A THEORY OF RULED SURFACES IN E^4

By Tominosuke Ötsuki and Katsuhiro Shiohama

Introduction. In 4-dimensional Euclidean space E^4 , a ruled surface is a surface generated by a moving straight line depending on one parameter. If we fix a point on such a straight line, we get a curve called the director curve. Using the expression of position vectors in E^4 , we can write a ruled surface as $x=y(v)+u\xi(v)$, where y(v) is a director curve and $\xi(v)$ is the unit tangent vector with the direction of generator through y(v). On two adjacent generators corresponding to v and $v+\Delta v$, take P and Q, $P=(u_1, v), Q=(u_2, v+\Delta v)$ such that PQ is common perpendicular for these generators, and let $\Delta\theta$ be the angle between $\xi(v)$ and $\xi(v+\Delta v)$. When Δv tends to zero, the limit point of P (if there exist) is called the center of the generator and its orbit the curve of striction of the ruled surface. If

$$\lim_{\Delta v \to 0} \frac{PQ}{\Delta \theta}$$

exist, it is called the distribution parameter.

For a ruled surface in E^3 , whose distribution parameter is not ∞ , the ruled surface is, as is well known, completely determined by the Frenet-frame along its curve of striction, where there exist three functions characterize it, one of which is of course distribution parameter.

In §1, we find the characteristic functions and the curve of striction of a ruled surface in E^4 . In §2, a few examples are shown by giving the special values to the characteristic functions. In §3, we study relations between the characteristic functions and the invariants of a surface in E^4 for example, λ , μ , Gaussian curvature, torsion form, In §4, we study a condition that a surface in E^4 becomes a ruled surface.

§1. Let M^2 be a surface in E^4 , and (p, e_1, e_2, e_3, e_4) be a Frenet-frame in the sense of Ōtsuki [1], then we have the following:

(1.1)
$$\begin{cases} dp = \omega_1 e_1 + \omega_2 e_2, \\ de_A = \sum_B \omega_{AB} e_B, \quad \omega_{AB} + \omega_{BA} = 0, \\ d\omega_{AB} = \sum_C \omega_{AC} \wedge \omega_{CB}, \quad A, B, C = 1, 2, 3, 4 \end{cases}$$

Received March 13, 1967.

RULED SURFACES IN E4

(1.2)
$$\begin{cases} \omega_{13} \wedge \omega_{24} + \omega_{14} \wedge \omega_{23} = 0, \\ \omega_{13} \wedge \omega_{23} = \lambda \omega_1 \wedge \omega_2, \quad \omega_{14} \wedge \omega_{24} = \mu \omega_1 \wedge \omega_2, \end{cases}$$

and

$$(1.3) \qquad \qquad \lambda + \mu = G, \qquad \lambda \ge \mu,$$

where G is Gaussian curvature and ω_{34} is the torsion form of M^2 .

Especially, if M^2 is a ruled surface, then we can take e_1 such that $e_1(p)$ has the direction of the generator through p. For the above defined $e_1, \omega_2=0$ implies $de_1=\sum \omega_{1i}e_i=0$, accordingly,

(1.4)
$$\omega_{1i} = f_i \omega_2, \quad i=2,3,4.$$

Making use of $d\omega_r = \omega_1 \wedge \omega_{1r} + \omega_2 \wedge \omega_{2r} = 0$, r = 3, 4, we can put

(1.5)
$$\omega_{23} = f_3 \omega_1 + h_3 \omega_2,$$

$$(1.6) \qquad \qquad \omega_{24} = f_4 \omega_1 + h_4 \omega_2,$$

and from (1.2), (1.4), (1.5), (1.6), we have

$$(1.7) f_3 f_4 = 0$$

Because $\lambda \ge \mu$ and $\lambda = -f_{3}^{2}$, $\mu = -f_{4}^{2}$, (1.7) implies $f_{3}=0$. Then we get

$$(1.8) \qquad \qquad \lambda = 0,$$

(1.9)
$$\omega_{13}=0, \quad \omega_{23}=h_3\omega_2.$$

On the other hand, $d\omega_1 = \omega_{12} \wedge \omega_2 = f_2 \omega_2 \wedge \omega_2 = 0$, hence we have locally

$$(1.10) \qquad \qquad \omega_1 = du,$$

where u is a local function on M^2 .

In the following we assume that $\mu \neq 0$, that is M^2 is not locally flat. By our assumption and (1.9), (1.4)

$$(1. 11) d\omega_{13}=f_4\omega_2\wedge\omega_{43}=0,$$

it follows that

$$(1. 12) \qquad \qquad \omega_{34} = \rho \omega_2.$$

By the structure equations, (1. 4), (1. 9) ane (1. 12), it follows that

(1.13)
$$\frac{\partial f_2}{\partial u} = -f_2^2 + f_4^2,$$

(1. 14)
$$\frac{\partial f_4}{\partial u} = -2f_2f_4,$$

(1.15)
$$\frac{\partial h_3}{\partial u} = -f_2 h_3 - \rho f_4,$$

(1.16)
$$\frac{\partial \rho}{\partial u} = -\rho f_2 + h_3 f_4.$$

(1.13), (1.14) and (1.15), (1.16) may be written as follows:

(1.17)
$$\frac{\partial (f_2 + if_4)}{\partial u} = -(f_2 + if_4)^2,$$

(1.18)
$$\frac{\partial(h_3+i\rho)}{\partial u} = -(f_2-if_4)(h_3+i\rho),$$

where $i^2 = -1$. By integrating (1.17), we get

(1.19)
$$f_2 + i f_4 = \frac{1}{u-c},$$

where

$$(1.20) c = p(v) + iq(v),$$

v will mean a parameter of some director curve of the ruled surface. By (1.18), (1.20) we get

(1.21)
$$h_3 + i\rho = \frac{c_1}{u - \bar{c}}.$$

Putting $c_1 = r(v)e^{i\theta(v)}$, we get the following:

(1.22)
$$f_2 = \frac{u-p}{(u-p)^2+q^2}, \qquad f_4 = \frac{q}{(u-p)^2+q^2},$$

(1.23)
$$h_3 = \frac{r[(u-p)\cos\theta + q\sin\theta]}{(u-p)^2 + q^2}, \qquad \rho = \frac{r[(u-p)\sin\theta - q\cos\theta]}{(u-p)^2 + q^2}.$$

Now the line element of M^2 is given by $ds^2 = du^2 + g_{22}dv^2$. We may consider that $\omega_2 = \sqrt{g_{22}} dv$. By the structure equations and (1.22) we have

(1. 24)
$$g_{22} = [(u-p)^2 + q^2]l(v)^2, \quad l(v) > 0.$$

THEOREM 1. For a ruled surface which is not locally flat, the curve given by u=p(v) is its curve of striction and |q| is the distribution parameter.

Proof. Let v be the arc-length of the curve u=p(v), then by (1.24)

RULED SURFACES IN E4

(1.25)
$$ds^2 = du^2 + [(u-p)^2 + q^2]l(v)^2 dv^2.$$

By the hypothesis of v and du = p'dv, it follows that

(1. 26)
$$\left(\frac{ds}{dv}\right)^2 = p'^2 + q^2 l^2 = 1.$$

By using the expression of position vectors in E^4 , we can put the curve

$$(1.27)$$
 $x=y(v).$

By the definition of the curve of striction, it is sufficient to show that

$$\left< \frac{dy}{dv}, \frac{de_1}{dv} \right> = 0$$

along x=y(v), but along it we get by (1.22) and (1.25)

(1.28)
$$\frac{dy}{dv} = p'e_1 + qle_2, \qquad \frac{de_1}{dv} = le_4,$$

which shows that y(v) is the curve of striction. Putting

(1. 29)
$$\tan \varphi(v) = \frac{ql}{p'},$$

we get by (1.26) and (1.28),

(1. 30)
$$\frac{de_1}{dv} = \frac{\sin \varphi(v)}{q} e_4,$$

which shows that |q| is the distribution parameter of M^2 . q.e.d.

Now let w be the arc-length of the curve of the spherical image of e_1 , then from (1.30) we get

$$dw = \frac{\sin \varphi(v)}{q} dv$$

which implies that

(1. 31)
$$\frac{dy}{dw} = q(\cot\varphi e_1 + e_2).$$

Now for the rest h_4 , by using (1. 22), (1. 23), (1. 24) and the structure equations we get the following:

(1. 32)
$$\frac{\partial}{\partial u} \left(\sqrt{(u-p)^2 + q^2} \cdot h_4 \right) = \frac{1}{l} \frac{\partial f_4}{\partial v}$$

where v is the arc-length of the curve of striction. By (1.22) and (1.26),

(1.33)
$$h_4 = \frac{-qq'(u-p)+p'(u-p)^2}{\sqrt{1-p'^2} \{(u-p)^2+q^2\}^{\frac{3}{2}}} + \frac{m(v)}{\sqrt{(u-p)^2+q^2}}$$

Thus p(v), q(v), r(v), $\theta(v)$ and m(v) are the characteristic functions of the ruled surface M^2 in E^4 which is not locally flat.

THEOREM 2. For a ruled surface in E^4 which is not locally flat, the Frenetframe along its curve of striction is given by

(1. 34)
$$\begin{cases} \frac{dy}{dv} = e_1 p' + e_2 lq, \\ \frac{de_1}{dv} = e_4 l, \\ \frac{de_2}{dv} = e_3 rl \sin \theta + e_4 \left(\frac{p'}{q} + ml\right), \\ \frac{de_3}{dv} = -e_2 rl \sin \theta - e_4 rl \cos \theta, \\ \frac{de_4}{dv} = -e_1 l - e_2 \left(\frac{p'}{q} + ml\right) + e_3 rl \cos \theta, \end{cases}$$

where $l = \sqrt{1-p'^2}/q$, conversely (1.34) determines a ruled surface for any given five characteristic functions p, q, r, θ , and m.

For a ruled surface which is not locally flat, we can consider two asymptotic lines with respect to $\Phi_4 = \sum A_{4ij}\omega_i\omega_j$, as $\sum A_{4ij}\omega_i\omega_j=0$. Since $\Phi_3 = h_3\omega_2\omega_2$ and $A_{411}=0$, the second fundamental form Φ with respect to any unit normal vector $e=e_3\cos\phi+e_4\sin\phi$ is given by $\Phi=2f_4\sin\phi\omega_1\omega_2+(h_3\cos\phi+h_4\sin\phi)\omega_2\omega_2$, which shows that a generator is an asymptotic line with respect to the second fundamental form Φ defined by any unit normal vector e. Let us call the asymptotic line with respect to Φ_4 which is not generator, the half-asymptotic line. It is defined by $2f_4\omega_1+h_4\omega_2=0$, which is written as

$$\frac{du}{dv} = \frac{-qq'(u-p) + p'(u-p)^2}{2q\sqrt{1-p'^2}} + \frac{m}{2q} \left\{ (u-p)^2 + q^2 \right\}$$

by (1.10), (1.22), (1.24) and (1.33). Since the above differential equation is a Riccati equation, it is clear that the following theorem is true:

THEOREM 3. The compound ratio of four points at which four half-asymptotic lines intersect a generator, is constant.

§2. We give a few examples of ruled surfaces. In this section v is always

taken the arc-length of the curve of striction u = p(v).

EXAMPLE 1. We consider the case of locally flat, that is $\mu=0$. Because (1.13) holds under $\mu=0$ and $\mu=-f_4^2=0$, we get $f_2=0$ or $f_2=1/(u-p)$.

Let us firstly assume that $f_2=0$. Then we have $de_1=0$, which shows that the ruled surface is a cylinder. In general, a complete surface in E^4 which has the curvatures $\lambda = \mu = 0$ is a cylinder [3].

Let us secondary assume that $f_2=1/(u-p)$. Since $\lambda=\mu=0$, we can take $\omega_{34}=0$. And similarly we get by the structure equations as following:

(2.1)
$$h_3 = \frac{c(v)}{u-p}, \qquad h_4 = \frac{m(v)}{u-p},$$

$$(2.2) \qquad \qquad \omega_2 = (u-p)l(v)dv.$$

Therefore we get the following:

(2.3)
$$\begin{pmatrix} dp = e_1 du + e_2 (u - p) dv, \\ de_1 = e_2 l(v) dv, \\ de_2 = -e_1 l(v) dv + e_3 l(v) c(v) dv + e_4 l(v) m(v) dv, \\ de_3 = -e_2 l(v) c(v) dv, \\ de_4 = -e_2 l(v) m(v) dv. \end{pmatrix}$$

If p(v) is constant, then the curve defined by u=p(v) is a constant curve. Consequently this ruled surface is a cone in E^4 . Now suppose that p(v) is not constant, i.e., $p'(v) \neq 0$, then it is clear that this ruled surface is a torse whose edge of regression is defined by u=p(v).

EXAMPLE 2. Let us consider the case of not locally flat and p=0, $q=const. \pm 0$, m=0. We may consider that q=1 by a suitable similar transformation. Then we have

$$(2.4)\begin{cases} dp = e_{1}du + e_{2}\sqrt{u_{2}+1}dv, \\ de_{1} = e_{2}\frac{u}{\sqrt{u_{2}+1}}dv + e_{4}\frac{1}{\sqrt{u^{2}+1}}dv, \\ de_{2} = -e_{1}\frac{u}{\sqrt{u^{2}+1}}dv + e_{3}\frac{r(u\cos\theta+\sin\theta)}{\sqrt{u^{2}+1}}dv + e_{4}\frac{1}{u^{2}+1}du, \\ de_{3} = -e_{2}\frac{r(u\cos\theta+\sin\theta)}{\sqrt{u^{2}+1}}dv + e_{4}\frac{r(u\sin\theta-\cos\theta)}{\sqrt{u^{2}+1}}dv, \\ de_{4} = -e_{1}\frac{1}{\sqrt{u^{2}+1}}dv - e_{2}\frac{1}{u^{2}+1}du - e_{3}\frac{r(u\sin\theta-\cos\theta)}{\sqrt{u^{2}+1}}dv. \end{cases}$$

Therefore we get along the curve of striction x=y(v) defined by u=p(v),

(2.5)
$$\begin{pmatrix} dy = e_2 dv, \\ de_2 = e_3 r \sin \theta dv, \\ de_3 = -e_2 r \sin \theta dv & -e_4 r \cos \theta dv, \\ de_4 = e_3 r \cos \theta dv & -e_1 dv, \\ de_1 = e_4 dv. \end{pmatrix}$$

Morever let us assume that p=m=0, q=1 and r=0. By virtue of (2.4) it is clear that this ruled surface is a helicoid in a hyperplane E^3 perpendicular to a fixed unit vector e_3 , which is written as follows:

(2.6)
$$x(u, v) = v Y + u(X \cos v + Z \sin v)$$

where X, Y, Z is an orthomormal base of E^3 . And if $p=m=\theta=0$, q=1, then it is a helicoid in E^4 in the sense that it is generated by a moving straight line perpendicular to a fixed straight line that the ratio of the velocity of the moving point of intersection and the angular velocity of its direction is constant. Moreover if p=m=0, q=1 and $\theta=\pi/2$, then we get a sort of helicoid in E^4 which is defined as follows:

(2.7)
$$X(u,v) = y(v) + u(X\cos v + Y\sin v),$$

where y(v) is a plane curve and X, Y are orthogonal unit vectors each of which is perpendicular to the plane containing the curve x=y(v).

§ 3. We study some relations between characteristic functions and the invariants of M^2 in E^4 . By (1.8) and (1.22), we get at once

THEOREM 4. For a ruled surface in E^4 , it follows that

$$(3.1) \qquad \qquad \lambda = 0,$$

(3.2)
$$\mu = G = \frac{-q^2}{(u-p)^2 + q^2} \leq 0.$$

Hence there does not exist a ruled surface in E^4 with constant negative curvature.

The torsion form ω_{34} defines a covariant vector field $Z=(Z_1, Z_2)$, and by (1.12) it follows that

$$(3.3) Z_1 = 0, Z_2 = \rho.$$

Therefore we get

$$(3.4) ||Z|| = |\rho|.$$

THEOREM 5. The divergence and the rotation of torsion vector Z are given as follows:

(3.5)
$$\operatorname{div} Z = \frac{1}{\sqrt{g_{22}}} \frac{\partial \rho}{\partial v},$$

(3.6)
$$-\frac{1}{G} (\operatorname{rot} Z)^2 + ||Z||^2 = \frac{\sqrt{-G}}{|q|} r^2.$$

Proof. For a vector field $Z=(Z_1, Z_2)$, we have the following:

$$(3.7) div Z = Z_{1,1} + Z_{2,2}$$

$$(3.8) rot Z = Z_{1,2} - Z_{2,1}$$

where $DZ_i = Z_{i,1}\omega_1 + Z_{i,2}\omega_2$ (i=1, 2) and $DZ_i = dZ_i + \omega_{ji}Z_j$. By (3.3) we have

(3.9)
$$Z_{1,1}=0, \quad Z_{1,2}=-\rho f_2, \quad Z_{2,1}=\frac{\partial \rho}{\partial u}, \quad Z_{2,2}=\frac{1}{\sqrt{g_{22}}}\frac{\partial \rho}{\partial v},$$

which imply that

div
$$Z = \frac{1}{\sqrt{g_{22}}} \frac{\partial \rho}{\partial v}$$
, and rot $Z = -\rho f_2 - \frac{\partial \rho}{\partial u}$.

From (1.22) and (1.23) we have the following:

(3.10)
$$-\operatorname{rot} Z = \frac{rq[(u-p)\cos\theta + q\sin\theta]}{[(u-p)^2 + q^2]^2} = \frac{q}{(u-p)^2 + q^2}h_3.$$

But (1.23) shows that

(3.11)
$$h_3^2 + \rho^2 = \frac{r^2}{(u-p)^2 + q^2},$$

from which we get (3.6).

§4. In this section, we study a necessary and sufficient condition that a surface in E^4 becomes a ruled surface. Let (p, e_1, e_2, e_3, e_4) be a Frenet-frame in the sense of Ōtsuki for a surface in E^4 . Put $\omega_{84} = Z_1 \omega_1 + Z_2 \omega_2$. We shall introduce two vector fields P and Q by using torsion form ω_{84} and the second fundamental forms $\Phi_3 = \sum A_{3ij} \omega_i \omega_j$, $\Phi_4 = \sum A_{4ij} \omega_i \omega_j$, where $\omega_{ir} = \sum A_{rij} \omega_j$, (r=3, 4, i, j=1, 2). For the torsion vector $Z = Z_1 e_1 + Z_2 e_2$ let $\overline{Z} = \overline{Z_1} e_1 + \overline{Z_2} e_2$ be as follows:

$$(4.1) $\bar{Z}_1 = -Z_2, \bar{Z}_2 = Z_1.$$$

We can write $\overline{Z} = iZ$, where $i^2 = -1$. Putting $P_h = \sum A_{shk} \overline{Z}_k$ and $Q_h = \sum A_{4hk} \overline{Z}_k$ where h, k=1, 2, we obtain two vector fields P and Q by contracting Φ_s, \overline{Z} and Φ_4, \overline{Z} respectively, i.e., we have the following:

$$(4.2) P = P_1 e_1 + P_2 e_2 = (\Phi_3, \overline{Z}) = (\Phi_3, iZ),$$

(4.3)
$$Q = Q_1 e_1 + Q_2 e_2 = (\Phi_4, \overline{Z}) = (\Phi_4, iZ).$$

Now suppose that M^2 is a ruled surface, then (1.8) and (1.9) hold. Let us define two sets:

$$(4.4) M_0 = \{ p \in M^2 : \mu(p) = 0 \},$$

(4.5)
$$M_1 = \{ p \in M^2 : \mu(p) \neq 0 \}.$$

For any point of M_1 we have (1.12), accordingly $Z_1=0$, $Z_2=\rho$ and $A_{311}=A_{312}=0$, $A_{322}=h_3$. Therefore it follows that

$$(4.6) P=(\Phi_3, iZ)=0.$$

For any point of the interior $\mathring{M_0}$ of M_0 , we have $\lambda = \mu = 0$ by the definition of M_0 and THEOREM 4. Then we can chose a torsionless Frenet-frame. Hence we get the following:

(4.7)
$$P=(\Phi_3, iZ)=0, \quad Q=(\Phi_4, iZ)=0.$$

In the following we consider a surface in E^4 with the properties:

(4.8)
$$\lambda = 0, \quad P = (\Phi_3, iZ) = 0.$$

Let p be a fixed point in M_1 , and e_1 be the asymptotic direction with respect to Φ_3 . Then we have by the definition of $e_1, A_{311}=0$. Since $\lambda = A_{311}A_{322} - A_{312}A_{321}=0$, it follows that $A_{321}=0$, from which we have $\omega_{13}=0, \omega_{23}=h_3\omega_2$. Because P=0, it follows that $P_1=A_{312}Z_1-A_{311}Z_2=0$, $P_2=A_{322}Z_1-A_{321}Z_2=0$ from which we have

(4.9)
$$h_3 Z_1 = 0$$

Suppose that $h_3(p) \neq 0$ for $p \in M_1$. Then by (4.9) we have $Z_1=0$, i.e., $\omega_{34}=\rho\omega_2$. From (1.2) we have $\omega_{14} \wedge h_3 \omega_2 = 0$, i.e., $\omega_{14}=f_4\omega_2$. On the other hand, $d\omega_{13} = \omega_{12} \wedge \omega_{23} + \omega_{14} \wedge \omega_{43} = 0$, from which we get $\omega_{12}=f_2\omega_2$. The above fact shows that the asymptotic line with respect to Φ_3 is a straight line segment in M_1 .

Suppose that there exists an open set U of M_1 in which $h_3=0$. Then it follows that $\Phi_3\equiv 0$ in U, consequently the hypothesis $(\Phi_3, iZ)=0$ is trivial in U. Because $\mu \neq 0$, there are two asymptotic directions with respect to Φ_4 . Let e_1 be one of these asymptotic direction, it follows that

$$(4.10) \qquad \qquad \omega_{14} = f_4 \omega_2, \qquad \omega_{24} = f_4 \omega_1 + h_4 \omega_2, \qquad f_4 \neq 0.$$

Since $d\omega_{13} = \omega_{14} \wedge \omega_{43} = f_4 \omega_2 \wedge \omega_{43} = 0$, it follows that $\omega_{34} = \rho \omega_2$. But $d\omega_{23} = \omega_{24} \wedge \omega_{43} = -\rho f_4 \omega_1 \wedge \omega_2 = 0$. Consequently $\rho = 0$ or $\omega_{34} = 0$, from which we have $de_3 = \sum \omega_{3i} e_i = 0$. Therefore U is contained in a hyperplane E^3 of E^4 which is perpendicular to a constant unit vector e_3 . Since $\omega_{14} = f_4 \omega_2$, the condition that the asymptotic lines become straight lines or straight line segments, is equivalent to $\omega_{12} = f_2 \omega_2$.

In the following we study the condition $\omega_{12}=f_2\omega_2$ in $U\subset M_1$. Let e_1, e_2 be the principal directions of the second fundamental form Φ_4 . We have

$$(4. 11) \qquad \qquad \Phi_4 = A_{411} \omega_1 \omega_1 + A_{422} \omega_2 \omega_2.$$

Putting

(4. 12)
$$A_{411} = \varepsilon B_1^2, \quad A_{422} = -\varepsilon B_2^2,$$

where $\varepsilon = \pm 1$. We have the following:

$$(4. 13) \qquad \qquad \Phi_4 = \varepsilon (B_1^2 \omega_1 \omega_1 - B_2^2 \omega_2 \omega_2).$$

The asymptotic directions \bar{e}_1 and \bar{e}_2 with respect to Φ_4 is written as

(4. 14)
$$\bar{e}_1 = e_1 \cos \theta + e_2 \sin \theta,$$
$$\bar{e}_2 = -e_1 \sin \theta + e_2 \cos \theta,$$

where

(4.15)
$$\cos \theta = \frac{B_2}{\sqrt{B_1^2 + B_2^2}}, \qquad \sin \theta = \frac{\pm B_1}{\sqrt{B_1^2 + B_2^2}}.$$

It follows that

(4. 16)
$$\overline{\omega}_{12} = \langle d\overline{e}_1, \overline{e}_2 \rangle = d\theta + \omega_{12},$$
$$\overline{\omega}_2 = -\omega_1 \sin\theta + \omega_2 \cos\theta.$$

Then $\bar{\omega}_{12} \wedge \bar{\omega}_2 = 0$ is equivalent to

$$(4.17) \qquad [(B_2dB_1 - B_1dB_2) \pm (B_1^2 + B_2^2)\omega_{12}] \wedge [B_1\omega_1 \mp B_2\omega_2] = 0.$$

But we have

$$[(B_2dB_1 - B_1dB_2) + (B_1^2 + B_2^2)\omega_{12}] \wedge [B_1\omega_1 - B_2\omega_2]$$

=[B_2DB_1 - B_1DB_2] \(B_1\omega_1 - B_2\omega_2]
=[B_1(-B_2B_{1,2} + B_1B_{2,2}) - B_2(B_2B_{1,1} - B_1B_{2,1})]\omega_1 \wedge \omega_2
=[\varepsilon A_{411}B_{2,2} + \varepsilon A_{422}B_{1,1} - B_1B_2 \text{ rot } B]\varepsilon_1 \lambda \varepsilon_2,

where $B=B_1e_1+B_2e_2$. Similarly we get

 $[(B_2dB_1 - B_1dB_2) - (B_1^2 + B_2^2)\omega_{12}] \wedge [B_1\omega_1 + B_2\omega_2]$ = [\varepsilon A_{411}B_{22}^* + \varepsilon A_{422}B_{11}^* - B_1^*B_2^* \text{ rot } B^*]\omega_1 \wedge \omega_2,

where $B_1^* = B_1$, $B_2^* = -B_2$ and $B^* = B_1^* e_1 + B_2^* e_2$.

Consequently U is a piece of ruled surface if the following holds:

 $(4.18) \quad [\varepsilon A_{411}B_{2,2} + \varepsilon A_{422}B_{1,1} - B_1B_2 \text{ rot } B] \cdot [\varepsilon A_{411}B_{2,2}^* + \varepsilon A_{422}B_{1,1}^* - B_1^*B_2^* \text{ rot } B^*] = 0.$

On the other hand, it is clear that the interior of M_0 is a piece of a cylinder or a torse by Example 1 in § 2.

THEOREM 6. If a surface in E^4 satisfies $\lambda=0$ and $(\Phi_3, iZ)=0$, then it is locally a ruled surface except U and if (4.18) holds in addition to the above conditions in U, then U becomes locally a ruled surface where U is the interior point of $\{p: \mu(p) < 0, \Phi_3 \equiv 0\}$.

References

- [1] ÖTSUKI, T., On the total curvature of surfaces in Euclidean spaces. Japanese Journ. of Math. 36 (1966), 61-71.
- [2] ŌTSUKI, T., Surfaces in the 4-dimensional Euclidean space isometric to a sphere. Kodai Math. Sem. Rep. 18 (1966), 101-115.
- [3] Shiohama, K., Surfaces of curvatures λ=μ=0 in E⁴. Kōdai Math. Sem. Rep. 19 (1967), 75-79.

Department of Mathematics, Tokyo Institute of Technology.