{\partial u}=-2 f_{2} f_{4}, \tag{1.14}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial h_{3}}{\partial u}=-f_{2} h_{3}-\rho f_{4}, \tag{1.15}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \rho}{\partial u}=-\rho f_{2}+h_{3} f_{4} . \tag{1.16}
\end{equation*}
$$

(1.13), (1.14) and (1.15), (1.16) may be written as follows:

$$
\begin{equation*}
\frac{\partial\left(f_{2}+i f_{4}\right)}{\partial u}=-\left(f_{2}+i f_{4}\right)^{2} \tag{1.17}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial\left(h_{3}+i \rho\right)}{\partial u}=-\left(f_{2}-i f_{4}\right)\left(h_{3}+i \rho\right), \tag{1.18}
\end{equation*}
$$

where $i^{2}=-1$. By integrating (1.17), we get

$$
\begin{equation*}
f_{2}+i f_{4}=\frac{1}{u-c}, \tag{1.19}
\end{equation*}
$$

where
(1.20)

$$
c=p(v)+i q(v),
$$

v will mean a parameter of some director curve of the ruled surface. By (1.18), (1.20) we get

$$
\begin{equation*}
h_{3}+i \rho=\frac{c_{1}}{u-\bar{c}} . \tag{1.21}
\end{equation*}
$$

Putting $c_{1}=r(v) e^{i \theta(v)}$, we get the following:

$$
\begin{equation*}
f_{2}=\frac{u-p}{(u-p)^{2}+q^{2}}, \quad f_{4}=\frac{q}{(u-p)^{2}+q^{2}}, \tag{1.22}
\end{equation*}
$$

$$
\begin{equation*}
h_{3}=\frac{r[(u-p) \cos \theta+q \sin \theta]}{(u-p)^{2}+q^{2}}, \quad \rho=\frac{r[(u-p) \sin \theta-q \cos \theta]}{(u-p)^{2}+q^{2}} . \tag{1.23}
\end{equation*}
$$

Now the line element of M^{2} is given by $d s^{2}=d u^{2}+g_{22} d v^{2}$. We may consider that $\omega_{2}=\sqrt{g_{22}} d v$. By the structure equations and (1.22) we have

$$
\begin{equation*}
g_{22}=\left[(u-p)^{2}+q^{2}\right] l(v)^{2}, \quad l(v)>0 . \tag{1.24}
\end{equation*}
$$

Theorem 1. For a ruled surface which is not locally flat, the curve given by $u=p(v)$ is its curve of striction and $|q|$ is the distribution parameter.

Proof. Let v be the arc-length of the curve $u=p(v)$, then by (1.24)

$$
\begin{equation*}
\left.d s^{2}=d u^{2}+\left[(u-p)^{2}+q^{2}\right]\right](v)^{2} d v^{2} \tag{1.25}
\end{equation*}
$$

By the hypothesis of v and $d u=p^{\prime} d v$, it follows that

$$
\begin{equation*}
\left(\frac{d s}{d v}\right)^{2}=p^{\prime 2}+q^{2} l^{2}=1 \tag{1.26}
\end{equation*}
$$

By using the expression of position vectors in E^{4}, we can put the curve

$$
\begin{equation*}
x=y(v) . \tag{1.27}
\end{equation*}
$$

By the definition of the curve of striction, it is sufficient to show that

$$
\left\langle\frac{d y}{d v}, \frac{d e_{1}}{d v}\right\rangle=0
$$

along $x=y(v)$, but along it we get by (1.22) and (1.25)

$$
\begin{equation*}
\frac{d y}{d v}=p^{\prime} e_{1}+q l e_{2}, \quad \frac{d e_{1}}{d v}=l e_{4}, \tag{1.28}
\end{equation*}
$$

which shows that $y(v)$ is the curve of striction. Putting

$$
\begin{equation*}
\tan \varphi(v)=\frac{q l}{p^{\prime}} \tag{1.29}
\end{equation*}
$$

we get by (1.26) and (1.28),

$$
\begin{equation*}
\frac{d e_{1}}{d v}=\frac{\sin \varphi(v)}{q} e_{4}, \tag{1.30}
\end{equation*}
$$

which shows that $|q|$ is the distribution parameter of M^{2}. q.e.d.
Now let w be the arc-length of the curve of the spherical image of e_{1}, then from (1.30) we get

$$
d w=\frac{\sin \varphi(v)}{q} d v
$$

which implies that

$$
\begin{equation*}
\frac{d y}{d w}=q\left(\cot \varphi e_{1}+e_{2}\right) . \tag{1.31}
\end{equation*}
$$

Now for the rest h_{4}, by using (1.22), (1.23), (1.24) and the structure equations we get the following:
(1.32)

$$
\frac{\partial}{\partial u}\left(\sqrt{(u-p)^{2}+q^{2}} \cdot h_{4}\right)=\frac{1}{l} \frac{\partial f_{4}}{\partial v}
$$

where v is the arc-length of the curve of striction. By (1.22) and (1.26),

$$
\begin{equation*}
h_{4}=\frac{-q q^{\prime}(u-p)+p^{\prime}(u-p)^{2}}{\sqrt{1-p^{\prime 2}}\left\{(u-p)^{2}+q^{2}\right\} \frac{3}{2}}+\frac{m(v)}{\sqrt{(u-p)^{2}+q^{2}}} . \tag{1.33}
\end{equation*}
$$

Thus $p(v), q(v), r(v), \theta(v)$ and $m(v)$ are the characteristic functions of the ruled surface M^{2} in E^{4} which is not locally flat.

Theorem 2. For a ruled surface in E^{4} which is not locally flat, the Frenetframe along its curve of striction is given by

$$
\begin{cases}\frac{d y}{d v}=e_{1} p^{\prime}+e_{2} l q, & \tag{1.34}\\ \frac{d e_{1}}{d v}= & e_{4} l, \\ \frac{d e_{2}}{d v}= & e_{3} r l \sin \theta+e_{4}\left(\frac{p^{\prime}}{q}+m l\right) \\ \frac{d e_{3}}{d v}= & -e_{2} r l \sin \theta \\ \frac{d e_{4}}{d v}=-e_{4} l-e_{2}\left(\frac{p^{\prime}}{q}+m l\right)+e_{3} r l \cos \theta \\ \hline\end{cases}
$$

where $l=\sqrt{1-p^{\prime 2}} / q$, conversely (1.34) determines a ruled surface for any given five characteristic functions p, q, r, θ, and m.

For a ruled surface which is not locally flat, we can consider two asymptotic lines with respect to $\Phi_{4}=\sum A_{4 i j} \omega_{i} \omega_{j}$, as $\sum A_{4 i j} \omega_{i} \omega_{j}=0$. Since $\Phi_{3}=h_{3} \omega_{2} \omega_{2}$ and $A_{411}=0$, the second fundamental form Φ with respect to any unit normal vector $e=e_{3} \cos \psi+e_{4} \sin \psi$ is given by $\Phi=2 f_{4} \sin \psi \omega_{1} \omega_{2}+\left(h_{3} \cos \psi+h_{4} \sin \psi\right) \omega_{2} \omega_{2}$, which shows that a generator is an asymptotic line with respect to the second fundamental form Φ defined by any unit normal vector e. Let us call the asymptotic line with respect to Φ_{4} which is not generator, the half-asymptotic line. It is defined by $2 f_{4} \omega_{1}+h_{4} \omega_{2}=0$, which is written as

$$
\frac{d u}{d v}=\frac{-q q^{\prime}(u-p)+p^{\prime}(u-p)^{2}}{2 q \sqrt{1-p^{\prime 2}}}+\frac{m}{2 q}\left\{(u-p)^{2}+q^{2}\right\}
$$

by (1.10), (1.22), (1.24) and (1.33). Since the above differential equation is a Riccati equation, it is clear that the following theorem is true:

Theorem 3. The compound ratio of four points at which four half-asymptotic lines intersect a generator, is constant.
§ 2. We give a few examples of ruled surfaces. In this section v is always
taken the arc-length of the curve of striction $u=p(v)$.
Example 1. We consider the case of locally flat, that is $\mu=0$. Because (1.13) holds under $\mu=0$ and $\mu=-f_{4}^{2}=0$, we get $f_{2}=0$ or $f_{2}=1 /(u-p)$.

Let us firstly assume that $f_{2}=0$. Then we have $d e_{1}=0$, which shows that the ruled surface is a cylinder. In general, a complete surface in E^{4} which has the curvatures $\lambda=\mu=0$ is a cylinder [3].

Let us secondary assume that $f_{2}=1 /(u-p)$. Since $\lambda=\mu=0$, we can take $\omega_{34}=0$. And similarly we get by the structure equations as following:

$$
\begin{equation*}
h_{3}=\frac{c(v)}{u-p}, \quad h_{4}=\frac{m(v)}{u-p}, \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\omega_{2}=(u-p) l(v) d v . \tag{2.2}
\end{equation*}
$$

Therefore we get the following:

$$
\left\{\begin{array}{l}
d p=e_{1} d u+e_{2}(u-p) d v \tag{2.3}\\
d e_{1}=\quad e_{2} l(v) d v \\
d e_{2}=-e_{1} l(v) d v \quad+e_{3} l(v) c(v) d v+e_{4} l(v) m(v) d v \\
d e_{3}=-e_{2} l(v) c(v) d v \\
d e_{4}=
\end{array}\right.
$$

If $p(v)$ is constant, then the curve defined by $u=p(v)$ is a constant curve. Consequently this ruled surface is a cone in E^{4}. Now suppose that $p(v)$ is not constant, i.e., $p^{\prime}(v) \neq 0$, then it is clear that this ruled surface is a torse whose edge of regression is defined by $u=p(v)$.

Example 2. Let us consider the case of not locally flat and $p=0, q=$ const. $\neq 0, m=0$. We may consider that $q=1$ by a suitable similar transformation. Then we have
(2. 4)

$$
\left\{\begin{array}{lcl}
d p= & e_{1} d u & +e_{2} \sqrt{u_{2}+1} d v, \\
d e_{1}= & e_{2} \frac{u}{\sqrt{u_{2}+1}} d v & +e_{4} \frac{1}{\sqrt{u^{2}+1}} d v, \\
d e_{2}=-e_{1} \frac{u}{\sqrt{u^{2}+1}} d v & +e_{3} \frac{r(u \cos \theta+\sin \theta)}{\sqrt{u^{2}+1}} d v+e_{4} \frac{1}{u^{2}+1} d u, \\
d e_{3}= & -e_{2} \frac{r(u \cos \theta+\sin \theta)}{\sqrt{u^{2}+1}} d v & +e_{4} \frac{r(u \sin \theta-\cos \theta)}{\sqrt{u^{2}+1}} d v, \\
d e_{4}=-e_{1} \frac{1}{\sqrt{u^{2}+1}} d v-e_{2} \frac{1}{u^{2}+1} d u-e_{3} \frac{r(u \sin \theta-\cos \theta)}{\sqrt{u^{2}+1}} d v .
\end{array}\right.
$$

Therefore we get along the curve of striction $x=y(v)$ defined by $u=p(v)$,

$$
\left\{\begin{array}{l}
d y=e_{2} d v, \tag{2.5}\\
d e_{2}= \\
d e_{3}=-e_{2} r \sin \theta d v \quad e_{3} r \sin \theta d v, \\
d e_{4}=r \\
d e_{1}= \\
e_{3} r \cos \theta d v \\
e_{4} r \cos \theta d v \\
\hline
\end{array}\right.
$$

Morever let us assume that $p=m=0, q=1$ and $r=0$. By virtue of (2.4) it is clear that this ruled surface is a helicoid in a hyperplane E^{3} perpendicular to a fixed unit vector e_{3}, which is written as follows:

$$
\begin{equation*}
x(u, v)=v Y+u(X \cos v+Z \sin v) \tag{2.6}
\end{equation*}
$$

where X, Y, Z is an orthomormal base of E^{3}. And if $p=m=\theta=0, q=1$, then it is a helicoid in E^{4} in the sense that it is generated by a moving straight line perpendicular to a fixed straight line that the ratio of the velocity of the moving point of intersection and the angular velocity of its direction is constant. Moreover if $p=m=0, q=1$ and $\theta=\pi / 2$, then we get a sort of helicoid in E^{4} which is defined as follows:

$$
\begin{equation*}
X(u, v)=y(v)+u(X \cos v+Y \sin v) \tag{2.7}
\end{equation*}
$$

where $y(v)$ is a plane curve and X, Y are orthogonal unit vectors each of which is perpendicular to the plane containing the curve $x=y(v)$.
§ 3. We study some relations between characteristic functions and the invariants of M^{2} in E^{4}. By (1.8) and (1.22), we get at once

Theorem 4. For a ruled surface in E^{4}, it follows that

$$
\begin{gather*}
\lambda=0, \tag{3.1}\\
\mu=G=\frac{-q^{2}}{(u-p)^{2}+q^{2}} \leqq 0 . \tag{3.2}
\end{gather*}
$$

Hence there does not exist a ruled surface in E^{4} with constant negative curvature.

The torsion form ω_{34} defines a covariant vector field $Z=\left(Z_{1}, Z_{2}\right)$, and by (1.12) it follows that

$$
\begin{equation*}
Z_{1}=0, \quad Z_{2}=\rho . \tag{3.3}
\end{equation*}
$$

Therefore we get

$$
\begin{equation*}
\|Z\|=|\rho| . \tag{3.4}
\end{equation*}
$$

Theorem 5. The divergence and the rotation of torsion vector Z are given as follows:

$$
\begin{gather*}
\operatorname{div} Z=\frac{1}{\sqrt{g_{22}}} \frac{\partial \rho}{\partial v}, \tag{3.5}\\
-\frac{1}{G}(\operatorname{rot} Z)^{2}+\|Z\|^{2}=\frac{\sqrt{-G}}{|q|} r^{2} . \tag{3.6}
\end{gather*}
$$

Proof. For a vector field $Z=\left(Z_{1}, Z_{2}\right)$, we have the following:

$$
\begin{align*}
& \operatorname{div} Z=Z_{1,1}+Z_{2,2} \tag{3.7}\\
& \operatorname{rot} Z=Z_{1,2}-Z_{2,1}, \tag{3.8}
\end{align*}
$$

where $D Z_{\imath}=Z_{\imath, 1} \omega_{1}+Z_{\imath, 2} \omega_{2}(i=1,2)$ and $D Z_{\imath}=d Z_{i}+\omega_{j i} Z_{\jmath}$. By (3.3) we have

$$
\begin{equation*}
Z_{1,1}=0, \quad Z_{1,2}=-\rho f_{2}, \quad Z_{2,1}=\frac{\partial \rho}{\partial u}, \quad Z_{2,2}=\frac{1}{\sqrt{g_{22}}} \frac{\partial \rho}{\partial v}, \tag{3.9}
\end{equation*}
$$

which imply that

$$
\operatorname{div} Z=\frac{1}{\sqrt{g_{22}}} \frac{\partial \rho}{\partial v}, \quad \text { and } \quad \operatorname{rot} Z=-\rho f_{2}-\frac{\partial \rho}{\partial u} .
$$

From (1.22) and (1.23) we have the following:

$$
\begin{equation*}
-\operatorname{rot} Z=\frac{r q[(u-p) \cos \theta+q \sin \theta]}{\left[(u-p)^{2}+q^{2}\right]^{2}}=\frac{q}{(u-p)^{2}+q^{2}} h_{3} . \tag{3.10}
\end{equation*}
$$

But (1.23) shows that

$$
\begin{equation*}
h_{3}^{2}+\rho^{2}=\frac{r^{2}}{(u-p)^{2}+q^{2}}, \tag{3.11}
\end{equation*}
$$

from which we get (3.6).
§ 4. In this section, we study a necessary and sufficient condition that a surface in E^{4} becomes a ruled surface. Let ($p, e_{1}, e_{2}, e_{3}, e_{4}$) be a Frenet-frame in the sense of O tsuki for a surface in E^{4}. Put $\omega_{34}=Z_{1} \omega_{1}+Z_{2} \omega_{2}$. We shall introduce two vector fields P and Q by using torsion form ω_{34} and the second fundamental forms $\Phi_{3}=\sum A_{3 i j} \omega_{i} \omega_{j}, \quad \Phi_{4}=\sum A_{4 i j} \omega_{i} \omega_{j}$, where $\omega_{i r}=\sum A_{r i j} \omega_{j}, \quad(r=3,4, i, j=1,2)$. For the torsion vector $Z=Z_{1} e_{1}+Z_{2} e_{2}$ let $\bar{Z}=\bar{Z}_{1} e_{1}+\bar{Z}_{2} e_{2}$ be as follows:

$$
\begin{equation*}
\bar{Z}_{1}=-Z_{2}, \quad \bar{Z}_{2}=Z_{1} . \tag{4.1}
\end{equation*}
$$

We can write $\bar{Z}=i Z$, where $i^{2}=-1$. Putting $P_{h}=\sum A_{3 h k} \bar{Z}_{k}$ and $Q_{h}=\sum A_{4 h k} \bar{Z}_{k}$ where $h, k=1,2$, we obtain two vector fields P and Q by contracting Φ_{3}, \bar{Z} and Φ_{4}, \bar{Z} respectively, i.e., we have the following:

$$
\begin{equation*}
P=P_{1} e_{1}+P_{2} e_{2}=\left(\Phi_{3}, \bar{Z}\right)=\left(\Phi_{3}, i Z\right), \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
Q=Q_{1} e_{1}+Q_{2} e_{2}=\left(\Phi_{4}, \bar{Z}\right)=\left(\Phi_{4}, i Z\right) . \tag{4.3}
\end{equation*}
$$

Now suppose that M^{2} is a ruled surface, then (1.8) and (1.9) hold. Let us define two sets:

$$
\begin{equation*}
M_{0}=\left\{p \in M^{2}: \mu(p)=0\right\} \tag{4.4}
\end{equation*}
$$

$$
\begin{equation*}
M_{1}=\left\{p \in M^{2}: \mu(p) \neq 0\right\} \tag{4.5}
\end{equation*}
$$

For any point of M_{1} we have (1.12), accordingly $Z_{1}=0, Z_{2}=\rho$ and $A_{311}=A_{312}=0$, $A_{322}=h_{3}$. Therefore it follows that

$$
\begin{equation*}
P=\left(\Phi_{3}, i Z\right)=0 . \tag{4.6}
\end{equation*}
$$

For any point of the interior $\stackrel{\circ}{M}_{0}$ of M_{0}, we have $\lambda=\mu=0$ by the definition of M_{0} and Theorem 4. Then we can chose a torsionless Frenet-frame. Hence we get the following:

$$
\begin{equation*}
P=\left(\Phi_{3}, i Z\right)=0, \quad Q=\left(\Phi_{4}, i Z\right)=0 \tag{4.7}
\end{equation*}
$$

In the following we consider a surface ih E^{4} with the properties:

$$
\begin{equation*}
\lambda=0, \quad P=\left(\Phi_{3}, i Z\right)=0 . \tag{4.8}
\end{equation*}
$$

Let p be a fixed point in M_{1}, and e_{1} be the asymptotic direction with respect to Φ_{3}. Then we have by the definition of $e_{1}, A_{311}=0$. Since $\lambda=A_{311} A_{322}-A_{312} A_{321}=0$, it follows that $A_{321}=0$, from which we have $\omega_{13}=0, \omega_{23}=h_{3} \omega_{2}$. Because $P=0$, it follows that $P_{1}=A_{312} Z_{1}-A_{311} Z_{2}=0, P_{2}=A_{322} Z_{1}-A_{321} Z_{2}=0$ from which we have

$$
\begin{equation*}
h_{3} Z_{1}=0 \tag{4.9}
\end{equation*}
$$

Suppose that $h_{3}(p) \neq 0$ for $p \in M_{1}$. Then by (4.9) we have $Z_{1}=0$, i.e., $\omega_{34}=\rho \omega_{2}$. From (1.2) we have $\omega_{14} \wedge h_{3} \omega_{2}=0$, i.e., $\omega_{14}=f_{4} \omega_{2}$. On the other hand, $d \omega_{13}$ $=\omega_{12} \wedge \omega_{23}+\omega_{14} \wedge \omega_{43}=0$, from which we get $\omega_{12}=f_{2} \omega_{2}$. The above fact shows that the asymptotic line with respect to Φ_{3} is a straight line segment in M_{1}.

Suppose that there exists an open set U of M_{1} in which $h_{3}=0$. Then it follows that $\Phi_{3} \equiv 0$ in U, consequently the hypothesis $\left(\Phi_{3}, i Z\right)=0$ is trivial in U. Because $\mu \neq 0$, there are two asmptotic directions with respect to Φ_{4}. Let e_{1} be one of these asymptotic direction, it follows that

$$
\begin{equation*}
\omega_{14}=f_{4} \omega_{2}, \quad \omega_{24}=f_{4} \omega_{1}+h_{4} \omega_{2}, \quad f_{4} \neq 0 \tag{4.10}
\end{equation*}
$$

Since $d \omega_{13}=\omega_{14} \wedge \omega_{43}=f_{4} \omega_{2} \wedge \omega_{43}=0$, it follows that $\omega_{34}=\rho \omega_{2}$. But $d \omega_{23}=\omega_{24} \wedge \omega_{43}$ $=-\rho f_{4} \omega_{1} \wedge \omega_{2}=0$. Consequently $\rho=0$ or $\omega_{34}=0$, from which we have $d e_{3}=\sum \omega_{3 i} e_{i}=0$. Therefore U is contained in a hyperplane E^{3} of E^{4} which is perpendicuiar to a constant unit vector e_{3}. Since $\omega_{14}=f_{4} \omega_{2}$, the condition that the asymptotic lines become straight lines or straight line segments, is equivalent to $\omega_{12}=f_{2} \omega_{2}$.

In the following we study the condition $\omega_{12}=f_{2} \omega_{2}$ in $U \subset M_{1} \cdot$ Let e_{1}, e_{2} be the principal directions of the second fundamental form Φ_{4}. We have

$$
\begin{equation*}
\Phi_{4}=A_{411} \omega_{1} \omega_{1}+A_{422} \omega_{2} \omega_{2} . \tag{4.11}
\end{equation*}
$$

Putting

$$
\begin{equation*}
A_{411}=\varepsilon B_{1}^{2}, \quad A_{422}=-\varepsilon B_{2}^{2} \tag{4.12}
\end{equation*}
$$

where $\varepsilon= \pm 1$. We have the following:

$$
\begin{equation*}
\Phi_{4}=\varepsilon\left(B_{1}^{2} \omega_{1} \omega_{1}-B_{2}^{2} \omega_{2} \omega_{2}\right) \tag{4.13}
\end{equation*}
$$

The asymptotic directions \bar{e}_{1} and \bar{e}_{2} with respect to Φ_{4} is written as

$$
\begin{align*}
& \bar{e}_{1}=e_{1} \cos \theta+e_{2} \sin \theta, \tag{4.14}\\
& \bar{e}_{2}=-e_{1} \sin \theta+e_{2} \cos \theta,
\end{align*}
$$

where

$$
\begin{equation*}
\cos \theta=\frac{B_{2}}{\sqrt{B_{1}^{2}+B_{2}^{2}}}, \quad \sin \theta=\frac{ \pm B_{1}}{\sqrt{B_{1}^{2}+B_{2}^{2}}} \tag{4.15}
\end{equation*}
$$

It follows that

$$
\begin{align*}
\bar{\omega}_{12} & =\left\langle d \bar{e}_{1}, \bar{e}_{2}\right\rangle=d \theta+\omega_{12}, \tag{4.16}\\
\omega_{2} & =-\omega_{1} \sin \theta+\omega_{2} \cos \theta .
\end{align*}
$$

Then $\bar{\omega}_{12} \wedge \bar{\omega}_{2}=0$ is equivalent to

$$
\begin{equation*}
\left[\left(B_{2} d B_{1}-B_{1} d B_{2}\right) \pm\left(B_{1}^{2}+B_{2}^{2}\right) \omega_{12}\right] \wedge\left[B_{1} \omega_{1} \mp B_{2} \omega_{2}\right]=0 . \tag{4.17}
\end{equation*}
$$

But we have

$$
\begin{aligned}
& {\left[\left(B_{2} d B_{1}-B_{1} d B_{2}\right)+\left(B_{1}^{2}+B_{2}^{2}\right) \omega_{12}\right] \wedge\left[B_{1} \omega_{1}-B_{2} \omega_{2}\right] } \\
= & {\left[B_{2} D B_{1}-B_{1} D B_{2}\right] \wedge\left[B_{1} \omega_{1}-B_{2} \omega_{2}\right] } \\
= & {\left[B_{1}\left(-B_{2} B_{1,2}+B_{1} B_{2,2}\right)-B_{2}\left(B_{2} B_{1,1}-B_{1} B_{2,1}\right)\right] \omega_{1} \wedge \omega_{2} } \\
= & {\left[\varepsilon A_{411} B_{2,2}+\varepsilon A_{422} B_{1,1}-B_{1} B_{2} \operatorname{rot} B\right] \omega_{1} \wedge \omega_{2}, }
\end{aligned}
$$

where $B=B_{1} e_{1}+B_{2} e_{2}$. Similarly we get

$$
\begin{aligned}
& {\left[\left(B_{2} d B_{1}-B_{1} d B_{2}\right)-\left(B_{1}^{2}+B_{2}^{2}\right) \omega_{12}\right] \wedge\left[B_{1} \omega_{1}+B_{2} \omega_{2}\right] } \\
= & {\left[\varepsilon A_{411} B_{2,2}^{*}+\varepsilon A_{422} B_{1,1}^{*}-B_{1}^{*} B_{2}^{*} \operatorname{rot} B^{*}\right] \omega_{1} \wedge \omega_{2}, }
\end{aligned}
$$

where $B_{1}^{*}=B_{1}, B_{2}^{*}=-B_{2}$ and $B^{*}=B_{1}^{*} e_{1}+B_{2}^{*} e_{2}$.
Consequently U is a piece of ruled surface if the following holds:

$$
\begin{equation*}
\left[\varepsilon A_{411} B_{2,2}+\varepsilon A_{422} B_{1,1}-B_{1} B_{2} \operatorname{rot} B\right] \cdot\left[\varepsilon A_{411} B_{2,2}^{*}+\varepsilon A_{422} B_{1,1}^{*}-B_{1}^{*} B_{2}^{*} \operatorname{rot} B^{*}\right]=0 . \tag{4.18}
\end{equation*}
$$

On the other hand, it is clear that the interior of M_{0} is a piece of a cylinder or a torse by Example 1 in $\S 2$.

Theorem 6. If a surface in E^{4} satisfies $\lambda=0$ and $\left(\Phi_{3}, i Z\right)=0$, then it is locally a ruled surface except U and if (4.18) holds in addition to the above conditions in U, then U becomes locally a ruled surface where U is the interior point of $\left\{p: \mu(p)<0, \Phi_{3} \equiv 0\right\}$.

References

[1] O Tsuki, T., On the total curvature of surfaces in Euclidean spaces. Japanese Journ. of Math. 36 (1966), 61-71.
[2] O о́suki, T., Surfaces in the 4 -dimensional Euclidean space isometric to a sphere. Kōdai Math. Sem. Rep. 18 (1966), 101-115.
[3] Shiohama, K., Surfaces of curvatures $\lambda=\mu=0$ in E^{4}. Kōdai Math. Sem. Rep. 19 (1967), 75-79.

Department of Mathematics,
Tokyo Institute of Technology.

