
KODAI MATH. SEM. REP.
19 (1967), 312-316

ON A FINITE MODIFICATION OF AN ULTRA-
HYPERELLIPTIC SURFACE

By MITSURU OZAWA

1. Let R and S be two ultrahyperelliptic surfaces defined by two equations
yz=g(z) and y2=G(z), where g(z) and G(z) are two entire functions having no zero
other than an infinite number of simple zeros respectively. If g(z) and G(z) have
the same zeros for \z\^R0 for a suitable R0, then we call S as a finite modification
of R.

In the present paper we shall prove the following

THEOREM 1. If there is a non-trivial analytic mapping from R into S, which
is a finite modification of R, then it reduces to a conformal mapping from R onto
S whose projection has the form az+b.

By this theorem we have the following non-existence criterion of non- trivial
analytic mappings from R into its finite modification S: If the group of conformal
automorphisms A(R) of R is not isomorphic to that A(S) of S, then there is no
non-trivial analytic mapping from R into S.

In the case of R=S, Hiromi and Mutδ [3] proved the following interesting
result: Every non-trivial analytic mapping from R into itself is an automorphism
whose projection has the form e2πlp/qz+b with a suitable rational number p/q.

We shall extend Hiromi-Mutό's theorem to a more general case.

THEOREM 2. Let S be a finite modification of R. If G and g have the same
number of zeros in \z\<Rv, then any non-trivial analytic mapping from R into S
reduces to a conformal automorphism whose projection has the form e2πlp/qz+b with
a suitable rational number p/q.

2. Proof of theorem 1. Assume there is a non-trivial analytic mapping φ
from R into S. By our previous result [4] we have the existence of two entire
functions h(z) and f(z) satisfying

(1)

Here g(z) has the following form

For simplicity's sake we shall put this G(z)F(z). Hence (1) reduces to
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(2) G°h(z)=f(z)*F(z)G(z).

Making the w-th iteration of the above equation, we have

G^hn(z)=(f^hn-1(zWF'hn
(3)

where hv(z) is the v-th iteration of h(z), that is, hv(z)=h°hv-ι(z\ h0(z)=z.
We discuss the problem along the same line in [3]. First of all we shall prove

that h(z) is a polynomial. Assume that h(z) is a transcendental entire function.
Fatou [1] proved that h(z)=z or h°h(z)—z has an infinite number of roots. Ac-
cording to the cases, we can consider the iteration hn or h2n. Hence we may asume
that the equation h(z)=z has an infinite number of roots. Let ZQ be an arbitrary
non-zero root of h(z)=z. Now we select twelve complex numbers w?, ,wιz* from
the set of zeros of G(z) in such a manner that Wj**rZo, \Wj*\>R0.

If h(z)=zQ+c(z-Zo)k+- ) c*Q, then

Since h(z) is transcendental, for any positive number K

T(r,K)>Klogr

for r>r,. By Pόlya's result [5]

for r^r2 and ^>0, where rz depends on k and h but does not depend on n. Hence
for all n and for r^n=max(2, n, r2)

Let Hn(z)=hn(z+zo). Then if r^

r, Hn(zm log M , £Γn(«) ^ log

Hence

-/Γ(2^)n-1 log —

for r^
Again by Pόlya's result
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for any given K and Kι=K—& and for all r^r2 and for any j. Similarly

T(r, Hn-^K T(r, H*-i-,fe

for any K1=K—ε>2q1" and for all r^r2 and for any j. Hence

Σ *ΣN(r, a,, fl ,)^2Γ(r, #«_,)< T(r, Hn)
3=1 v=0

for any r^r2 and for any n.
By applying the second fundamental theorem for Hn

HΓ(r, Hn)^ Σ N(r, w*, Hn)-N(r\ 0, Hn

f)

(4)

-Hog —r- +& log T(r, Hn)+Kz log r+K,
\ c\l

outside a set En of r of linear measure at most 2, where Ki, K2, K% are constants
which depend on ZQ, w* but do not depend on n. On the other hand by the
equation (3) we have

Hence

Σ N(r, w*, Hn)- N(r, 0, Hn') ^ Σ N(r, to*, Hn)
v=l v=l

^ Σ Nι(r, to*, Hn)+ Σ M(r, to*, Hn)
v=l v=l

I 12 n-l

— Σ N(n w*> Hn)+N(r; 0, G(z+zQ))+ Σ A^fo 0, F°Hv(z—z0))
6 v=l v=0

τι-1 q

-, Hn)+N(r, 0, G(Z+ZO)) + Σ Σ "̂(r> βj* HV(Z—ZO)),

where A^2(r; ^4, T) indicates the j/V f unction of simple ^4-points of T. Thus (4)
reduces to

+ / 1 \ 1+k+ +kn-l
5 T(r, Hn) ̂  N(r, 0, G(z+z<,)) + log —, + Ai log T(r, Hn)

\ 1^1 /

(5)

The exceptional set £ *̂ has linear measure at most 2-f^s. Now firstly we select
an f* such that

T(r, Hn) >2 Σ Σ N(r> "j> Hv(z-
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for any positive integer n and for r^r*, r$En*. Next fix r. Then take n suf-
ficiently large in such a manner that

N(r; 0, G(Z+ZO» - T(r, Hn) < 0, log l-^\ - T(r, Hn) < 0,

K, log Γ(r, Hn)- T(r, Hn)<Q, K2 log r+K,- T(r, Hn)<0.

Then we have a contradiction by (5). Thus h(z) must be a polynomial.
Next assume h(z) is a polynomial of degree at least two. If w satisfies \w\>K0

for sufficiently large Ko, then h(z) has d simple w-points in (\w\/\a0\)1/d(l—ε)<\z\
<(M/|0o|)1/d(l+e), where h(z)=aQzd-i ----- \-ad. However

, G°h)=N(r, 0, G)+O(log r)

and

Nz(r, 0, GoΛ)^AΓ2(^(l-ε)|^0|, 0, G)-O(log r),

which lead to a contradiction. Hence (̂2) must be a linear function
Therefore we have the desired result.

3. Our theorem 1 is best possible. Let R be an ultrahyperelliptic surface
defined by y2=g(z),

Let S be the surface defined by yz=G(z),

π A z \ 0(2)

b^± ! *
a—1 / 6

Then

—1

Hence there is an analytic mapping from R into S whose projection is az+b, which
implies the conformal equivalence of R and S.

4. Proof of theorem 2. Assume that the projection has the form az+b, \a\*?l.
We may assume that |«|>1. Start from a branch point w\ of S and consider its
counter-image Zi in R. By the modification zi corresponds to a branch point w2 of
S. Consider its counter-image z2 in R. Continue this process. Then we have two
sequences [wj] and {zj}. If in the sequence {wj} there are two indices j and k
such that Wj=Wk, then ^_! = ̂ -ι, -̂1 = ̂ -1, ••• and finally Wi — w^j+i and
3ι=zfc_,fι. We shall call this sequence as a cycle. Make all cycles starting from
every branch point in \z\<RQ. Evidently the number of these cycles is finite.
Now we shall start from a branch point Wι* of S, which does not belong to the
set of above cycles. Make a similar sequence Wi*, w^, •••. If w^ is sufficiently
large, then the set of antecedents of wi* makes an infinite sequence. Hence {wj*}
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does not make a cycle, that is, {wj*} is an infinite sequence such that w
for j^k. By a simple calculation we have that wn* tends to —b/(a—l), which is
a contradiction.

Assume that <2=exp(2τπ#) with an irrational number θ. Similarly we can find
an infinite sequence such that Wj**rWκ* for j^k and wn* clusters on the circle

This is also a contradiction.
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