ON A FINITE MODIFICATION OF AN ULTRAHYPERELLIPTIC SURFACE

By Mitsuru Ozawa

1. Let R and S be two ultrahyperelliptic surfaces defined by two equations $y^{2}=g(z)$ and $y^{2}=G(z)$, where $g(z)$ and $G(z)$ are two entire functions having no zero other than an infinite number of simple zeros respectively. If $g(z)$ and $G(z)$ have the same zeros for $|z| \geqq R_{0}$ for a suitable R_{0}, then we call S as a finite modification of R.

In the present paper we shall prove the following
Theorem 1. If there is a non-trivial analytic mapping from R into S, which is a finite modification of R, then it reduces to a conformal mapping from R onto S whose projection has the form $a z+b$.

By this theorem we have the following non-existence criterion of non-trivial analytic mappings from R into its finite modification S : If the group of conformal automorphisms $A(R)$ of R is not isomorphic to that $A(S)$ of S, then there is no non-trivial analytic mapping from R into S.

In the case of $R=S$, Hiromi and Muto [3] proved the following interesting result: Every non-trivial analytic mapping from R into itself is an automorphism whose projection has the form $e^{2 \pi p^{p} / q} z+b$ with a suitable rational number p / q.

We shall extend Hiromi-Mutō's theorem to a more general case.
Theorem 2. Let S be a finite modification of R. If G and g have the same number of zeros in $|z|<R_{0}$, then any non-trivial analytic mapping from R into S reduces to a conformal automorphism whose projection has the form $e^{2 \pi p / / q} z+b$ with a suitable rational number p / q.
2. Proof of theorem 1. Assume there is a non-trivial analytic mapping φ from R into S. By our previous result [4] we have the existence of two entire functions $h(z)$ and $f(z)$ satisfying

$$
\begin{equation*}
G \circ h(z)=f(z)^{2} g(z) . \tag{1}
\end{equation*}
$$

Here $g(z)$ has the following form

$$
G(z) \prod_{j=1}^{q}\left(z-a_{j}\right) \prod_{j=1}^{p} \frac{1}{z-b_{j}}
$$

For simplicity's sake we shall put this $G(z) F(z)$. Hence (1) reduces to
Received February 20, 1967.

$$
\begin{equation*}
G \circ h(z)=f(z)^{2} F(z) G(z) \tag{2}
\end{equation*}
$$

Making the n-th iteration of the above equation, we have

$$
\begin{align*}
G \circ h_{n}(z) & =\left(f \circ h_{n-1}(z)\right)^{2} F \circ h_{n-1}(z) G \circ h_{n-1}(z) \tag{3}\\
& =\prod_{\nu=0}^{n-1}\left(f \circ h_{\nu}(z)\right)^{n} \prod_{\nu=0}^{n-1} F \circ h_{\nu}(z) G(z),
\end{align*}
$$

where $h_{\nu}(z)$ is the ν-th iteration of $h(z)$, that is, $h_{\nu}(z)=h_{\circ} h_{\nu-1}(z), h_{0}(z)=z$.
We discuss the problem along the same line in [3]. First of all we shall prove that $h(z)$ is a polynomial. Assume that $h(z)$ is a transcendental entire function. Fatou [1] proved that $h(z)=z$ or $h \circ h(z)=z$ has an infinite number of roots. According to the cases, we can consider the iteration h_{n} or $h_{2 n}$. Hence we may asume that the equation $h(z)=z$ has an infinite number of roots. Let z_{0} be an arbitrary non-zero root of $h(z)=z$. Now we select twelve complex numbers $w_{1}^{*}, \cdots, w_{12}{ }^{*}$ from the set of zeros of $G(z)$ in such a manner that $w_{j}{ }^{*} \neq z_{0},\left|w_{j}{ }^{*}\right|>R_{0}$.

If $h(z)=z_{0}+c\left(z-z_{0}\right)^{k}+\cdots, c \neq 0$, then

$$
h_{n}(z)=z_{0}+c^{\Sigma_{0}^{n-1} k^{\nu}}\left(z-z_{0}\right)^{k^{n}}+\cdots .
$$

Since $h(z)$ is transcendental, for any positive number K

$$
T(r, h)>K \log r
$$

for $r>r_{1}$. By Pólya's result [5]

$$
T\left(r, h_{n}\right) \geqq \frac{1}{3} T\left(r^{6 k}, h_{n-1}\right)
$$

for $r \geqq r_{2}$ and $k>0$, where r_{2} depends on k and h but does not depend on n. Hence for all n and for $r \geqq r_{3}=\max \left(2, r_{1}, r_{2}\right)$

$$
T\left(r, h_{n}\right)>K(2 k)^{n-1} \log r .
$$

Let $H_{n}(z)=h_{n}\left(z+z_{0}\right)$. Then if $r \geqq 2\left(r_{3}+\left|z_{0}\right|\right)$

$$
\begin{aligned}
T\left(r, H_{n}(z)\right) & \geqq \frac{1}{3} \log _{+}^{+} M\left(\frac{r}{2}, H_{n}(z)\right) \geqq \frac{1}{3} \log _{+}^{+} M\left(\frac{r}{2}-\left|z_{0}\right|, h_{n}(z)\right) \\
& \geqq \frac{1}{3} T\left(\frac{r}{2}-\left|z_{0}\right|, h_{n}(z)\right) .
\end{aligned}
$$

Hence

$$
T\left(r, H_{n}(z)\right)>\frac{1}{3} K(2 k)^{n-1} \log \left(\frac{r}{2}-\left|z_{0}\right|\right)>(2 k)^{n-1} K
$$

for $r \geqq 2\left(r_{3}+\left|z_{0}\right|\right)$.
Again by Pólya's result

$$
T\left(r, H_{n}\right) \geqq \frac{1}{3} T\left(r^{6 k}, H_{n-1}\right) \geqq K T\left(r, H_{n-1}\right) \geqq K_{1} N\left(r ; a_{\jmath}, H_{n-1}\right)
$$

for any given K and $K_{1}=K-\varepsilon$ and for all $r \geqq r_{2}$ and for any j. Similarly

$$
\begin{aligned}
T\left(r, H_{n-1}\right) & \geqq K^{\nu} T\left(r, H_{n-1-\nu}\right) \geqq K_{1}^{\nu} N\left(r ; a_{j}, H_{n-1-\nu}\right) \\
& \geqq 2^{\nu} q N\left(r ; a_{j}, H_{n-1-\nu}\right)
\end{aligned}
$$

for any $K_{1}=K-\varepsilon>2 q^{1 / \nu}$ and for all $r \geqq r_{2}$ and for any j. Hence

$$
\sum_{j=1}^{q} \sum_{\nu=0}^{n-1} N\left(r ; a_{j}, H_{\nu}\right) \leqq 2 T\left(r, H_{n-1}\right)<T\left(r, H_{n}\right)
$$

for any $r \geqq r_{2}$ and for any n.
By applying the second fundamental theorem for H_{n}

$$
\begin{align*}
11 T\left(r, H_{n}\right) \leqq & \sum_{\nu=1}^{12} N\left(r ; w_{\nu}{ }^{*}, H_{n}\right)-N\left(r ; 0, H_{n}{ }^{\prime}\right) \\
& +\log \left(\frac{1}{|c|}\right)^{1+k+\cdots+k^{n-1}}+K_{1} \log T\left(r, H_{n}\right)+K_{2} \log r+K_{3} \tag{4}
\end{align*}
$$

outside a set E_{n} of r of linear measure at most 2, where K_{1}, K_{2}, K_{3} are constants which depend on $z_{0}, w_{v}{ }^{*}$ but do not depend on n. On the other hand by the equation (3) we have

$$
G \circ H_{n}\left(z-z_{0}\right)=\prod_{\nu=0}^{n-1}\left(f_{0} \circ H_{\nu}\left(z-z_{0}\right)\right)^{2} \prod_{\nu=0}^{n-1} F_{\circ} H_{\nu}\left(z-z_{0}\right) G\left(z+z_{0}\right) .
$$

Hence

$$
\begin{aligned}
& \sum_{\nu=1}^{12} N\left(r ; w_{\nu}^{*}, H_{n}\right)-N\left(r ; 0, H_{n}{ }^{\prime}\right) \leqq \sum_{\nu=1}^{12} \bar{N}\left(r ; w_{\nu}^{*}, H_{n}\right) \\
& \quad \leqq \sum_{\nu=1}^{12} \bar{N}_{1}\left(r ; w_{\nu}^{*}, H_{n}\right)+\sum_{\nu=1}^{12} N_{2}\left(r ; w_{\nu}{ }^{*}, H_{n}\right) \\
& \quad \leqq \frac{1}{2} \sum_{\nu=1}^{12} N\left(r ; w_{\nu}{ }^{*}, H_{n}\right)+N\left(r ; 0, G\left(z+z_{0}\right)\right)+\sum_{\nu=0}^{n-1} N_{2}\left(r ; 0, F_{\circ} H_{\nu}\left(z-z_{0}\right)\right) \\
& \quad \leqq 6 T\left(r, H_{n}\right)+N\left(r ; 0, G\left(z+z_{0}\right)\right)+\sum_{\nu=0}^{n-1} \sum_{j=1}^{q} N\left(r ; a_{\jmath}, H_{\nu}\left(z-z_{0}\right)\right),
\end{aligned}
$$

where $N_{2}(r ; A, T)$ indicates the N-function of simple A-points of T. Thus (4) reduces to

$$
\begin{align*}
5 T\left(r, H_{n}\right) \leqq & N\left(r ; 0, G\left(z+z_{0}\right)\right)+\log ^{+}\left(\frac{1}{|c|}\right)^{1+k+\cdots+k^{n-1}}+K_{1} \log T\left(r, H_{n}\right) \\
& +K_{2} \log r+K_{3}+\sum_{\nu=0}^{n-1} \sum_{j=1}^{q} N\left(r ; a_{\jmath}, H_{\nu}\left(z-z_{0}\right)\right) . \tag{5}
\end{align*}
$$

The exceptional set $E_{n}{ }^{*}$ has linear measure at most $2+r_{3}$. Now firstly we select an r^{*} such that

$$
T\left(r, H_{n}\right)>2 \sum_{\nu=0}^{n-1} \sum_{j=1}^{q} N\left(r ; a_{\jmath}, H_{\nu}\left(z-z_{0}\right)\right)
$$

for any positive integer n and for $r \geqq r^{*}, r \notin E_{n}{ }^{*}$. Next fix r. Then take n sufficiently large in such a manner that

$$
\begin{array}{ll}
N\left(r ; 0, G\left(z+z_{0}\right)\right)-T\left(r, H_{n}\right)<0, & \log ^{+}\left(\frac{1}{|c|}\right)^{1+k+\cdots+k^{n-1}}-T\left(r, H_{n}\right)<0, \\
K_{1} \log T\left(r, H_{n}\right)-T\left(r, H_{n}\right)<0, & K_{2} \log r+K_{3}-T\left(r, H_{n}\right)<0 .
\end{array}
$$

Then we have a contradiction by (5). Thus $h(z)$ must be a polynomial.
Next assume $h(z)$ is a polynomial of degree at least two. If w satisfies $|w|>K_{0}$ for sufficiently large K_{0}, then $h(z)$ has d simple w-points in $\left(|w| /\left|a_{0}\right|\right)^{1 / d}(1-\varepsilon)<|z|$ $<\left(|w| /\left|a_{0}\right|\right)^{1 / d}(1+\varepsilon)$, where $h(z)=a_{0} z^{d}+\cdots+a_{d}$. However

$$
N_{2}(r ; 0, G \circ h)=N(r ; 0, G)+O(\log r)
$$

and

$$
N_{2}(r ; 0, G \circ h) \geqq N_{2}\left(r^{d}(1-\varepsilon)\left|a_{0}\right|, 0, G\right)-O(\log r),
$$

which lead to a contradiction. Hence $h(z)$ must be a linear function $a z+b$.
Therefore we have the desired result.
3. Our theorem 1 is best possible. Let R be an ultrahyperelliptic surface defined by $y^{2}=g(z)$,

$$
g(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{b \frac{a^{n}-1}{a-1}}\right), \quad|a|>1, \quad b \neq 0 .
$$

Let S be the surface defined by $y^{2}=G(z)$,

$$
G(z)=\prod_{n=2}^{\infty}\left(1-\frac{z}{b \frac{a^{n}-1}{a-1}}\right)=\frac{g(z)}{1-\frac{z}{b}} .
$$

Then

$$
G(a z+b)=\frac{a}{a-1} g(z) .
$$

Hence there is an analytic mapping from R into S whose projection is $a z+b$, which implies the conformal equivalence of R and S.
4. Proof of theorem 2. Assume that the projection has the form $a z+b,|a| \neq 1$. We may assume that $|a|>1$. Start from a branch point w_{1} of S and consider its counter-image z_{1} in R. By the modification z_{1} corresponds to a branch point w_{2} of S. Consider its counter-image z_{2} in R. Continue this process. Then we have two sequences $\left\{w_{j}\right\}$ and $\left\{z_{j}\right\}$. If in the sequence $\left\{w_{j}\right\}$ there are two indices j and k such that $w_{\jmath}=w_{k}$, then $z_{\jmath-1}=z_{k-1}, w_{\jmath-1}=w_{k-1}, \cdots$ and finally $w_{1}=w_{k-\jmath+1}$ and $z_{1}=z_{k-\jmath+1}$. We shall call this sequence as a cycle. Make all cycles starting from every branch point in $|z|<R_{0}$. Evidently the number of these cycles is finite. Now we shall start from a branch point $w_{1}{ }^{*}$ of S, which does not belong to the set of above cycles. Make a similar sequence $w_{1}{ }^{*}, w_{2}{ }^{*}, \cdots$. If w_{1}^{*} is sufficiently large, then the set of antecedents of $w_{1}{ }^{*}$ makes an infinite sequence. Hence $\left\{w_{j}{ }^{*}\right\}$
does not make a cycle, that is, $\left\{w_{j}{ }^{*}\right\}$ is an infinite sequence such that $w_{j}{ }^{*} \neq w_{k}{ }^{*}$ for $j \neq k$. By a simple calculation we have that $w_{n}{ }^{*}$ tends to $-b /(a-1)$, which is a contradiction.

Assume that $a=\exp (2 \pi i \theta)$ with an irrational number θ. Similarly we can find an infinite sequence such that $w_{j}{ }^{*} \neq w_{k}{ }^{*}$ for $j \neq k$ and $w_{n}{ }^{*}$ clusters on the circle

$$
\frac{b}{1-e^{2 \pi i \theta}}+e^{\imath \alpha}\left(w_{1}^{*}-\frac{b}{1-e^{2 \pi i \theta}}\right)
$$

This is also a contradiction.

References

[1] Fatou, P., Sur litération des fonctions transcendantes entières. Acta Math. 47 (1926), 337-370.
[2] Hayman, W. K., Meromorphic functions. Oxford (1964).
[3] Hiromi, G., and H. Mutō, On the exıstence of analytıc mappıngs, I. Kōdaı Math. Sem. Rep. 19 (1967), 236-244.
[4] Ozawa, M., On the existence of analytic mappings. Kōdai Math. Sem. Rep. 17 (1965), 191-197.
[5] Pólya, G., On an integral function of an integral function. Journ. London Math. Soc. 1 (1962), 12-15.

Department of Mathematics,
Tokyo Institute of Technology.

