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REMARKS ON HAYMAN'S THEOREMS

By TSUNEO SATO

1. Introduction.

In this paper we shall give two results related to interesting theorems given
by Hayman [3]. First he obtained a theorem of Picard type by mapping the unit
circle onto a sector as follows:

THEOREM A. Suppose that f(z) is meromorphic and of finite order in the
plane. Let l/2^|θ<oo and let zv(d)=rve

ί9v be the roots of the equation f(z)=a,
lying in the sector |argz <τr/2,0, Then either

(I) f(z) has bounded characteristic in \argz\<π/2p, in which case

converges for every a\ or
(II) f(z) has unbounded characteristic in iarg^^π/2^, in which case the series

(*) diverges for every a with at most two exceptions.

Also he proved the following theorem:

THEOREM B. Suppose that f(z) is meromorphic in |z|<l and of finite order
and that n(r) is the total number of roots, contained in \z\^r, of the equations
f(z)=av, y=l to q, where the av are q^3 distinct complex numbers one of which
may be infinite. Then if

lim (1—
r->l

we have

where λ=k/(q—l) or k/(q—2) according as the av are all finite or not.

To formulate our theorems, we define T(r,f, Δ\ the characteristic function of
f(z) in the sector Δ\ \argz\<π/2p, as follows (the definition is due to Tsuji [5]):
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-df.

If T(r,/, J)=O(1) as r— >oo, /(^) is called to be of bounded characteristic in the
sector J. Mapping Δ onto the unit circle \w\<l by the function

w=

F(w)=f\z(w)] is of bounded characteristic in \w\<l if and only if f(z) is of
bounded characteristic in J. It is easy to see that if T(r,f, J)=O(logr), T(R,F)
=O(log(l/(l—Λ))) where T(R,F) is the characteristic in the Ahlfors-Shimizu
sense, i.e.

We also write
Now we give extensions of theorem A and theorem B in the following.

THEOREM 1. Suppose that f(z) is meromorphic and of finite order in the plane.
Let l/2^p<oo and let g(z) be a meromorphic function in the plane and zv(f=g)
=rve

ίθ» be the roots of the equation f(z)=g(z), lying in the sector Δ\ \argz\<π/2p.
Then either

(I) f(z) has bounded characteristic in ]arg2|<τr/2/>, in which case

m π C°Spθv

converges for every g(z), if g(z) has bounded characteristic in |arg£|<π/2/>; or
(II) f(z) has unbounded characteristic in |arg z\<π/2p, in which case the series

(*) diverges for every g(z) with at most two exceptions, if f(z) satisfies T(r,f,Δ)
=O(logf) and g(z) has bounded characteristic m |arg2|<ττ/2/0; or f(z) satisfies

r-*oo log r

and g(z) satisfies T(r, g, //)=O(logf).

THEOREM 2. Suppose that f(z) is a meromorphic function of finite order
satisfying N(r,f)=o[T(r,f)~\ in \z\<l and nq(r) is the total number of roots, con-
tained in \z\^r, of the equations f(z) = gv(z), v=l to q, roots of order being counted
p times if p^q, and q times if q<p, where the gv(z) are #Ξ^3 distinct meromorphic
functions satisfying T(r, gv}—o[T(r,f)'\ in |^|<1, one of which may be constantly
infinite. Then if

Πrn (1— r)nq(r)^k<oo,
r-»l

we have
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log
l-r

where λ=k/(q—2) or k/(q—l) according as one of the gv(z) is constantly infinite or
not.

2. Some lemmas.

The notations n(r,f), n(ry!/(/—a)\ n(r,f) and m(r,f) are used in the sense of
Nevanlinna [2], [4]. We shall suppose for simplicity that /(0)=0 and also write

Then Γ(r,/)=w(r,/H7V(r,/) is the Nevanlinna characteristic of f(z). The notation
Nq(r,f) is defined as follows [1]:

where nq(t,f) denotes the number of poles of f(z) in the circle \z\^t, poles of
order p being counted p times if p^q, and q times if q<p for a positive integer q.
And particularly Nι(r,f)=N(r,f).

First in order to prove our theorem 1, we divide meromorphic functions in the
unit circle into following three classes:

(1°) Γ(r,/)=O(l) as r->l, in which case f(z) is called to be of bounded type;

(2°)

and f(z) does not belong to (1°);

(3°) 155

i.e. f(z) belongs neither to (1°) nor (2°).
If f(z) belongs to the class (3°), f(z) is called to be admissible in |z|<l (for

the Nevanlinna theory [2]).
Now we need some lemmas on which the proof of our theorem 1 is based.

Next lemma is classical and is independent of the behaviour of the growth of

LEMMA 1. Let zv(ά) be zeros of f(z)—a and rv(ά)=\zv(a)\, then

\\mN(r,ά), \\m\n(t,ά)dt, lim 2 (1—^(0))
r-*l ?•->! J r-»ι rv^r

are convergent or divergent at the same time.
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We remark that in general this lemma is true if zv(f=g) are zero points of
f(z)—g(z), where f(z) and g(z) are meromorphic functions.

LEMMA 2. Suppose that f(z) and g(z) are meromorphic in \z\<l and T(r,f)
=0(1), then

lim Σ (l-n(/=fl»)
r-»l ry^r

converges for every g(z), if g(z) belongs to the class (1°).

Proof. Put F=f—g, we have

This gives

Since Γ(r,/)=O(l) and Γ(r, 0)=O(1), we get

It is easy to see that if f(z) and 0(2) are meromorphic in |^|<1 and the
number of zero points of f(z)—g(z) is finite for any g(z) belonging to the class (1°),
then 7Xn/)=0(l).

We have the following result of Nevanlinna [4].

THEOREM C. // f(z) is meromorphic and admissible in \z\<l and gv(z), v=l,2, 3,
are distinct meromorphic functions satisfying

_ . . λl a$
then

3

υ=l

where

as r—>l outside a set E such that

1
- dr<oo.

Using this theorem, we can now conclude that if f(z) is admissible, then

lim Σ (1—n(/=0))=°o for every 0(z),
r-»l rv^r

with two possible exceptions.
In fact, if
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lim Σ (l-n(/=<n))«» (i=l, 2, 3),
r->l rv^.r

then

limN(r,-r— )<oo,
>-Ί \ f—Qil

so that
limΓ(r,/)<oo
r->l

in view of (1). This contradicts the admissibility of f(z).
Now, we remark that if f(z) is not admissible in |z|<l, we cannot apply

theorem C to our purpose. Hence we need the following lemma, due to Hayman
[3], which will ignore the admissiblity of f(z).

LEMMA 3. Suppose D is a bounded domain containing |z|<l and properly
containing a set of arcs z=eίθ, av<Θ<βv, where

Σ (&-*„)=&, Σ (&-«

Suppose further that f(z) is meromorphic of finite order in D. Then, we have

(2) S(r,/)=0[logΓ(r,/)]+0(l) as r-1,

where

and the avί y=l to q, are distinct finite complex numbers.

The phrase ' of finite order in D ' we used above has the same meaning as
given in Hayman [3].

Next in order to prove our theorem 2, we define counting function N(r,f) after
Hayman as follows:

r/2 t

We remark that our results will not be affected by this definition.
Also we define m(zo,r,f(z))=m(r,f(z0^-z)), with similar definitions for N,N, T

etc., where the circle \z— z0\<r moves in |z|<l and r remains greater than a
positive constant, so that zϋ lies well inside |z|<l.

Now we have the following generalization of theorem C which has been proved
by Chuang [1] for more than three functions gv(z) in slightly modified form.

THEOREM D. Suppose that f(z) is meromorphic in |z|<l and gv(z\ u=l to
q (<?^3), are distinct meromorphic functions satisfying T(r,gv)=o[T(r,f)]. Then we
have
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where

S(r,/)=θ[log T(r,f) + log~

as r—*l, for all r<l if f(z) is of finite order, and outside a set E such that

f 1\ -T— dr<oo
JE L—r

if its order is infinite.

Particularly, if N(r,/)==0|T(r,/)], then we have

which is analogous to the inequality of theorem C.
Further this result is expressible in the following form:

THEOREM D'. Suppose that f(z) is meromorphic in |z|<l and gv(z), v=l to
q (#^3), are distinct meromorphic functions satisfying T(r, gv)=o[T(r,f)]. Then

( 3 ) fo-l-0(l)F(*0, r,/)< Σ ΛΓff 0o, r,

We need some lemmas.

LEMMA 4. Under the assumption of theorem 2, given ε>0, w# OM yz^J r0<l
if r0<r<l, \z0\<l—r, we have

Proof. If we write

« / 1 \
wβ(^o,r)=Σ»ff(^o,r, 7 - 1,

v=l \ J—Qv/

then for r>n(ε), |00|<1— r, we have

1-N-r'

And the subsequent proof of lemma 4 can be discussed similarly as in the proof of
lemma 13 in [3] and so we omit.

LEMMA 5. If r0 is defined as in lemma 4 and

k k
1 9-2-0(1) ϊ-1

according as one of the gv(z) is constantly infinite or not, then we have for r0<r<l,

(4) m(z9, r , /) < (Λ+β) log , , , f +& log
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(5)

Proof. We have by theorem D'

(6) fo-l-0(l)]Γ(*β,r,/)< ΣNqίz^r,.-^— )+S(z»,r,f)
*=ι \ J—Qv/

where
Q. I f<*>\ v q / ( f — 0 γ f o \

S(*o,r,/)=ΣwU,n^)+Σ Σ*»U,r, "/>;

fc=l \ / / v=l fc=l \ / — g, /

Since f(z) has finite order in |z|<l we have

«, r, +- <Kz log

and consequently we get

Hence, combining this with (6) and taking z0=0 we can deduce

N(0, n/X(*+β) log —!— +K, log^-i—,

in view of lemma 4 for
Also (3) yields, using lemma 4,

namely, noting that Nq-ι^Nq,

[q-2-o(l)]m(zo, r,/)<(*+e) log. * . , +^5 log-

This proves (4) if one of the gv(z) is constantly infinite, so that 21=k/(q—2—o(l)). If
g\(z) to 0g(2) are all non-constant meromorphic, we apply (6). This gives

« log
v=ι j—v

hence, we get also

Now again (4) follows, since Λι=k/(q—1—0(1)) in this case, where Kτ (i=l to 6)
are absolute constants.

3. Proofs of theorem 1 and theorem 2.

Proof of Theorem 1. Following Hay man we put

zp-l
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so that the sector \argz\<π/2p corresponds to \w\<l.
The functions

g[z(w)] =G(w)

are meromorphic in the plane cut from —1 to — oo and +1 to +00, along the
real axis. Now we can take for D in lemma 3 the part of this cut plane lying in
M<2.

The same argument as in [3] will show that F(w) also has finite order in D
and satisfies the assumption of lemma 3. Hence, if Gv(w\ v=l, 2, 3, are distinct
meromorphic functions satisfying T(r, Gv)=O(l) in M<1, then we have

as

where S(r, F) denotes the term in (2). This inequality enables us to deduce that
if F(w) has unbounded characteristic in D and satisfies

in M<1, then we have

(7) lim Σ (l-n(F=G))=oo
r-»l rv^r

for every G(w\ with two possible exceptions, if G(w) has bounded characteristic in
M<1. Next, if F(w) is admissible in \w\<l and G(w) satisfies

T(r,G(w»=dT(r,Fn as r-4,

then (7) holds for every G(w), with two possible exceptions, in virtue of theorem
C. In view of lemma 2, if both F(w) and G(w) have bounded characteristic in
\w\<l, then limr_*ι Σrv^r (1— rv(F=G)) converges for every G(w).

Let wv(F=G) be the roots of F(w)=G(w) in \w\<l. Put now z=reiβ. Then

zp-l

so that

r2p+2rpcospθ+l '

Also wv runs over the roots of F(w)=G(w) in M<1, while z runs over the roots
rve

ί9» of f(z) — g(z) in \argz\<π/2p. The convergence of ΣV(!—\WV\) is equivalent
to that of Σv(l— 1^|2) and hence to that of ΣΛ^os pθv)/rv

p since rv-^oo. This
completes the proof of Theorem 1.

Proof of Theorem 2. We first take a fixed ;^4 and for given μ, 0<μ<l, we
define μ3 by l—μj=(l—μ)/j. Then for any fixed / and ε>0 we can find μ as near
1 as we please such that

(8)
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For if (8) is false for all μ'<μj then for μ'<μ<\ we confront the contradiction
with (5). Next we define after Hayman

where bt (i=l to N) are the poles of f(z) lying in |(z—&i)/(l— 5^)1^1/2. We now
choose z=z(μ) so that \z(μ)\=μ and \f*(z)\=M(μ,f*(z)). We suppose μ>r and
choose ZQ so that argz0=arg2(μ), 1— \ZQ\ — r=l— μ3. Then we deduce, using (4),
for U = max (r/2, | z(μ) — *0 1 ) = I z(μ) — z0 \

(9) <

for all r such that μ^r^(l+μ)/2 where μ is sufficiently near 1. Now there is an
r in this range for which

and we get ^y^(3+^)/4 in view of (8). Since (9) holds for some r arbitrarily near
1 we can deduce

«. (l-r)logM(n/) . ,. 2^+e) _ 2j'(Λ+e)
•i ίiii ι ^ um. . ^ — . _j ,
-1 logτ^- -1 ^1 J~1

1 — /"

and since j is large and ε small as we please, the result as required follows.
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