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REMARKS ON HAYMAN’S THEOREMS
By TsunNeo SATo

1. Introduction.

In this paper we shall give two results related to interesting theorems given
by Hayman [3]. First he obtained a theorem of Picard type by mapping the unit
circle onto a sector as follows:

THEOREM A. Suppose that f(2) is meromorphic and of finite ovder in the
Dlane. Let 1/2=p<co and let z(a)=r.e¥? be the voois of the equation f(z)=a,
lying in the sector |arg z|<=z/20, Then either

(1) F(2) has bounded characteristic in |arg z|<z[2p, in which case

cos pd,
) 2 “*%

converges for every a; or -
ALy f(2) has unbounded characteristic in |arg z| <z[2p, in which case the series
(*) diverges for every a with at most two exceptions.

Also he proved the following theorem:

THEOREM B. Suppose that f(2) is mevomorphic in |z|<1 and of finite order
and that n(r) is the total number of voots, contained in |z|=v, of the equations
f@=a.,, v=1 to q, where the a, are q=3 distinct complex numbers one of which
may be infinite. Then if

liTxll QL—n@r)=k< oo,

we have
lim 1—n loglM(r,f)

r—1

=24

log 1=

where A=k[(q—1) or k[(q—2) according as the a, are all finite or not.

To formulate our theorems, we define T'(7,f, 4), the characteristic function of
f(2) in the sector 4: |arg z|<=/2p, as follows (the definition is due to Tsuji [5]):

L{™ (Lo

ST D=5 ) Vo Gy

—x/2p

Received March 9, 1967.
361



362 TSUNEO SATO

" S, 1, 4) dt.
0 t

If T(r,f, H)=0() as r—co, f(2) is called to be of bounded characteristic in the
sector 4. Mapping 4 onto the unit circle |w|<1 by the function
2—1
2*+1°
F(w)=fTz(w)] is of bounded characteristic in |w|<1 if and only if f(2) is of
bounded characteristic in 4. It is easy to see that if 7'(z,f, 4/)=0(og r), T(R, F)
=0(log (1/1—R))) where T(R,F) is the characteristic in the Ahlfors-Shimizu
sense, i.e.

Tmﬂm=g

w=

2R 1(10%%)|2
S |F (2e)| tdtdo,

o A+|F(te)?)?
® S F)
T dl.

0
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We also write M (7, f)=supz=r|f(2)|.
Now we give extensions of theorem A and theorem B in the following.

THEOREM 1. Suppose that f(2) is meromorphic and of finite order in the plane.
Let 112=p<oc0 and let ¢(z) be a meromorphic function in the plane and 2,(f=g)
=7,e" be the roots of the equation f(2)=g(2), lying in the sector 4. |arg z|<=/2p.
Then either

(1) f(2) has bounded characteristic in |arg z|<=/2p, in which case

cos o0,
¢ P
converges for every ¢(2), if ¢(2) has bounded characteristic in |arg z| <z/2p; or
L) f(2) has unbounded characteristic in |arg z|<z[2p, in which case the series
(*) diverges for every ¢(z) with at most two exceptions, if f(2) satisfies T(r,f, 4)
=0(log 7) and ¢(z) has bounded characteristic wm |arg z|<m|2p; or f(2) satisfies
Tm T(r,f, 4) —oo
e log7

and ¢(2) satisfies T(r, g, 4)=0(log 7).

THEOREM 2. Suppose that f(2) is a meromorphic function of finite order
satisfying N@r, f)=o[T(r,f)] in |2|<1 and ny(r) is the total number of roots, con-
tained in |2|=v, of the equations f(2)=g,(2), v=1 to q, rvoots of order being counted
D times if p=q, and q times if q<p, where the ¢.(z) are q=3 distinct meromorphic
Junctions satisfying T, 9.)=0[T(r,f)] in |2|<1, one of which may be constantly
infinite. Then if

im (1—P)ng(r) =k < oo,
-1

we have
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(1_7) IOg M(”}f) =921
log !

lim

71

1—r

where A=k[(q—2) or k|(q—1) according as one of the ¢.(2) is constantly infinite or
not.

2. Some lemmas.

The notations »(7, f), n(r,1/(f—a)), #(r,f) and m(7,f) are used in the sense of
Nevanlinna [2], [4]. We shall suppose for simplicity that f(0)=0 and also write

0 ) (ot

Then T(r, f)=m(r,f)+N(r, f) is the Nevanlinna characteristic of f(z). The notation
Ny, f) is defined as follows [1]:

NG)=

Nr,n)={ 2D 4
where 7,(t,f) denotes the number of poles of f(z) in the circle |z]=¢, poles of
order p being counted p times if p=q, and ¢ times if g<p for a positive integer g¢.
And particularly N,(7,7f)=N (7, ).
First in order to prove our theorem 1, we divide meromorphic functions in the
unit circle into following three classes:
1°) T(r,f)=0(Q) as r—1, in which case f(z) is called to be of bounded type;

o . 1
2°) T(r,f)—O(logﬁ>
and f(2) does not belong to (1°);
3% @.&{l —
log =

i.e. f(2) belongs neither to (1°) nor (2°).

If f(2) belongs to the class (3°), f(z) is called to be admissible in |z]<1 (for
the Nevanlinna theory [2]).

Now we need some lemmas on which the proof of our theorem 1 is based.
Next lemma is classical and is independent of the behaviour of the growth of

1.

LEMMA 1. Let z,(a) be zevos of f(z2)—a and v (a)=|z.a)|, then

lim N, ), l_inllgrn(t, Qdt,  lim 3 (1—r(a)

71 71 ry =7

are convergent or divergent at the same time.
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We remark that in general this lemma is true if z,(f=g¢) are zero points of
f(2)—g(2), where f(z) and ¢(z) are meromorphic functions.

LEMMA 2. Suppose that f(z) and 9(z) are meromorbhic in |z|<1 and T(r,f)
=0Q), then

lim Z (1 r(f=g)

rolrys

converges for every ¢(2), if 9(z) belongs to the class (1°).
Proof. Put F=f—g, we have

T(r, F)+-0(1)= T(r, }l?)

This gives

T, 1)+ T 0+0W=N(r, =1 ).
Since T'(r,f)=0Q1) and T'(r, g)=0(1), we get
1
=0(1).
f—g) W
It is easy to see that if f(2) and g¢(z) are meromorphic in |z]<1 and the

number of zero points of f(2)—g(2) is finite for any ¢(z) belonging to the class (1°),

then T'(r,f)=0(Q).
We have the following result of Nevanlinna [4].

N <r,

THEOREM C. If f(2) is meromorphic and admissible in |z]<1 and ¢.(2), v=1,2, 3,
are distinct meromorphic functions satisfying

T, 9(2)=0lT(f)] as r—l,

then

1
(1) [14+o(LIT(r, f)<ZI N(r, m)+8(r,f) —
where

st,1)=0] 1og* 70, 1) +log 7 |

as r—1 outside a set E such that

S L dr<oco.
E 1—7r

Using this theorem, we can now conclude that if f(z) is admissible, then

hm Z} A—r(f=g)=c0 for every ¢(z),
with two possible exceptions.
In fact, if
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linln ZS A—=r(f=g)) <o (1=1,2,3),

then
th(r, 1 )<oo,
f_

so that
lirrll T, f)<oo

in view of (1). This contradicts the admissibility of f(2).

Now, we remark that if f(z) is not admissible in |z|<1, we cannot apply
theorem C to our purpose. Hence we need the following lemma, due to Hayman
[3], which will ignore the admissiblity of f(z).

LEMMA 3. Suppose D is a bounded domain containing |z|<1 and properly
containing a set of arcs z=e¥, a,<0<B,, where

1
Z (nBv—av)=27T: Z (:Bv—av) IOg ﬁ _a < oo,
Suppose further that f(2) is mevomorphic of finite ovder in D. Then, we have
(2) S(r, f)=0[log T(r,/)]+01)  as r—1,

where

s, )= J} )+ m(n 23 -L) +ou,

and the a,, v=1 to q, are distinct finite complex numbers.

The phrase ‘of finite order in D’ we used above has the same meaning as
given in Hayman [3].
Next in order to prove our theorem 2, we define counting function N(7,f) after
Hayman as follows:
y =
WD)

r/2

Non=\ HDa Fon) =
We remark that our results will not be affected by this definition.

Also we define m(zo, 7, f(2))=mlr, f(2,°F2)), with similar definitions for N, N, T
etc., where the circle |z—z,|<7 moves in |z|<1 and 7 remains greater than a
positive constant, so that z, lies well inside |z|<1.

Now we have the following generalization of theorem C which has been proved
by Chuang [1] for more than three functions ¢.(z) in slightly modified form.

THEOREM D. Suppose that f(z) is mervomorphic in |z|<1 and g¢.z), v=1 to
q (q=3), are distinct meromorphic functions satisfying T(r,9,)=0[T(r,f)]. Then we
have

=107, < 5 7, (r, )+qN<r HSE 1),

7=
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where

st 1)=0{log T ) +1og 7 |

as r—1, for all v<1 if f(2) is of finite order, and outside a set E such that

S 1 dr<oo
E 1—7

if its order is infinite.
Particularly, if N(r,f)=0[T(r,f)], then we have
4 = 1
[e=1=0WIT G, 1)< 5 Fo(rn) +50.1)
which is analogous to the inequality of theorem C.
Further this result is expressible in the following form:

THEOREM DY. Suppose that f(2) is meromorphic in |z|<1l and ¢.(2), v=1 to
q (q=3), are distinct mevomorphic functions satisfying T(r,9,)=0[T(, ). Then

(3)  [g—1-o(IT G, 1,.1)< 31, (z ", 7};)+qﬁ(zo, 7, F)+SCz0 7, ).

We need some lemmas.

LemMA 4. Under the assumption of theorvem 2, given ¢>0, we can find o<1
such that if r<r<l, |z|<1—7, we have

7 - 1 1
§1Nq (zo, 7, —f—gv> < (k+¢)log T =7

Proof. If we write
9 _ 1
ng(20, )= vgl"q(zo, 7 JTQ.,)’

then for r>7(e), |2| <1—7, we have

k+e

7g(20, V) =740, [20] +7) < 1—zo|—7"

And the subsequent proof of lemma 4 can be discussed similarly as in the proof of
lemma 13 in [3] and so we omit.

LemMMA 5. If 7, is defined as in lemma 4 and

__k I N
~g—2—o) g—1—o(1)

according as one of the 9,(2) is constantly infinite or not, then we have for r,<r<l1,
]Zol < 1—7»

A

(4) m(zo, 7, )< (A+¢) log—l——+K1 log
1— 20| —7

1—7’
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(5) NGO, 7, )< K log

Proof. We have by theorem D’
(6) [g—1= 01T G, 7.1)< 3 Na (207, ) +S(an 1)
where

v=1 k=1

Sear )= Em(amn L)+ 5 Sm (a0 L2 ) 0w,
Since f(2) has finite order in |z|<1 we have

f(k)
m(zo, 7, ) <K;log ———

1
f r(1—7)

and consequently we get

r(l1 7) )

Hence, combining this with (6) and taking 2,=0 we can deduce

Steo, 7, )= O(Iog

NQO,7,f)<(k+e) log—— 1 +K4 log

in view of lemma 4 for >7,.
Also (3) yields, using lemma 4,

[=2—0(nz 1,£)< 5 Ngra (207 72— =D 1,11 SCen ),

namely, noting that N,_,=<N,,
1 1
[g—2—0(W)In(z0, 7, )< (k+e) log e +Kslog 5 —.

This proves (4) if one of the ¢,(2) is constantly infinite, so that 4,=%k/(g—2—0()). If
91(2) to g,(2) are all non-constant meromorphic, we apply (6). This gives

q _ 1

[g—1—o(M)]IT (20, 7, /)< Z}l N, (zo, nﬁ)-&lﬁ log 3=

hence, we get also
1 1

[g—1—o0)Im(zo, 7, )< (k+e) log —— =7 =iz +Kslog —— T
Now again (4) follows, since 4,=Fk/(g—1—o0(1)) in this case, where K, (=1 to 6)
are absolute constants.

3. Proofs of theorem 1 and theorem 2.

Proof of Theorem 1. Following Hayman we put

-1 _( 14w )w
711 \1w )
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so that the sector |arg z|<z/2p corresponds to Jw|<1.
The functions

F@=flzm)=F@w), g@=dzw)]=Gw)

are meromorphic in the plane cut from —1 to —oco and +1 to 4-oo, along the
real axis. Now we can take for D in lemma 3 the part of this cut plane lying in
lw|<2. }

The same argument as in [33] will show that F(w) also has finite order in D
and satisfies the assumption of lemma 3. Hence, if G,(w), v=1,2,3, are distinct
meromorphic functions satisfying T'(7, G,)=0(1) in |w| <1, then we have

1
' F—G,
where S(r, F') denotes the term in (2). This inequality enables us to deduce that
if F'(w) has unbounded characteristic in D and satisfies

1
1——1’)
in |w|<1, then we have ]
(7) lim 3 (1—#(F=G))=c0

=1 ry ST

[14-0(LIT(r, F)<ZN< )+s<r, ) as rol,

T(r, F)=0<log

for every G(w), with two possible exceptions, if G(w) has bounded characteristic in
|lw|<1. Next, if F(w) is admissible in |w|<1 and G(w) satisfies

T(r, Ge)=0[T(r, F)] as 7—l1,

then (7) holds for every G(w), with two possible exceptions; in virtue of theorem
C. In view of lemma 2, if both F(w) and G(w) have bounded characteristic in
lw]<1, then lim,—; X< 1—7,(F=G)) converges for every G(w).

Let w,(F=G) be the roots of F(w)=G(w) in |w|<1l. Put now z=re®, Then

S e N
lool*= 21|
so that
47 cos pf
pa— 2=
1=l 72 +-2r° cos pf+1"

Also w, runs over the roots of F(w)=Gw) in |w|<1l, while z runs over the roots
1, of f(z)=¢(z) in |arg z|<=/2p. The convergence of };,(1—|w,|) is equivalent
to that of >, (1—|w,|?) and hence to that of };,(cos p8,)/r,” since 7,—oo. This
completes the proof of Theorem 1.

Proof of Theorem 2. We first take a fixed /=4 and for given g, 0<p<l, we
define p, by 1—p;=1~p)/j. Then for any fixed j and ¢>0 we can find ¢ as near
1 as we please such that

K iK
8 n(0, p,, < = .
(8) O mN< =1
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For if (8) is false for all g#'<p; then for g'<pu<1l we confront the contradiction
with (5). Next we define after Hayman

o=@ 1 (£574),

where b; (i=1 to N) are the poles of f(2) lying in |[(z—b:)/(1—b:2)|=<1/2. We now
choose z=2(y) so that |z(p)|=p and |f*@=)|=M(y f*(z)). We suppose p>7r and
choose z, so that arg zo=arg z(y), 1—|z)|—7=1—g,. Then we deduce, using (4),
for ty=max (7/2, |2()—20|)=|2(e) — 20|

7+2(e)—20l [ ("
tog M(n 1 *@) < S =20 [ v N+ mteot et |
2] B 1 , r—to
(9) <oy | @ or gy K a0 a4 ) |
27 B 1
<G |G o +ow)

for all » such that p=r=(1+4p)/2 where ¢ is sufficiently near 1. Now there is an
¥ in this range for which

logM(r,f)<logM(r,f*(Z))+K”n< , Ca )

4 ’
and we get p;=(3+p)/4 in view of (8). Since (9) holds for some 7 arbitrarily near
1 we can deduce

2j(lite) _ 2§(2+e)

lim (1'—7’) IOg M(r,f) é lim — - ,
7—1 log 1 = ]—1 ]—1
1—»

and since j is large and ¢ small as we please, the result as required follows.
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