THEORY OF CONFORMAL CONNECTIONS

By Koichi Ogiue

Introduction.

The main purpose of the present paper is to give a modern introduction to the theory of conformal connections. There were, historically, several approaches to this subject. Our approach here is based on the theory of G-structures. We shall now briefly explain our method.

For a manifold $M^{1)}$ of dimension n, we construct the bundle $P^{2}(M)$ of frames of 2 nd order contact. Its structure group will be denoted by $G^{2}(n)$. We define a certain subgroup $H^{2}(n)$ of $G^{2}(n)$ which is isomorphic with an isotropy subgroup of the conformal transformation group $K(n)$ acting on the Möbius space of dimension n. A conformal structure on a manifold M is a subbundle P of $P^{2}(M)$ with structure group $H^{2}(n)$.

A conformal connection for the given conformal structure P is a Cartan connection satisfying some extra conditions. It will be shown that we can associate with each conformal structure a naturally defined conformal connection, so-called normal conformal connection.

§ 1. Prolongations of a Lie algebra.

Let V be a real vector space of dimension n and \mathfrak{g} a Lie algebra of endomorphisms of V. g may be considered as a subspace of $V \otimes V^{*}=\operatorname{Hom}(V, V)=\mathfrak{g l}(V)$, where V^{*} denotes the dual space of V. The first prolongation $\mathfrak{g}^{(1)}$ of \mathfrak{g} is defined to be $\mathfrak{g}^{(1)}=\mathfrak{g} \otimes V^{*} \cap V \otimes S^{2}\left(V^{*}\right) \subset V \otimes V^{*} \otimes V^{*}$, where $S^{2}\left(V^{*}\right)$ denotes the space of symmetric tensors of degree 2 over V^{*}. Since $\mathfrak{g} \otimes V^{*}=\operatorname{Hom}(V, \mathfrak{g})$, an element $T \in \mathfrak{g} \otimes V^{*}$ is in $\mathfrak{g}^{(1)}$ if and only if

$$
T(u) \cdot v=T(v) \cdot u \quad \text { for all } \quad u, v \in V .
$$

Set $\mathfrak{g}^{(2)}=\left(\mathfrak{g}^{(1)}\right)^{(1)}$ and, in general, $\mathfrak{g}^{(k+1)}=\left(\mathfrak{g}^{(k)}\right)^{(1)}$. The space $\mathfrak{g}^{(k)}$ is called the k-th prolongation of g. Then

$$
\mathfrak{g}^{(k)}=\mathfrak{g} \otimes \underbrace{*} \otimes \cdots \otimes V^{*} \cap V \otimes S^{k+1}\left(V^{*}\right)
$$

We call that g is of finite type if $\mathrm{g}^{(k)}=0$ for some (and hence all larger) k. If

[^0]$\mathrm{g}^{(k)} \neq 0$ for all k then g is said to be of infinite type.
Let (,) be a non-degenerate symmetric bilinear form on V (of arbitrary signature). Let $\mathfrak{d}(V)$ be the orthogonal algebra of $($,$) , that is, \mathfrak{d}(V)$ is the set of $A \in \mathfrak{g l}(V)$ such that
$$
(A u, v)+(u, A v)=0 \quad \text { for all } \quad u, v \in V
$$

Proposition 1.

$$
\mathfrak{p}(V)^{(1)}=0 .
$$

Proof. For any $T \in \mathfrak{D}(V)^{(1)}$ and any $u, v, w \in V$ we have

$$
\begin{aligned}
(T(u) \cdot v, w) & =(T(v) \cdot u, w)=-(u, T(v) \cdot w)=-(u, T(w) \cdot v) \\
& =(T(w) \cdot u, v)=(T(u) \cdot w, v)=-(w, T(u) \cdot v) \\
& =-(T(u) \cdot v, w) .
\end{aligned}
$$

Thus $(T(u) v, w)=0$. Since w is arbitrary and (,) is non-degenerate, $T(u) v=0$ for all $u, v \in V$. Hence $T(u)=0$ for all $u \in V$. This implies $T=0$.
(Q.E.D.)

Let (,) be as before and let $\operatorname{co}(V)$ denote its conformal algebra. That is, $\operatorname{co}(V)$ is the set of $A \in g l(V)$ such that

$$
(A u, v)+(u, A v)=\lambda \cdot(u, v) \quad \text { for all } \quad u, v \in V
$$

where λ is some scalar depending on A.
Proposition 2. $\operatorname{co}(V)^{(1)}$ is isomorphic with V^{*}.
Proof. For any $T \in \operatorname{co}(V)^{(1)}$ we have a linear form λ on V defined by

$$
(T(u) v, w)+(v, T(u) w)=\lambda(u) \cdot(v, w) .
$$

Thus we have a linear mapping of $\operatorname{co}(V)^{(1)} \rightarrow V^{*}$. A T lying in its kernel would lie in $\mathfrak{D}(V)^{(1)}$ and thus vanish by Proposition 1. Hence the mapping is injective. Let us show that it is also surjective. To this effect we observe that (,) induces an isomorphism of V onto V^{*}. Thus $u \in V$ is mapped onto $u^{*} \in V^{*}$ where $u^{*}(v)$ $=(u, v)$ for every $v \in V$. If we replace (,) by $\rho($,$) , then under the new isomorphism$ u gets sent into ρu^{*}. In particular, the isomorphism of $V \otimes V^{*}$ onto $V^{*} \otimes V$ induced by (,) is independent of the scalar ρ. Let us denote this isomorphism by ϕ. For any $u^{*} \in V^{*}$, let $\mu: V^{*} \rightarrow V \otimes V^{*} \otimes V^{*}$ be defined by

$$
\mu\left(u^{*}\right)(v)=v \otimes u^{*}-\phi\left(u^{*} \otimes v\right)+u^{*}(v) \cdot I,
$$

where I is the identity in $\operatorname{gl}(V)$. From

$$
\mu\left(u^{*}\right)\left(v_{1}\right) v_{2}=u^{*}\left(v_{2}\right) \cdot v_{1}+u^{*}\left(v_{1}\right) \cdot v_{2}-\left(v_{1}, v_{2}\right) \cdot u,
$$

we have

$$
\mu\left(u^{*}\right)\left(v_{1}\right) v_{2}=\mu\left(u^{*}\right)\left(v_{2}\right) v_{1} .
$$

Furthermore,

$$
\left(\mu\left(u^{*}\right)\left(v_{1}\right) v_{2}, v_{3}\right)+\left(v_{2}, \mu\left(u^{*}\right)\left(v_{1}\right) v_{3}\right)=2 u^{*}\left(v_{1}\right) \cdot\left(v_{2}, v_{3}\right) .
$$

These imply that $\mu\left(u^{*}\right)$ is an element of $\operatorname{co}(V)^{(1)}$. Thus $\operatorname{co}(V)^{(1)}$ is isomorphic with V^{*}.
(Q.E.D.)

Proposition 3. If $\operatorname{dim} V \geqq 3$, then $\operatorname{co}(V)^{(2)}=0$.
Proof. For any $u, v, x, y \in V$ and for any $T \in \operatorname{cog}(V)^{(2)}$ we have

$$
(T(u, v) x, y)+(x, T(u, v) y)=\lambda(u, v) \cdot(x, y)
$$

where λ is a symmetric bilinear form on V depending on T. If λ vanishes, then T belong to $\mathfrak{D}(V)^{(2)}$ and hence must vanish. Since λ is symmetric, to prove that a given λ vanishes it suffices to show that $\lambda(u, u)$ vanishes identically. Let us choose u and v with $(u, v)=0$. Then

$$
\begin{aligned}
\lambda(u, u) \cdot(v, v) & =2(T(u, u) v, v)=2(T(u, v) u, v)=-2(u, T(u, v) v) \\
& =-2(u, T(v, v) u)=-\lambda(v, v) \cdot(u, u) .
\end{aligned}
$$

Thus for every pair of orthonormal vectors u and v we have

$$
\lambda(u, u)=-\lambda(v, v) .
$$

If $\operatorname{dim} V \geqq 3$, for every orthonormal vectors u, v, w we have

$$
\begin{equation*}
\lambda(u, u)=-\lambda(v, v)=\lambda(w, w)=-\lambda(u, u) . \tag{Q.E.D.}
\end{equation*}
$$

Hence $\lambda(u, u)=0$.
The explicit treatment will be given in $\S 4$.

§ 2. G-structures.

Let M be a manifold of dimension n. A linear frame u at a point $x \in M$ is an ordered basis X_{1}, \cdots, X_{n} of the tangent space $T_{x}(M)$. Let $L(M)$ be the set of all linear frames u at all points of M and let π be the mapping of $L(M)$ onto M which maps a linear frame u at x into x.

The general linear group $G L(n, \mathrm{R})$ acts on $L(M)$ on the right as follows: If $a=\left(a_{j}^{i}\right) \in G L(n, \mathrm{R})$ and $u=\left(X_{1}, \cdots, X_{n}\right)$ is a linear frame at x, then $u a$ is, by definition, the linear frame $\left(\Sigma a_{1}^{j} X_{j}, \cdots, \Sigma a_{n}^{j} X_{j}\right)^{2)}$ at x.

In order to introduce a differentiable structure in $L(M)$, let $\left(x^{1}, \cdots, x^{n}\right)$ be a local coordinate system in a coordinate neighborhood U in M. Every frame u at $x \in U$ can be expressed uniquely in the form $u=\left(X_{1}, \cdots, X_{n}\right)$ with $X_{i}=\Sigma X_{i}^{k}\left(\partial / \partial x^{k}\right)$, where (X_{2}^{k}) is a non-singular matrix. This shows that $\pi^{-1}(U)$ is in one-to-one correspondence with $U \times G L(n, \mathrm{R})$. We can make $L(M)$ into a differentiable manifold by taking $\left(x^{i}\right)$ and $\left(X_{\imath}^{k}\right)$ as a local coordinate system in $\pi^{-1}(U) . L(M)$ is a

[^1]principal fibre bundle over M with structure group $G L(n, \mathrm{R})$. We call $L(M)$ the bundle of linear frames over M.

A linear frame u at x can also be defined as an isomorphism of R^{n} onto $T_{x}(M)$. The two definitions are related to each other as follows: let e_{1}, \cdots, e_{n} be the natural basis for R^{n}. A linear frame $u=\left(X_{1}, \cdots, X_{n}\right)$ at x can be given as a linear mapping $u: \mathrm{R}^{n} \rightarrow T_{x}(M)$ such that $u\left(e_{i}\right)=X_{v}$. The action of $G L(n, \mathrm{R})$ on $L(M)$ can be accordingly interpreted as follows:

Consider $a=\left(a_{j}^{i}\right) \in G L(n, \mathrm{R})$ as a linear transformation of R^{n} which maps e_{\jmath} into $\Sigma a_{j}^{2} e_{i}$. Then $u a: \mathrm{R}^{n} \rightarrow T_{x}(M)$ is the composite of the following two mappings:

$$
\mathrm{R}^{n} \xrightarrow{a} \mathrm{R}^{n} \xrightarrow{u} T_{x}(M) .
$$

A G-structure on a differentiable manifold M is, by definition, a reduction of the structure group $G L(n, \mathrm{R})$ of the bundle of linear frames $L(M)$ to the subgroup G.

Let (,) be a non-degenerate symmetric bilinear form on R^{n} and let $O(n)$ be its orthogonal group. An $O(n)$-structure $O(M)$ on M is the same as a Riemannian metric g. In fact, given $O(M)$, set $g_{x}(X, Y)=\left(u^{-1} X, u^{-1} Y\right)$ for every $X, Y \in T_{x}(M)$ and $u \in O(M)$ with $\pi(u)=x$. From the definition of $O(n), g_{x}(X, Y)$ is independent of u with $\pi(u)=x$. Conversely, given a Riemannian metric on M, we let $O(M)$ be the set of all orthonormal frames, that is, of all $u \in L(M)$ which are isometries of R^{n} onto $T_{x}(M)$.

Let (,) be as before and let $C O(n)$ be its conformal group, that is, set of all elements $a \in G L(n, \mathrm{R})$ such that

$$
(a u, a v)=\lambda \cdot(u, v) \quad \text { for all } \quad u, v \in \mathrm{R}^{n}
$$

where λ is a positive function depending on a. A $C O(n)$-structure $C O(M)$ on M is the same as a "conformal structure" on M. Two Riemannian metric g and \bar{g} on M are said to be conformally related if there exists a positive function ρ on M such that $\bar{g}=\rho^{2} g$. Let $\{g\}$ be a class of conformally related Riemannian metrics on M. For an element g of $\{g\}, C O(M)$ is defined as the set of all $u \in L(M)$ such that

$$
g_{x}(X, Y)=\rho \cdot\left(u^{-1} X, u^{-1} Y\right) \quad \text { for all } \quad X, Y \in T_{x}(M)
$$

Clearly $C O(M)$ does not depend on the choice of $g \in\{g\}$. Hence the set of all classes of conformally related Riemannian metrics on M are in one-to-one correspondence with the set of all $C O(n)$-structures on M. This fact will be treated in $\S 8$ from slightly different point of view.

§ 3. Jets and frames of higher order contact (Theory of Ehresmann-Kobayashi).

Let M be a manifold of dimension n and R^{n} be a real number space of dimension n. Let U and V be neighborhoods of the origin 0 in R^{n}. Two mappings $f: U \rightarrow M$ and $g: V \rightarrow M$ give rise to the same r-jet at 0 if they have the same partial derivatives up to order r at 0 . The equivalence class of f, thus defined, is denoted by $j_{0}^{r}(f)$.

If f is a diffeomorphism of a neighborhood of 0 onto an open subset of M, then the r-jet $j_{0}^{r}(f)$ at 0 is called an r-frame at $x=f(0)$. The set of M will be denoted by $P^{r}(M)$.

Let $G^{r}(n)$ be the set of r-frames $j_{0}^{r}(g)$ at $0 \in \mathrm{R}^{n}$, where g is a diffeomorphism from a neighborhood of $0 \in \mathrm{R}^{n}$ onto a neighborhood of $0 \in \mathrm{R}^{n}$. The $G^{r}(n)$ is a group with multiplication defined by the composition of jets, that is, $j_{0}^{r}(g) \cdot j_{0}^{r}\left(g^{\prime}\right)=j_{0}^{r}\left(g \circ g^{\prime}\right)$. The group $G^{r}(n)$ acts on $P^{r}(M)$ on the right by $j_{0}^{r}(f) \cdot j_{0}^{r}(g)=j_{0}^{r}(f \circ g)$ for $j_{0}^{r}(f) \in P^{r}(M)$ and $j_{0}^{r}(g) \in G^{r}(n)$. Then $P^{r}(M)$ is a principal fibre bundle over M with group $G^{r}(n)$. $P^{1}(M)$ is nothing but the bundle of linear frames $L(M)$ with structure group $G^{1}(n)$ $=G L(n, \mathrm{R})$.

From now on we shall be mainly interested in $P^{2}(M)$ and $P^{1}(M)$.
We shall now define a 1 -form on $P^{2}(M)$ with values in $\mathrm{R}^{n}+\mathrm{gl}(n, \mathrm{R})$, where $\mathfrak{g l}(n, \mathrm{R})$ denotes the Lie algebra of $G L(n, \mathrm{R})$. Let X be a vector tangent to $P^{2}(M)$ at $u=j_{0}^{2}(f)$. Denote by X^{\prime} the image of X under the natural projection $P^{2}(M) \rightarrow P^{1}(M)$, it is a vector tangent to $P^{1}(M)$ at $u^{\prime}=j_{0}^{1}(f)$. Since f is a diffeomorphism of a neighborhood of the origin $0 \in \mathrm{R}^{n}$ onto a neighborhood of $f(0) \in M$, it induces a diffeomorphism of a neighborhood of $e=j_{0}^{1}(i d.) \in P^{1}\left(\mathrm{R}^{n}\right)$ onto a neighborhood of $j_{0}^{1}(f) \in P^{1}(M)$. The latter induces on isomorphism of the tangent space $\mathrm{R}^{n}+\mathrm{gl}(n, \mathrm{R})$ of $P^{1}\left(\mathrm{R}^{n}\right)$ at e onto the tangent space of $P^{1}(M)$ at $u^{\prime}=j_{0}^{1}(f)$; this isomorphism will be denoted by \tilde{u}.

The canonical form θ on $P^{2}(M)$ is defined by

$$
\theta(X)=\tilde{u}^{-1}\left(X^{\prime}\right)
$$

Since \tilde{u} depends only on $u=j_{0}^{2}\left(f^{\prime}\right), \theta(X)$ is well defined. The 1 -form θ takes its values in $\mathrm{R}^{n}+\mathfrak{g l}(n, \mathrm{R})$.

We define an action of $G^{2}(n)$ on $\mathrm{R}^{n}+\mathfrak{g l}(n, \mathrm{R})$ which will be denoted by $a d$. Let $j_{0}^{2}(g) \in G^{2}(n)$ and $j_{0}^{1}(f) \in P^{1}\left(\mathrm{R}^{n}\right)$. The mapping of a neighborhood of $e \in P^{1}\left(\mathrm{R}^{n}\right)$ onto a neighborhood of $e \in P^{1}\left(\mathrm{R}^{n}\right)$ defined by

$$
j_{0}^{1}(f) \rightarrow j_{0}^{1}\left(g \circ f \circ g^{-1}\right)
$$

induces a linear isomorphism of the tangent space $\mathrm{R}^{n}+\mathfrak{g l}(n, \mathrm{R})$ of $P^{1}\left(\mathrm{R}^{n}\right)$ at e onto itself. This linear isomorphism depends only on $j_{0}^{2}(g)$ and will be denoted by $a d\left(j_{0}^{2}(g)\right)$.

Since $G^{2}(n)$ acts on $P^{2}(M)$ on the right, every element A of the Lie algebra $\mathrm{g}^{2}(n)$ of $G^{2}(n)$ induces a vector field A^{*} on $P^{2}(M)$, which will be called the fundamental vector field corresponding to A.

Proposition 4. Let θ be the canonical form on $P^{2}(M)$. Then

$$
\begin{equation*}
\theta\left(A^{*}\right)=A^{\prime} \quad \text { for } \quad A \in \mathfrak{g}^{2}(n) \tag{i}
\end{equation*}
$$

where $A^{\prime} \in \mathfrak{g l}(n, \mathrm{R})$ is the image of A under the natural homomorphism

$$
\mathfrak{g}^{2}(n) \rightarrow \mathfrak{g}^{1}(n)=\mathfrak{g l}(n, \mathrm{R})
$$

$$
\begin{equation*}
R_{a}^{*} \theta=a d\left(a^{-1}\right) \theta \quad \text { for } \quad a \in G^{2}(n) \tag{ii}
\end{equation*}
$$

where R_{a} denotes the action of $a \in G^{2}(n)$ on $P^{2}(M)$.

Proposition 5. Let M and M^{\prime} be manifolds of the same dimension n and let θ and θ^{\prime} be the canonical forms on $P^{2}(M)$ and $P^{2}\left(M^{\prime}\right)$ respectively. Let $f: M \rightarrow M^{\prime}$ be a diffeomorphism and denote by the same letter f the induced bundle isomorphism $P^{2}(M) \rightarrow P^{2}\left(M^{\prime}\right)$. Then

$$
f^{*} \theta^{\prime}=\theta .
$$

Conversely, if $F: P^{2}(M) \rightarrow P^{2}\left(M^{\prime}\right)$ is a bundle isomorphism such that

$$
F^{*} \theta^{\prime}=\theta,
$$

then F is induced by a diffeomorphism f of the base manifolds.
We shall now express the canonical form of $P^{2}(M)$ in terms of the local coordinate system of $P^{2}(M)$ which arises in a natural way from a local coordinate system of M. For this purpose it suffice to consider the case $M=\mathrm{R}^{n}$. Let e_{1}, \cdots, e_{n} be the natural basis for R^{n} and (x^{1}, \cdots, x^{n}) the natural coordinate system in R^{n}. Each frame $u=j_{0}^{2}(f)$ of R^{n} has a unique polynomial representation of the form

$$
f(x)=\Sigma\left(u^{2}+\Sigma u_{j}^{2} x^{\jmath}+\frac{1}{2} \Sigma u_{j k}^{\imath} x^{\jmath} x^{k}\right) e_{i}
$$

where $x=\Sigma x^{2} e_{i}$ and $u_{j k}^{2}=u_{k j}^{2}$. We take $\left(u^{2}, u_{j}^{2}, u_{j k}^{2}\right)$ as the natural coordinate system in $P^{2}\left(\mathrm{R}^{n}\right)$. Restricting u_{j}^{2} and $u_{j k}^{2}$ to $G^{2}(n)$ we obtain the natural coordinate system in $G^{2}(n)$, which will be denoted by $\left(s_{j}^{2}, s_{j k}^{2}\right)$. For $u=j_{0}^{2}(f) \in P^{2}(M)$ with

$$
f(x)=\Sigma\left(u^{2}+\Sigma u_{j}^{2} x^{j}+\frac{1}{2} \Sigma u_{j k}^{2} x^{\jmath} x^{k}\right) e_{i}
$$

and $s=j_{0}^{2}(g) \in G^{2}(n)$ with

$$
g(x)=\Sigma\left(\Sigma s_{\jmath}^{2} x^{\jmath}+\frac{1}{2} \Sigma s_{j k}^{\imath} x^{\jmath} x^{k}\right) e_{\imath}
$$

we have $u \cdot s=j_{0}^{2}(f \circ g)$ with

$$
\begin{aligned}
(f \circ g)(x)= & \Sigma\left\{u^{2}+\Sigma u_{j}^{l}\left(\Sigma s_{l}^{s} x^{l}+\frac{1}{2} \Sigma s_{l k}^{\jmath} x^{l} x^{k}\right)\right. \\
& \left.+\frac{1}{2} \Sigma u_{j k}^{\imath}\left(\Sigma s_{l}^{\jmath} x^{l}+\frac{1}{2} \Sigma s_{l a}^{\jmath} x^{l} x^{a}\right)\left(\Sigma s_{m}^{k} x^{m}+\frac{1}{2} \Sigma s_{m b}^{k} x^{m} x^{b}\right)\right\} e_{i} \\
= & \Sigma\left\{u^{2}+\Sigma u_{j}^{2} s_{l}^{\jmath} x^{l}+\frac{1}{2} \Sigma\left(u_{j}^{2} s_{l k}^{\jmath}+u_{j m}^{2} s_{l}^{s} s_{k}^{m}\right) x^{l} x^{k}+\cdots\right\} e_{i} .
\end{aligned}
$$

Hence the action of $G^{2}(n)$ on $P^{2}\left(\mathrm{R}^{n}\right)$ is given by

$$
\left(u^{2}, u_{j}^{2}, u_{j k}^{2}\right)\left(s_{j}^{2}, s_{j k}^{2}\right)=\left(u^{2}, \Sigma u_{l}^{2} s_{j}^{l}, \Sigma u_{l}^{2} s_{j k}^{l}+\Sigma u_{i m}^{2} s_{j}^{l} s_{k}^{m}\right)
$$

In particular, the multiplication in $G^{2}(n)$ is given by

$$
\left(\bar{s}_{j}^{i}, \bar{s}_{j k}^{i}\right)\left(S_{j}^{2}, s_{j k}^{\imath}\right)=\left(\Sigma \bar{S}_{l}^{i} s_{j}^{l}, \Sigma_{l}^{i} s_{j k}^{l}+\sum \bar{S}_{l m}^{i} s_{j}^{l} S_{k}^{m}\right)
$$

Similarly we can introduce a coordinate system (u^{2}, u_{j}^{i}) in $P^{1}\left(\mathrm{R}^{n}\right)$ and a coordinate system (s_{j}^{i}) in $G^{1}(n)$ so that the natural homomorphisms $P^{2}\left(\mathrm{R}^{n}\right) \rightarrow P^{1}\left(\mathrm{R}^{n}\right)$ and $G^{2}(n) \rightarrow G^{1}(n)$ are given by $\left(u^{2}, u_{j}^{2}, u_{j k}^{2}\right) \rightarrow\left(u^{2}, u_{j}^{i}\right)$ and $\left(s_{j}^{2}, s_{j k}^{2}\right) \rightarrow\left(s_{j}^{i}\right)$ respectively.

Let $\left\{E_{\imath}, E_{\imath}^{j}\right\}$ be the basis for $\mathrm{R}^{n}+\mathfrak{g}(n, \mathrm{R})$ defined by $E_{\imath}=\left(\partial / \partial u^{i}\right)_{e}, E_{i}^{j}=\left(\partial / \partial u_{j}^{i}\right)_{e}$. We set

$$
\theta=\Sigma \theta^{i} E_{i}+\Sigma \theta_{j}^{i} E_{i}^{\jmath} .
$$

From the definition of the canonical form θ, we obtain by a straightforward calculation the following formulae (cf. [4]);

$$
\begin{aligned}
& \theta^{i}=\Sigma v_{k}^{2} d u^{k}, \\
& \theta_{j}^{i}=\Sigma v_{k}^{\imath} d u_{j}^{k}-\Sigma v_{k}^{l} u_{h j}^{k} v_{l}^{h} d u^{l},
\end{aligned}
$$

where $\left(v_{j}^{i}\right)$ denotes the inverse matrix of $\left(u_{j}^{i}\right)$. From these formulae we have
Proposition 6. Let $\theta=\left(\theta^{i}, \theta_{j}^{i}\right)$ be the canonical form on $P^{2}(M)$. Then

$$
d \theta^{i}=-\Sigma \theta_{k}^{i} \wedge \theta^{k}
$$

§ 4. Möbius spaces and Möbius groups.

Let E^{n} be a Euclidean space of dimension n with coordinate system (y^{1}, \cdots, y^{n}) and with metric $\varepsilon=\left(\varepsilon_{i j}\right)$.

Let E^{n+2} be a Euclidean space of dimension $n+2$ with coordinate system ($y^{0}, y^{1}, \cdots, y^{n}, y^{\infty}$), and with metric

$$
\tilde{\varepsilon}=\left(\tilde{\varepsilon}_{\alpha \beta}\right)=\left(\begin{array}{rcr}
0 & 0 & -1 \\
0 & \varepsilon_{\imath \jmath} & 0 \\
-1 & 0 & 0
\end{array}\right)^{3)}
$$

Let P_{n+1} be the real projective space of dimension $n+1$, constructed from E^{n+2}, with homogeneous coordinate system ($y^{0}, y^{1}, \cdots, y^{n}, y^{\infty}$). Let $\Xi^{n}=\mathrm{E}^{n} \cup\{\infty\}$ be the one point compactification of E^{n} by a so-called "point at infinity ".

A hypersphere S^{n-1} in E^{n} may be represented by the ratio of $n+2$ real numbers $a^{0}, a^{1}, \cdots, a^{n}, a^{\infty}$ as follows:

$$
\begin{equation*}
a^{0} \Sigma \varepsilon_{j k} y^{3} y^{k}-2 \sum \varepsilon_{j k} a^{j} y^{k}+2 a^{\infty}=0 \tag{1}
\end{equation*}
$$

A point ($a^{0}, a^{1}, \cdots, a^{n}, a^{\infty}$) in $\mathrm{E}^{n+2}-\{0\}$ can also be considered as a point in P^{n+1}.
If $a^{0} \neq 0$ and $\Sigma \varepsilon_{j k} a^{\top} a^{k}-2 a^{0} a^{\infty} \geqq 0$, the equation (1) gives a real hypersphere of radius $\left\{\left(\sum \varepsilon_{j k} a^{j} a^{k}-2 a^{0} a^{\infty}\right) / a^{0} a^{0}\right\}^{1 / 2}$ and centered at ($a^{1} / a^{0}, \cdots, a^{n} / a^{0}$). In particular, $\Sigma \varepsilon_{j k} a^{3} a^{k}-2 a^{0} a^{\infty}=0$ is the condition for the equation (1) to represent a point sphere, that is, a single point ($a^{1} / a^{0}, \cdots, a^{n} / a^{0}$).

Let \mathbb{S} denote the set of all point hyperspheres. If we let the special case

[^2]$a^{0}=a^{1}=\cdots=a^{n}=0$ correspond to the point at infinity $\{\infty\}$ in Ξ^{n}, the elements of \mathbb{S} are in one-to-one correspondence with the points of Ξ^{n}.

Let Q be the quadric in P_{n+1} defined by the equation

$$
\Sigma \varepsilon_{j k} y^{j} y^{k}-2 y^{0} y^{\infty}=0
$$

Then the elements of \subseteq are in one-to-one correspondence with the points of Q.
We set $x^{2}=y^{2} / y^{0}$ for $i=1, \cdots, n$ and we shall take $\left(x^{1}, \cdots, x^{n}\right)$ as a local coordinate system of Ξ^{n} in the neighborhood defined by $y^{0} \neq 0$. Then Ξ^{n} is homeomorphic with Q. We call Ξ^{n} the Möbius space of dimension n.

An element of the projective transformation group $P L(n+1, \mathrm{R})$ of P_{n+1} which leaves Q invariant induces a transformation of Ξ^{n}.

Let $\tilde{O}(n+2)$ denote the set of all elements $s=\left(s_{\beta}^{\alpha}\right)$ of $G L(n+2, \mathrm{R})$ which leave the metric $\tilde{\varepsilon}$ invariant, that is, $\sum \tilde{\varepsilon}_{\lambda_{\mu}} s_{\alpha}^{\alpha} S_{\beta}^{\mu}=\tilde{\varepsilon}_{\alpha \beta}$, and denote by \widetilde{Q} the cone in E^{n+2} defined by the equation $\Sigma \tilde{\varepsilon}_{\alpha \beta} y^{\alpha} y^{\beta}=0$. Then $\tilde{O}(n+2)$ acts transitively on \tilde{Q} and every element of $\tilde{O}(n+2)$ leaves \tilde{Q} invariant. Hence it induces a transformation of Ξ^{n}. The group of transformations of Ξ^{n} induced from $\tilde{O}(n+2)$ is called the Möbius group of Ξ^{n} and denoted by $K(n) . ~ K(n)$ is isomorphic with the factor group of $\tilde{O}(n+2)$ by the subgroup $\{e,-e\}$, where e denotes the identity of $\tilde{O}(n+2)$.

Let $y=\left(y^{0}, y^{2}, y^{\infty}\right)$ and $\bar{y}=\left(\bar{y}^{0}, \bar{y}^{i}, \bar{y}^{\infty}\right)$ with $\sum \tilde{\varepsilon}_{\alpha \beta} y^{\alpha} y^{\beta}=0 \quad \sum \tilde{\varepsilon}_{\alpha \beta} \bar{y}^{\alpha} \bar{y}^{\beta}=0$ be two points in \tilde{Q}. Let f be a transformation of \tilde{Q} given by $\bar{y}=f(y)$. Then there exists an element $s=\left(s_{\mathcal{R}}^{\alpha}\right)$ in $\tilde{O}(n+2)$ such that $\bar{y}^{\alpha}=\Sigma s_{\beta}^{\alpha} y^{\beta}$. Corresponding with the transformation f of \widetilde{Q} we can induce a transformation of Ξ^{n} and denote it by the same letter f which is given by $\bar{x}=f(x)$ with $x^{2}=y^{2} / y^{0}, \bar{x}^{2}=\bar{y}^{2} / \bar{y}^{0}$. Then

$$
\bar{x}^{\imath}=\frac{\sum s_{\beta}^{2} y^{\beta}}{\Sigma s_{\beta}^{s_{\beta}^{0}} y^{\beta}}=\frac{s_{0}^{2} y^{0}+\Sigma s_{j}^{2} y^{j}+s_{\infty}^{2} y^{\infty}}{s_{0}^{0} y^{0}+\Sigma s_{j}^{0} y^{j}+s_{\infty}^{0} y^{\infty}}=\frac{s_{0}^{2}+\Sigma s_{j}^{\imath}\left(y^{j} / y^{0}\right)+s_{\infty}^{2}\left(y^{\infty} / y^{0}\right)}{s_{0}^{0}+\Sigma s_{j}^{0}\left(y^{\jmath} / y^{0}\right)+s_{\infty}^{0}\left(y^{\infty} / y^{0}\right)} .
$$

On the other hand, the equation $\sum \tilde{\varepsilon}_{\alpha \beta} y^{\alpha} y^{\beta}=0$ implies $\Sigma \varepsilon_{j k} y^{j} y^{k}-2 y^{0} y^{\infty}=0$, that is, $\Sigma \varepsilon_{j k} x^{j} x^{k}=2 y^{\infty} / y^{0}$. Hence we have

$$
\begin{equation*}
\bar{x}^{\imath}=\frac{s_{0}^{\imath}+\Sigma s_{j}^{\imath} x^{2}+\frac{1}{2} \Sigma s_{\infty}^{\imath} \varepsilon_{j k} x^{\jmath} x^{k}}{s_{0}^{0}+\Sigma s_{j}^{0} x^{3}+\frac{1}{2} \Sigma s_{\infty}^{\infty} \varepsilon_{j k} x^{\jmath} x^{k}} . \tag{2}
\end{equation*}
$$

Under the conditions $\sum \tilde{\varepsilon}_{\alpha \mu} s_{\alpha}^{2} s_{\beta}^{\prime \prime}=\tilde{\varepsilon}_{\alpha \beta}$, components s_{β}^{α} of s are completely determined by $s_{0}^{0}, s_{0}^{2}, s_{j}^{0}$ and s_{j}^{2}. Hence we set

$$
\begin{equation*}
a^{2}=\frac{s_{0}^{2}}{s_{0}^{0}}, \quad a_{j}^{2}=\frac{s_{j}^{2}}{s_{0}^{0}}, \quad a_{j}=\frac{s_{j}^{0}}{s_{0}^{0}} \tag{3}
\end{equation*}
$$

and we shall take (a^{2}, a_{y}^{2}, a_{j}) as a local coordinate system of $K(n)$ in the neighborhood of the identity defined by $s_{0}^{0} \neq 0$. We see, from the construction, that $\left(a_{j}^{i}\right)$ is an element of $C O(n)$, the conformal group with respect to the metric ε. Hence the group $K(n)$ is a semidirect product of $\mathrm{R}^{n}, C O(n)$ and $\left(\mathrm{R}^{n}\right)^{*}$.

Proposition 7. Let $\omega=\left(\omega^{2}, \omega_{j}^{2}, \omega_{j}\right)$ be the Maurer-Cartan forms on $K(n)$ which coincide with $d a^{2}, d a_{3}^{2}, d a_{3}$ at the identity. Then the equations of Maurer-Cartan of
$K(n)$ are given by

$$
\begin{align*}
& d \omega^{2}=-\Sigma \omega_{k}^{2} \wedge \omega^{k}, \\
& d \omega_{j}^{2}=-\Sigma \omega_{k}^{2} \wedge \omega_{j}^{k}-\omega^{2} \wedge \omega_{j}-\Sigma \varepsilon^{i k} \varepsilon_{j l} \omega_{k} \wedge \omega^{l}+\delta_{j}^{i} \Sigma \omega_{k} \wedge \omega^{k}, \tag{4}\\
& d \omega_{j}=-\Sigma \omega_{k} \wedge \omega_{J}^{k},
\end{align*}
$$

where $\left(\varepsilon^{\imath j}\right)=\left(\varepsilon_{i j}\right)^{-1}$.
Proof. If we set

$$
\left(\bar{\omega}_{\beta}^{\alpha}\right)=s^{-1} d s \in \tilde{\mathfrak{D}}(n+2), \quad \text { where } \quad s=\left(s_{\beta}^{\alpha}\right) \in \tilde{O}(n+2),
$$

then we have $\sum \tilde{\varepsilon}_{r \beta} \bar{\omega}_{\alpha}^{\gamma}+\sum \tilde{\varepsilon}_{\alpha \gamma} \omega_{\beta}^{\gamma}=0$, that is,

$$
\bar{\omega}_{0}^{0}+\bar{\omega}_{\infty}^{\infty}=0, \quad \bar{\omega}_{0}^{\infty}=0, \quad \bar{\omega}_{j}^{\infty}=\sum \varepsilon_{k j} \bar{\omega}_{0}^{k},
$$

$$
\begin{equation*}
\sum \varepsilon_{k j} \bar{\omega}_{i}^{k}+\sum \varepsilon_{i k} \bar{\omega}_{j}^{k}=0, \quad \bar{\omega}_{\infty}^{2}=\sum \varepsilon^{k i} \bar{\omega}_{k}^{0}, \quad \bar{\omega}_{\infty}^{0}=0 \tag{5}
\end{equation*}
$$

Thus we have

$$
\bar{\omega}=\left(\bar{\omega}_{\beta}^{a}\right)=\left(\begin{array}{ccc}
\bar{\omega}_{0}^{o} & \bar{\omega}_{j}^{o} & 0 \\
\bar{\omega}_{0}^{2} & \bar{\omega}_{j}^{\prime} & \Sigma \varepsilon^{i k} \bar{\omega}_{k}^{o} \\
0 & \Sigma \varepsilon_{k j} \bar{\omega}_{0}^{k} & -\bar{\omega}_{0}^{o}
\end{array}\right) .
$$

If we set $s=e$, then we get $\bar{\omega}_{\beta}^{\alpha}=d s_{\beta}^{\alpha}$. On the other hand, we get from (3)
(6)

$$
\begin{aligned}
& d a^{2}=d s_{0}^{2}, \\
& d a_{j}^{2}=d s_{j}^{2}-\delta_{j}^{i} d s_{0}^{0}, \\
& d a_{j}=d s_{j}^{0}
\end{aligned}
$$

at the identity e. Moreover $\omega^{2}=d a^{2}, \omega_{j}^{2}=d a_{j}^{2}, \omega_{j}=d a_{j}$ at the identity, hence we have

$$
\begin{align*}
& \omega^{2}=\bar{\omega}_{0}^{2}, \\
& \omega_{j}^{2}=\bar{\omega}_{j}^{2}-\delta_{j}^{i} \bar{\omega}_{0}^{0}, \tag{7}\\
& \omega_{j}=\bar{\omega}_{j}^{0} .
\end{align*}
$$

The equation $\bar{\omega}=s^{-1} d s$ implies $d \bar{\omega}_{\beta}^{\alpha}=-\Sigma \bar{\omega}_{r}^{\alpha} \wedge \bar{\omega}_{\beta}^{\gamma}$ from which our proposition follows, since the Lie group $K(n)$ is isomorphic with $\widetilde{O}(n+2)\{\{e,-e\}$.

The dual of Proposition 7 may be formulated as follows. Let $\mathfrak{m}=\mathrm{R}^{n}, \mathfrak{m}^{*}$ be its dual and let $\operatorname{co}(n)$ be the Lie algebra of $C O(n)$.

Proposition 8. The Lie algebra $\mathfrak{f}(n)$ of $K(n)$ is the direct sum:

$$
\mathfrak{f}(n)=\mathfrak{n}+\operatorname{co}(n)+\mathfrak{m}^{*}
$$

with the following bracket operation; If $u, v \in \mathfrak{m}, u^{*}, v^{*} \in \mathfrak{m}^{*}$ and $U, V \in \operatorname{co}(n)$, then

$$
\begin{aligned}
{[u, v] } & =0, \quad\left[u^{*}, v^{*}\right]=0 \\
{[U, u] } & =U u, \quad\left[u^{*}, U\right]=u^{*} U, \\
{[U, V] } & =U V-V U, \\
{\left[u, u^{*}\right] } & =u \otimes u^{*}-\widetilde{u^{*} \otimes u+u^{*}(u) \cdot I}
\end{aligned}
$$

where $\widetilde{u^{*} \otimes u}$ denotes its dual under the isomorphism $\mathfrak{m}^{*} \otimes \mathfrak{m} \rightarrow \mathfrak{m} \otimes \mathfrak{m}^{*}$ and I denotes the identity matrix of degree n.

The left invariant vector fields on $K(n)$ which coincide with $\partial / \partial a^{2}, \partial / \partial a_{j}^{2}, \partial / \partial a_{j}$ at the identity form a natural basis for $\mathfrak{m}, \mathfrak{c o}(n)$ and \mathfrak{m}^{*} respectively. Let 0 be the point of the Möbius space Ξ^{n} with coordinate $(0, \cdots, 0)$. Let H be the isotropy subgroup of $K(n)$ at 0 so that $\Xi^{n}=K(n) / H$. Then H is the semidirect product of $C O(n)$ and $\left(\mathrm{R}^{n}\right)^{*}$, and the Lie algera \mathfrak{h} of H is given by $\operatorname{co}(n)+\mathfrak{m}^{*}$. Proposition 8 implies that the homogeneous space $\Xi^{n}=K(n) / H$ is not weakly reductive.

In terms of the local coordinate system (a^{2}, a_{j}^{2}, a_{j}) of $K(n)$ which is valid in a neighborhood containing H, the subgroup H is defined by $a^{2}=0$. For the elements of H we have from

$$
\sum \tilde{\varepsilon}_{\lambda_{\mu}} s_{\alpha}^{2} s_{\beta}^{\mu}=\tilde{\varepsilon}_{\alpha \beta} \quad \text { and } \quad s_{0}^{2}=0
$$

that

$$
\begin{gather*}
s_{0}^{\infty}=0, \\
s_{\jmath}^{\infty}=0, \\
s_{0}^{0} S_{\infty}^{\infty}=1, \\
\Sigma_{k l} s_{i l}^{k} s_{j}^{l}=\varepsilon_{\imath \jmath}, \tag{8}\\
\sum \varepsilon_{k l} S_{2}^{k} s_{\infty}^{l}=s_{2}^{0} s_{\infty}^{\infty}, \\
\Sigma \varepsilon_{k l} s_{\infty}^{k} s_{\infty}^{l}=2 s_{\infty}^{0} s_{\infty}^{\infty} .
\end{gather*}
$$

We have also, from the equations (8),

$$
s_{\infty}^{2}=\frac{1}{s_{0}^{0}} \sum \varepsilon^{j k} s_{j}^{0} s_{k}^{\imath}
$$

and

$$
s_{\infty}^{0}=\frac{1}{2 s_{0}^{0}} \Sigma \varepsilon^{i k} s_{j}^{0} s_{k}^{0} .
$$

Thus the transformation induced by an element of H is given by the equation of the form;

$$
\begin{aligned}
& \bar{x}^{2}=\frac{\Sigma s_{l}^{2} x^{j}+\left(1 / 2 s_{0}^{0}\right) \sum \varepsilon^{a l} s_{a}^{0} s_{l}^{\imath} \varepsilon_{j k} x^{j} x^{k}}{s_{0}^{0}+\Sigma s_{j}^{0} x^{j}+\left(1 / 4 s_{0}^{0}\right) \sum \varepsilon^{a} s_{a}^{0} s_{l}^{\imath} \varepsilon_{j k} x^{j} x^{k}} \\
& =\frac{\Sigma^{v} a_{y}^{2} x^{\jmath}+(1 / 2) \sum \varepsilon^{a l} \varepsilon_{j k} a_{a} a_{x}^{2} x^{\jmath} x^{k}}{1+\Sigma a_{j} x^{j}+(1 / 4) \sum \varepsilon^{a l} \varepsilon_{j_{k}} a_{a} a_{l} x^{\jmath} x^{k}}
\end{aligned}
$$

hence we have

$$
\begin{equation*}
\bar{x}^{\imath}=\Sigma a_{j}^{2} x^{j}+\frac{1}{2} \Sigma\left(\varepsilon^{a l} \varepsilon_{j k} a_{a} a_{l}^{2}-a_{j}^{2} a_{k}-a_{k}^{2} a_{j}\right) x^{\jmath} x^{k}+\cdots \tag{9}
\end{equation*}
$$

§ 5. Cartan connections.

Let M be a manifold of dimension n, G a Lie group, H a closed subgroup of G with $\operatorname{dim} G / H=n$ and P a principal fibre bundle over M with structure group H.

Since H acts on P on the right, every element A of the Lie algebra \mathfrak{h} of H, as is well known, induces in a natural manner a vector field on P, called the fundamental vector field corresponding to A. This vector field will be denoted by A^{*}. Since H acts along fibres, A^{*} is vertical, that is, tangent to the fibre at each point. For each element $a \in H$, the action of a on P will be denoted by R_{a}. We are now in position to define the notion of Cartan connection. It is a 1 -form ω on P with value in the Lie algebra \mathfrak{g} of G satisfying the following conditions:
(a) $\omega\left(A^{*}\right)=A$ for every $A \in \mathfrak{h}$
(b) $R_{a}^{*} \omega=a d\left(a^{-1}\right) \cdot \omega$, that is, $\omega\left(R_{a} X\right)=a d\left(a^{-1}\right) \cdot \omega(X)$ for every $a \in H$ and every vector X of P, where $a d$ denotes the adjoint representation of H on g;
(c) $\omega(X) \neq 0$ for every non zero vector X of P.

The condition (c) means that ω defines an isomorphism of the tangent space at each point of P onto the Lie algebra g and hence implies the absolute parallelizability of P.

Let G be the Möbius group $K(n)$ acting on an n-dimensional Möbius space and H be an isotropy subgroup of G so that G / H is the Möbius space. Let M be an arbitrary manifold of dimension n and P be a principal fibre bundle over M with structure group H. We fix the natural basis for the Lie algebra $\mathfrak{f}(n)$ as described in § 4.

A Cartan connection ω in P is then given, with respect to this basis, by a set of 1 -forms $\omega^{2}, \omega_{\jmath}^{2}, \omega_{j}$ on P.

The structure equations of the Cartan connection ω are given by

$$
\begin{align*}
& d \omega^{2}=-\Sigma \omega_{k}^{2} \wedge \omega^{k}+\Omega^{2} \tag{I}\\
& d \omega_{j}^{2}=-\Sigma \omega_{k}^{2} \wedge \omega_{j}^{k}-\omega^{2} \wedge \omega_{j}-\Sigma \varepsilon^{i k} \varepsilon_{j l} \omega_{k} \wedge \omega^{l}+\delta_{j}^{i} \Sigma \omega_{k} \wedge \omega^{k}+\Omega_{j}^{2} \tag{II}\\
& d \omega_{j}=-\Sigma \omega_{k} \wedge \omega_{j}^{k}+\Omega_{j} . \tag{III}
\end{align*}
$$

For the sake of simplicity, we shall take these equations as a definition of the 2 forms $\Omega^{i}, \Omega_{j}^{2}, \Omega_{j}$. We call (Ω^{i}) the torsion form of the Cartan connection ω and ($\Omega_{j}^{2}, \Omega_{j}$) the curvature form of ω.

Proposition 9. The torsion and the curvature forms can be written as follows:

$$
\begin{align*}
& \Omega^{i}=\frac{1}{2} \Sigma K^{i}{ }_{k l} \omega^{k} \wedge \omega^{l}, \\
& \Omega_{j}^{2}=\frac{1}{2} \Sigma K^{i}{ }_{j k l} \omega^{k} \wedge \omega^{l}, \tag{10}\\
& \Omega_{\jmath}=\frac{1}{2} \Sigma K_{j k l} \omega^{k} \wedge \omega^{l}
\end{align*}
$$

where $K^{i}{ }_{k l}, K^{i}{ }_{j k l}$ and $K_{j k l}$ are functions on P.
Proof. Condition (c) implies that the algebra of differential forms on P is generated by $\omega^{2}, \omega_{j}^{i}, \omega_{j}$ and functions.

To show that the torsion and the curvature forms do not involves ω_{j}^{2} and ω_{j}, it is sufficient to prove the following three statements;
(i) The forms ω^{2}, restricted to each fibre of P, vanish identically;
(ii) The forms ω_{j}^{2} and ω_{j}, restricted to each fibre, remain linearly independent at every point of the fibre;
(iii) The torsion and curvature forms, restricted to each fibre, vanish identically.

Condition (a) implies (i) and (ii).
To prove (iii), consider the restriction of the structure equation (I) to a fibre, then by (i), the torsion form, restricted to the fibre, vanishes identically. By condition (a), the restriction of the structure equations (II) and (III) to a fibre must coincide with the Maurer-Cartan equation of H. It follows that the curvature form, restricted to the fibre, vanishes identically.
(Q.E.D.)

In order that the form $\omega=\left(\omega^{2}, \omega_{j}^{i}, \omega_{j}\right)$ defines a Cartan connection in P, the following conditions must be imposed on ω^{2} and ω_{j}^{2};
(a^{\prime}) $\omega^{i}\left(A^{*}\right)=0$ and $\omega_{j}^{i}\left(A^{*}\right)=A_{j}^{i}$ for every $A=\left(A_{j}^{2}, A_{j}\right) \in \operatorname{co}(n)+\mathfrak{m}^{*}=\mathfrak{h}$ where A^{*} is the fundamental vector field corresponding to A;
(b') $R_{a}^{*}\left(\omega^{2}, \omega_{j}^{i}\right)=a d\left(\alpha^{-1}\right)\left(\omega^{2}, \omega_{j}^{i}\right)$ for every $a \in H$, where

$$
a d\left(a^{-1}\right): \mathfrak{m}+\operatorname{co}(n) \rightarrow \mathfrak{m}+\operatorname{co}(n)
$$

is the mapping

$$
\mathfrak{f}(n) / \mathfrak{m}^{*} \rightarrow \mathfrak{f}(n) / \mathfrak{m}^{*}
$$

induced by

$$
a d\left(a^{-1}\right): \mathfrak{f}(n) \rightarrow \mathfrak{f}(n),
$$

(c') If X is a tangent vector to P such that $\omega^{i}(X)=0$, then X is vertical.
Proposition 10. Let Pbe a principal fibre bundle over M with structure group H. Given ω^{2}, and ω_{j}^{2} satisfying (a^{\prime}), (b^{\prime}), (c^{\prime}) and

$$
\begin{equation*}
d \omega^{2}=-\Sigma \omega_{k}^{i} \wedge \omega^{k} \tag{11}
\end{equation*}
$$

then there exists a unique Cartan connection $\omega=\left(\omega^{2}, \omega_{j}^{2}, \omega_{j}\right)$ with the following properties:

$$
\begin{gather*}
\Sigma \Omega_{i}^{2}=0, \quad \text { i.e., } \Sigma K^{i}{ }^{i} j k=0 \tag{12}\\
\Sigma K^{i}{ }_{j i l}=0 .
\end{gather*}
$$

Proof. Uniqueness. We shall study first the relationship between two Cartan connections $\omega=\left(\omega^{2}, \omega^{2}, \omega_{j}\right)$ and $\bar{\omega}=\left(\omega^{2}, \omega_{j}^{2}, \bar{\omega}_{j}\right)$ with the given ($\left.\omega^{2}, \omega_{j}^{i}\right)$. By conditions (a) and (c), we can write

$$
\bar{\omega}_{j}-\omega_{j}=\Sigma A_{j k} \omega^{k},
$$

where the coefficients $A_{j k}$ are functions on P. Let

$$
\Omega_{j}^{2}=\frac{1}{2} \Sigma K^{i}{ }_{j k l} \omega^{k} \wedge \omega^{l}
$$

and

$$
\bar{\Omega}_{j}^{i}=\frac{1}{2} \Sigma \bar{K}^{i}{ }_{j k l} \omega^{k} \wedge \omega^{l}
$$

be defined by the structure equations (II) of the Cartan connections ω and $\bar{\omega}$ respectively. Then we have

$$
\begin{aligned}
\bar{\Omega}_{j}^{2}-\Omega_{j}^{i} & =\omega^{2} \wedge\left(\bar{\omega}_{j}-\omega_{j}\right)+\Sigma \varepsilon^{i k} \varepsilon_{j l}\left(\bar{\omega}_{k}-\omega_{k}\right) \wedge \omega^{l}-\delta_{j}^{i} \Sigma\left(\bar{\omega}_{k}-\omega_{k}\right) \wedge \omega^{k} \\
& =\Sigma A_{j k} \omega^{2} \wedge \omega^{k}+\Sigma \varepsilon^{i k_{j} \varepsilon_{j l}} A_{k m} \omega^{m} \wedge \omega^{l}-\delta_{j}^{i} \Sigma A_{k l} \omega^{l} \wedge \omega^{k} \\
& =\Sigma\left(-\delta_{l}^{i} A_{j k}+\Sigma \varepsilon^{i a} \varepsilon_{j l} A_{a k}+\delta_{j}^{i} A_{k l}\right) \omega^{k} \wedge \omega^{l}
\end{aligned}
$$

that is,

$$
\bar{K}_{j k l}^{i}-K^{i}{ }_{j k l}=-\delta_{l}^{i} A_{j k}+\delta_{k}^{i} A_{j l}+\sum \varepsilon^{i a} \varepsilon_{j l} A_{a k}-\sum \varepsilon^{i a} \varepsilon_{j k} A_{a l}+\delta_{j}^{i}\left(A_{k l}-A_{l k}\right) .
$$

Hence

$$
\begin{aligned}
\Sigma \bar{K}^{i}{ }_{i k l}-\Sigma K^{i}{ }_{i k l} & =n\left(A_{k l}-A_{l k}\right), \\
\Sigma \bar{K}^{i}{ }_{j i l}-\Sigma K^{i}{ }_{j i l} & =(n-1) A_{j l}-A_{l j}+\varepsilon_{j l} \Sigma \varepsilon^{k a} \Lambda_{a k} .
\end{aligned}
$$

The conditions (12) and (13) imply

$$
\begin{equation*}
A_{k l}=A_{l k} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
(n-1) A_{j l}-A_{l j}+\varepsilon_{j l} \Sigma \varepsilon^{k a} A_{a k}=0 . \tag{15}
\end{equation*}
$$

From (14) and (15), we have

$$
(n-2) A_{j l}+\varepsilon_{j l} \Sigma \varepsilon^{k a} A_{a k}=0 .
$$

Multiplying by $\varepsilon^{j l}$ and summing with respect to j and l, we obtain

$$
(n-1) \sum \varepsilon^{k a} A_{a k}=0
$$

hence

$$
\sum_{\varepsilon^{k a}} A_{a k}=0 \quad \text { if } \quad n>1 .
$$

Thus we get $A_{j l}=0$ if $n>2$, in other words, $\bar{\omega}=\omega$ if $n>2$.
Existence. Assuming that there is at least one Cartan connection $\bar{\omega}=\left(\omega^{2}, \omega_{j}^{2}, \bar{\omega}_{j}\right)$ with the given ($\omega^{2}, \omega_{j}^{i}$) satisfying (11), we shall show the existence of a Cartan connection $\omega=\left(\omega^{2}, \omega_{j}^{2}, \omega_{j}\right)$ satisfying (12) and (13). If we define

$$
\begin{equation*}
A_{j k}=\frac{1}{n-2} \Sigma \bar{K}_{j i k}^{i}-\frac{1}{n(n-2)} \Sigma \bar{K}^{i}{ }_{2 j k}-\frac{1}{2(n-1)(n-2)} \varepsilon_{j k} \Sigma \varepsilon^{a}{ }^{a} \bar{K}_{a i l}{ }_{a i l} \tag{16}
\end{equation*}
$$

and set

$$
\omega_{j}=\bar{\omega}_{j}-\Sigma A_{j k} \omega^{k}
$$

then $\omega=\left(\omega^{2}, \omega_{j}^{2}, \omega_{j}\right)$ is a Cartan connection with the required properties.
To complete the proof of the proposition, we have now only to prove that there exists at least one Cartan connection ω with the given $\left(\omega^{2}, \omega_{j}^{i}\right)$. Let $\left\{U_{\alpha}\right\}$ be a locally finite open covering of M with a partition of unity $\left\{\varphi_{\alpha}\right\}$. If ω_{α} is a Cartan connection in $P \mid U_{\alpha}$ with the given ($\omega^{2}, \omega_{j}^{i}$), then $\Sigma\left(\varphi_{\alpha} \circ \pi\right) \omega_{\alpha}$ is a Cartan connection in P with the given ($\omega^{2}, \omega_{j}^{i}$) where $\pi: P \rightarrow M$ is the projection. Hence, our problem is reduced to the case where P is a trivial bundle. Fix a cross section $\sigma: M \rightarrow P$, and set $\omega_{j}(X)=0$ for every vector tangent to $\sigma(M)$. If Y is an arbitrary vector of P, then we can write uniquely

$$
Y=R_{a} X+V
$$

where X is a vector tangent to $\sigma(M)$ and $a \in H$ and V is a vector tangent to a fibre of P so that V can be extended to a unique fundamental vector field A^{*} of P with $A \in \mathfrak{h}$. By condition (a) and (b), a Cartan connection ω must satisfy the following condition:

$$
\begin{equation*}
\omega(Y)=a d\left(a^{-1}\right) \cdot \omega(X)+A \tag{Q.E.D.}
\end{equation*}
$$

This determines $\omega_{j}(Y)$.
Proposition 11. Let P be a principal fibre bundle over M with structure group H. If $\omega=\left(\omega^{2}, \omega_{j}^{2}, \omega_{j}\right)$ is a Cartan connection with the properties (11), (12) and (13) of Proposition 10, then its curvature forms possess the following properties:

$$
\begin{align*}
& \Sigma \Omega_{\jmath}^{i} \wedge \omega^{j}=0, \quad \text { that is, } \quad K^{i}{ }_{j k l}+K^{i}{ }_{k l j}+K^{i}{ }_{l j k}=0 . \tag{17}\\
& \Sigma \Omega_{\jmath} \wedge \omega^{j}=0, \quad \text { that is, } \quad K_{j k l}+K_{k l j}+K_{l j k}=0, \tag{18}
\end{align*}
$$

$$
\begin{equation*}
\text { If } \Omega_{j}^{2}=0 \text { and } \operatorname{dim} M>3 \text {, then } \Omega_{j}=0 \text {. } \tag{19}
\end{equation*}
$$

Proof. (17). From the structure equation (II) of a Cartan connection, we have

$$
\begin{aligned}
\Sigma \Omega_{j}^{i} \wedge \omega^{j}= & \Sigma d \omega_{j}^{2} \wedge \omega^{j}+\Sigma \omega_{k}^{2} \wedge \omega_{j}^{k} \wedge \omega^{j}+\Sigma \omega^{i} \wedge \omega_{\jmath} \wedge \omega^{j} \\
& +\Sigma \varepsilon^{i k} \varepsilon_{j l} \omega_{k} \wedge \omega^{2} \wedge \omega^{j}-\Sigma \partial_{j}^{i} \omega_{k} \wedge \omega^{k} \wedge \omega^{j} \\
= & \Sigma d \omega_{j}^{2} \wedge \omega^{j}+\Sigma \omega_{k}^{2} \wedge\left(-d \omega^{k}\right) \\
= & d \Sigma\left(\omega_{j}^{i} \wedge \omega^{j}\right) \\
= & d\left(-d \omega^{i}\right) \\
= & 0 .
\end{aligned}
$$

(18). From the structure equation (III), we get

$$
\begin{aligned}
\Sigma \Omega_{\jmath} \wedge \omega^{j} & =\Sigma d \omega_{\jmath} \wedge \omega^{\jmath}+\Sigma \omega_{k} \wedge \omega_{j}^{k} \wedge \omega^{\jmath} \\
& =\Sigma d \omega_{\jmath} \wedge \omega^{j}+\Sigma \omega_{k} \wedge\left(-d \omega^{k}\right) \\
& =d \Sigma\left(\omega_{\jmath} \wedge \omega^{j}\right) .
\end{aligned}
$$

On the other hand, taking the trace of the structure equation (II) and taking account of (12) we get

$$
\Sigma d \omega_{i}^{2}=n \Sigma \omega_{i} \wedge \omega^{2},
$$

that is $\Sigma \omega_{i} \wedge \omega^{2}$ is a exact form, hence

$$
\Sigma \Omega_{\jmath} \wedge \omega^{\jmath}=0 .
$$

(19). By applying exterior differentiation to the structure eqation (II) and setting $\Omega_{j}^{\prime}=0$, we obtain

$$
\omega^{2} \wedge \Omega_{j}-\sum \varepsilon^{i k} \varepsilon_{j l} \Omega_{k} \wedge \omega^{l}+\delta_{j}^{i} \Sigma \Omega_{k} \wedge \omega^{k}=0 .
$$

This, together with (18), implies

$$
\omega^{2} \wedge \Omega_{j}-\sum \varepsilon^{i k} \varepsilon_{j l} \Omega_{k} \wedge \omega^{l}=0,
$$

that is,

$$
\Sigma \varepsilon^{i k} \Omega_{k} \wedge \omega^{j}-\Sigma \varepsilon^{j k} \Omega_{k} \wedge \omega^{2}=0
$$

Then $\Sigma \varepsilon^{i k} \Omega_{k} \wedge \omega^{j} \wedge \omega^{2}=0$. Hence $\Sigma_{\varepsilon^{i k}} \Omega_{k} \wedge \omega^{2}=0$ provided that $\operatorname{dim} M>3$. This, together with Proposition 9, implies that there exist 1 -forms τ^{2} such that

$$
\Sigma_{\varepsilon^{i k} \Omega_{k}=\tau^{\imath} \wedge \omega^{2} .}
$$

Thus we have

$$
\begin{aligned}
0 & =\tau^{2} \wedge \omega^{2} \wedge \omega^{j}-\tau^{j} \wedge \omega^{j} \wedge \omega^{2} \\
& =\left(\tau^{2}+\tau^{j}\right) \wedge \omega^{2} \wedge \omega^{j} .
\end{aligned}
$$

This implies that $\tau^{i}+\tau^{j}$ is a linear combination of ω^{2} and ω^{i} for any i and j $(i \neq j)$. Therefore we can easily see that τ^{2} is proportional to ω^{i}. Hence we have $\Omega_{\jmath}=0$.
(Q.E.D.)

§6. Conformal structures and conformal connections.

Let $H^{2}(n)$ be the subset of $G^{2}(n)$ consisting of elements ($a_{j}^{2}, a_{j k}^{i}$) with $\Sigma \varepsilon_{k l} a_{i}^{k} a_{j}^{l}$ $=\rho \varepsilon_{\imath j}(\rho>0)$, that is, $\left(a_{j}^{i}\right) \in \operatorname{CO}(n)$, and $a_{j k}^{2}=\sum \varepsilon^{a} \varepsilon_{j k} a_{a} a_{l}^{2}-a_{j}^{2} a_{k}-a_{k}^{2} a_{j}$ for some (a_{j})

Proposition 12. $H^{2}(n)$ forms a subgroup of $G^{2}(n)$ of dimension $n(n+1) / 2+1$.
Proof. Let $\left(a_{j}^{2}, a_{j k}^{2}\right)$ and $\left(\bar{a}_{j}^{i}, \bar{a}_{j k}^{i}\right)$ be in $H^{2}(n)$. By the consideration in $\S 3$, we have

$$
\left(\bar{a}_{j}^{i}, \bar{a}_{j k}^{i}\right)\left(a_{j}^{2}, a_{j k}^{2}\right)=\left(\Sigma \bar{a}_{l}^{i} a_{j}^{l}, \sum \bar{a}_{l}^{i} a_{j k}^{l}+\sum \bar{a}_{l m}^{i} a_{j}^{l} a_{k}^{m}\right) .
$$

Since $a_{j k}^{2}=\sum \varepsilon^{a l} \varepsilon_{j k} a_{a} a_{l}^{i}-a_{j}^{2} a_{k}-a_{k}^{2} a_{j}$ and $\bar{a}_{j k}^{2}=\sum \varepsilon^{a l} \varepsilon_{j k} \bar{a}_{a} \bar{a}_{l}^{i}-\bar{a}_{j}^{i} \bar{a}_{k}-\bar{a}_{k}^{i} \bar{a}_{j}$, we get

$$
\Sigma \bar{a}_{l}^{i} a_{j k}^{l}+\Sigma \bar{a}_{l m}^{i} a_{j}^{l} a_{k}^{m}=\Sigma \varepsilon^{a l} \varepsilon_{j k} b_{a} b_{l}^{i}-b_{j}^{i} b_{k}-b_{k}^{i} b_{j}
$$

where $b_{j}=a_{j}+\sum \bar{a}_{k} a_{j}^{k}, b_{j}^{2}=\sum \bar{a}_{l}^{i} a_{j}^{l} \in C O(n)$. This implies $\left(\bar{a}_{j}^{i}, \bar{a}_{j k}^{i}\right)\left(a_{j}^{2}, a_{j k}^{2}\right) \in H^{2}(n)$.

The Lie algebra $\mathfrak{h}^{2}(n)$ of $H^{2}(n)$ is the direct sum:

$$
\mathfrak{h}^{2}(n)=\operatorname{co}(n)+\operatorname{co}(n)^{(1)}
$$

with the following bracket operation; If $\left(A_{j}^{i}\right),\left(B_{j}^{i}\right) \in \operatorname{co}(n)$ and $\left(A_{j k}^{2}\right),\left(B_{j k}^{2}\right) \in \operatorname{co}(n)^{(1)}$, then

$$
\begin{aligned}
& {\left[\left(A_{j}^{i}\right),\left(B_{j}^{i}\right)\right]=\left(\Sigma A_{k}^{2} B_{j}^{k}-\Sigma B_{k}^{\imath} A_{j k}^{k}\right) \in \operatorname{co}(n),} \\
& {\left[\left(A_{j}^{i}\right),\left(B_{j k}^{\imath}\right)\right]=\left(\Sigma A_{l}^{\imath} B_{j k}^{l}-\Sigma B_{l k}^{i} A_{j}^{l}-\Sigma B_{l j}^{i} A_{k}^{l}\right) \in \operatorname{co}(n)^{(1)}}
\end{aligned}
$$

and

$$
\left[\left(A_{j k}^{2}\right),\left(B_{j k}^{i}\right)\right]=0 .
$$

As in $\S 4$, let H be the isotropy subgroup at $0 \in \Xi^{n}$ of $K(n)$ acting on the Möbius space Ξ^{n}.

Proposition 13. For each element $a \in H$, let f be the transformation of Ξ^{n} induced by a as in $\S 4$. Then $a \rightarrow j_{0}^{2}(f)$ gives an isomorphism of H onto $H^{2}(n)$. Moreover if $a \in H$ has coordinate (a^{2}, a_{j}^{2}, a_{j}) where $a^{2}=0$, with respect to the local coordinate system in $K(n)$ induced in $\S 4$, then the corresponding element of $H^{2}(n)$ has coordinate ($a_{j}^{2}, \sum \varepsilon^{a} \varepsilon_{\varepsilon_{k k}} a_{a} a_{l}^{2}-a_{j}^{2} a_{k}-a_{k}^{2} a_{j}$).

Proof. This is evident from the explicit expression (9) of the transformation f. (cf. Proposition 2)
(Q.E.D.)

The induced isomorphism of \mathfrak{h} onto $\mathfrak{h}^{2}(n)$ is given by $\left(A_{j}^{2}, A_{j}\right) \rightarrow\left(A_{j}^{2}, \Sigma \varepsilon^{i} \varepsilon_{j k} A_{a}\right.$ $-\delta_{j}^{i} A_{k}-\delta_{k}^{i} A_{j}$).

From Proposition 13 and the proof of Proposition 12, we see that the multiplication in H is given by $\left(\bar{a}_{j}^{i}, \bar{a}_{j}\right)\left(a_{j}^{2}, a_{j}\right)=\left(\sum \bar{a}_{k}^{i} a_{j}^{k}, a_{j}+\sum \bar{a}_{k} a_{j}^{k}\right)$.

From Propositions 2, 3 and 13, a $C O(n)$-structure on a manifold M is equivalent to the reduction of the structure group $G^{2}(n)$ of $P^{2}(M)$ to the subgroup $H^{2}(n)$. (cf. [2]). ${ }^{4}$

A conformal structure on a manifold M is, by definition, a sub-bundle P of $P^{2}(M)$ with structure group $H^{2}(n)$.

Let $\theta=\left(\theta^{i}, \theta_{j}^{i}\right)$ be the canonical form on $P^{2}(M)$. Given a conformal structure P on M, let us denote by the same letters the restriction of θ to P.

A conformal connection associated with a conformal structure P is, by definition, a Cartan connection $\omega=\left(\omega^{2}, \omega_{j}^{2}, \omega_{j}\right)$ in P such that $\omega^{2}=\theta^{i}$.

Theorem 14. For each conformal structure P of a manifold M, there is a unique conformal connection $\omega=\left(\omega^{2}, \omega_{j}^{2}, \omega_{j}\right)$ such that

$$
\begin{gather*}
\omega^{i}=\theta^{i} \text { and } \omega_{j}^{i}=\theta_{j}^{i} \text { so that } d \omega^{2}=-\Sigma \omega_{k}^{i} \wedge \omega^{k}, \tag{i}\\
\Sigma \Omega_{i}^{i}=0, \tag{ii}\\
\Sigma K^{i}{ }_{j i l}=0 . \tag{iii}
\end{gather*}
$$

Proof. This is an immediate consequence of Propositions 4, 6 and 10.

The unique conformal connection for P given in Theorem 14 is called the normal conformal connection associated with the conformal structure P.

The cohomology class determined by the torsion form $\left(\Omega^{i}\right)$ is called the first order structure tensor of the conformal structure P, and the cohomology classes determined by the curvature forms $\left(\Omega_{j}^{i}\right)$ and $\left(\Omega_{j}\right)$ are called the second and the third order structure tensors of P respectively.

A Möbius space $\Xi^{n}=K(n) / H$ of dimension n has a natural conformal structure. The normal conformal connection ($\omega^{i}, \omega_{j}^{2}, \omega_{j}$) associated with it corresponds to the Maurer-Cartan form of the group $K(n)$ and its structure equations are nothing but the equations of Maurer-Cartan for the group $K(n)$ so that $\Omega^{i}=0, \Omega_{j}^{i}=0$ and $\Omega_{j}=0$.

§ 7. Natural frames and coefficients of conformal connections.

Let P be a conformal structure on a manifold M and U a coordinate neighborhood in M with local coordinate system (x^{1}, \cdots, x^{n}). Let $\sigma: U \rightarrow P$ be a local cross section given by $\left(x^{i}\right) \rightarrow\left(x^{2}, \sigma_{j}^{2}, \sigma_{j k}^{2}\right)$ and $U \times H^{2}(n) \cong P \mid U$ the isomorphism induced by σ. Let ($a_{j}^{2}, a_{j k}^{2}$), with $\sum \varepsilon_{k l} a_{i}^{k} a_{j}^{l}=\rho \varepsilon_{i j}(\rho>0)$ and $a_{j k}^{2}=\Sigma \varepsilon^{a l_{\varepsilon_{j k}} a_{a} a_{l}^{2}-a_{j}^{i} a_{k}-a_{k}^{i} a_{j} \text {, be the }}$ coordinate in $H^{2}(n)$. Then the natural coordinate system ($u^{2}, u_{\jmath}^{2}, u_{j k}^{2}$) in $P \mid U$ can be written as

[^3]\[

$$
\begin{aligned}
u^{i} & =x^{2}, \\
u_{j}^{2} & =\Sigma \sigma_{k}^{i} a_{j}^{k}, \\
u_{j k}^{i} & =\Sigma \sigma_{l}^{i} a_{j k}^{l}+\Sigma \sigma_{l m}^{i} a_{j}^{l} a_{k}^{m} .
\end{aligned}
$$
\]

Let $\theta=\left(\theta^{i}, \theta_{j}^{i}\right)$ be the canonical form on $P^{2}(M)$ restricted to P and set

$$
\begin{aligned}
& \psi^{2}=\sigma^{*} \theta^{i}, \\
& \psi_{j}^{i}=\sigma^{*} \theta_{j}^{i} .
\end{aligned}
$$

Then we obtain the following formulae (cf. §3);

$$
\begin{align*}
& \theta^{i}=\Sigma b_{k}^{i} \psi^{k}, \tag{20}\\
& \theta_{j}^{i}=\Sigma b_{k}^{i} d a_{j}^{k}-\Sigma \varepsilon^{i} \varepsilon_{j k} a_{l} \theta^{k}+a_{j} \theta^{i}+\delta_{j}^{i} \Sigma a_{k} \theta^{k}+\Sigma b_{k}^{i} \psi_{L}^{k} a_{j}^{l},
\end{align*}
$$

where $\left(b_{j}^{i}\right)$ denotes the inverse matrix of $\left(a_{j}^{i}\right)$. Let $\left(\omega^{2}, \omega_{j}^{2}, \omega_{j}\right)$ be the normal conformal connection in P and set

$$
\begin{aligned}
& \psi^{2}=\sigma^{*} \omega^{2}=\Sigma \Pi_{k}^{i} d x^{k}, \\
& \psi_{j}^{i}=\sigma^{*} \omega_{j}^{i}=\Sigma \Pi_{k j}^{i} d x^{k}, \\
& \psi_{J}=\sigma^{*} \omega_{j}=\Sigma \Pi_{k j} d x^{k} .
\end{aligned}
$$

Then we obtain the following formulae:

$$
\begin{align*}
& \omega^{2}=\Sigma b_{k}^{2} \psi^{k}, \\
& \omega_{j}^{i}=\Sigma b_{k}^{i} d a_{j}^{k}-\Sigma \varepsilon^{i l} \varepsilon_{j k} a_{l} \omega^{k}+a_{j} \omega^{i}+\delta_{j}^{i} \Sigma a_{k} \omega^{k}+\Sigma b_{k}^{2} \psi_{l}^{k} a_{j}^{l}, \tag{21}\\
& \omega_{j}=d a_{j}-\Sigma a_{k} \omega_{j}^{k}+a_{j} \Sigma a_{k} \omega^{k}+\Sigma a_{j}^{k} \psi_{k}-\frac{1}{2} \Sigma \varepsilon^{a b_{\varepsilon_{j k}} a_{a} a_{b} \omega^{k}}
\end{align*}
$$

We call $\Pi_{k}^{i}, \Pi_{j k}^{i}$ and $\Pi_{j k}$ the coefficients of the normal conformal connection with respect to the local cross section σ.

Proposition 15. Let P be a conformal structure on M and $\left(\omega^{i}, \omega_{j}^{i}, \omega_{j}\right)$ the normal conformal connection in P. Let U be a coordinate neighborhood in M with local coordinate system $\left(x^{1}, \cdots, x^{n}\right)$. Then there is a unique local cross section $\sigma: U \rightarrow P^{2}(M)$ such that

$$
\sigma^{*} \omega^{i}=d x^{2} \quad \text { and } \quad \sigma^{*} \Sigma \omega_{i}^{2}=0
$$

If we set for such a σ

$$
\sigma^{*} \omega_{j}^{i}=\Sigma \Pi_{k j}^{i} d x^{k} \quad \text { and } \quad \sigma^{*} \omega_{j}=\Sigma \Pi_{k j} d x^{k}
$$

then

$$
\Pi_{j k}^{i}=\Pi_{k ; j}^{i} \quad \text { and } \quad \Pi_{j k}=\Pi_{k j} .
$$

Proof. For an arbitrary point u of P, we choose a local coordinate system (x^{1}, \cdots, x^{n}) with origin $x=\pi(u)$ such that, in terms of the local coordinate system ($u^{2}, u_{j}^{2}, u_{j k}^{2}$) in $P^{2}(M)$ induced by (x^{1}, \cdots, x^{n}), u is given by ($0, \delta_{j}^{i}, *$). Let $\bar{\sigma}: ~ U \rightarrow P^{2}(M)$ be the cross section given by

$$
u^{2}=x^{2}, \quad u_{j}^{i}=\delta_{j}^{i}, \quad u_{j k}^{i}=-\Gamma_{j k}^{i},
$$

where each $\Gamma_{j k}^{i}$ is a certain function of x^{1}, \cdots, x^{n}. We take σ as the cross section given by

$$
u^{i}=x^{i}, \quad u_{j}^{2}=\delta_{j}^{i}, \quad u_{j k}^{i}=-\Pi_{j k}^{i},
$$

where

$$
\Pi_{j k}^{i}=\Gamma_{j k}^{i}-\frac{1}{n}\left(\delta_{j}^{i} \Sigma \Gamma_{n k}^{h}+\delta_{k}^{i} \Sigma \Gamma_{h j}^{h}-\Sigma \varepsilon^{i a} \Gamma_{n a}^{h} \varepsilon_{j k}\right)
$$

Then, from the expression for θ_{j}^{i} in terms of $\left(u_{i}, u_{j}^{2}, u_{j k}^{2}\right)$ given in $\S 3$, we obtain

$$
\sigma^{*} \omega_{j}^{2}=\Sigma \Pi_{k j}^{i} d x^{k} .
$$

Clearly, σ is a cross section with the desired properties.
To prove the uniqueness, let $\tilde{\sigma}: U \rightarrow P^{2}(M)$ be another cross section with the desired properties and set

$$
\tilde{\sigma}^{*} \omega_{j}^{2}=\Sigma \widetilde{\Pi}_{k j}^{i} d x^{k}
$$

From $(21)_{2}$ and $\sigma^{*} \omega^{2}=\tilde{\sigma}^{*} \omega^{2}=d x^{2}$, we obtain

$$
\begin{aligned}
& \sigma^{*} \omega_{j}^{2}=\Sigma \Pi_{k j}^{i} d x^{k}=\left(\sigma^{*} a_{j}\right) d x^{2}+\delta_{j}^{i} \Sigma\left(\sigma^{*} a_{k}\right) d x^{k}-\Sigma \varepsilon^{i l} \varepsilon_{j k}\left(\sigma^{*} a_{l}\right) d x^{k}+\psi_{j}^{i}, \\
& \tilde{\sigma}^{*} \omega_{j}^{2}=\Sigma \widetilde{\Pi}_{k j}^{i} d x^{k}=\left(\tilde{\sigma}^{*} a_{j}\right) d x^{2}+\delta_{j}^{i} \Sigma\left(\tilde{\sigma}^{*} a_{k}\right) d x^{k}-\Sigma \varepsilon^{i l} \varepsilon_{j k}\left(\tilde{\sigma}^{*} a_{l}\right) d x^{k}+\psi_{j}^{2} .
\end{aligned}
$$

Hence we have

$$
\tilde{\Pi}_{k j}^{i}-\Pi_{k j}^{i}=\delta_{k}^{i} \varphi_{j}+\delta_{j}^{i} \varphi_{k}-\sum_{\varepsilon}^{i} \varepsilon_{j k} \varphi_{l} .
$$

where we set $\varphi_{j}=\left(\tilde{\sigma}^{*} a_{j}\right)-\left(\sigma^{*} a_{j}\right)$. From

$$
\sigma^{*} \Sigma \omega_{i}^{2}=\tilde{\sigma}^{*} \Sigma \omega_{i}^{i}=0,
$$

we obtain

$$
\varphi_{1}=\cdots=\varphi_{n}=0 .
$$

The remaining assertions are immediate consequences of the facts that $\Omega^{i}=0$ and $\Sigma \Omega_{i}^{2}=0$.
(Q.E.D.)

We call σ in Proposition 15 the natural cross section or the natural frame of P associated with (x^{1}, \cdots, x^{n}).

§ 8. Riemannian connections and conformal connections.

The group $G^{1}(n)=G L(n, R)$ can be considered as the subgroup of $G^{2}(n)$ consisting of the elements $\left(a_{j}^{2}, a_{j k}^{2}\right)$ with $a_{j k}^{i}=0$. Thus $O(n) \subset C O(n) \subset H^{2}(n) \subset G^{2}(n)$. Since $G^{2}(n)$ acts on $P^{2}(M)$, the subgroups $O(n)$ and $H^{2}(n)$ act on $P^{2}(M)$. We consider the associated bundle $P^{2}(M) / O(n)$ and $P^{2}(M) / H^{2}(n)$ with fibres $G^{2}(n) / O(n)$ and $G^{2}(n) / H^{2}(n)$ respectively.

Proposition 16 The cross sections $M \rightarrow P^{2}(M) / O(n)$ are in one-to-one correspondence with the Riemannian connection of M.

Proof. Let $\left(u^{2}, u_{j}^{2}, u_{j k}^{2}\right)$ be the local coordinate system in $P^{2}(M)$ induced from a local coordinate system (x^{i}) in M as in $\S 3$. We introduce a local coordinate system $\left(z^{2}, z_{j}^{l}, z_{j k}^{i}\right)$ in $P^{2}(M) / O(n)$ in such a way that the natural mapping $P^{2}(M)$ $\rightarrow P^{2}(M) / O(n)$ is given by the equations.

$$
\begin{aligned}
& z^{i}=u^{2}, \\
& z_{j}^{i}=*, \\
& z_{j k}^{i}=\Sigma u_{p q}^{i} v_{j}^{p} v_{k}^{q} \quad \text { where } \quad\left(v_{j}^{i}\right)=\left(u_{j}^{i}\right)^{-1} .
\end{aligned}
$$

Then a cross section $\Gamma: M \rightarrow P^{2}(M) / O(n)$ is given, locally, by a set of functions $\Gamma_{j k}^{i}=\Gamma_{j k}^{i}\left(x^{1}, \cdots, x^{n}\right)$ with $\Gamma_{j k}^{i}=\Gamma_{k j}^{i}$ as follows:

$$
\left(z^{i}, z_{j}^{2}, z_{j k}^{i}\right)=\left(x^{i}, *,-\Gamma_{j k}^{i}\right)
$$

Then we can see without difficulty that the behavior of the functions $\Gamma_{j k}^{i}$ under the change of coordinate systems of M is the same as that of Christoffel's symbols.
(Q.E.D.)

Since the reduction of structure group to $H^{2}(n)$ and the cross sections $M \rightarrow P^{2}(M) / H^{2}(n)$ are in one-to-one correspondence, the conformal structures of M are in one-to-one correspondence with the cross sections $M \rightarrow P^{2}(M) / H^{2}(n)$.

Every Riemannian connection $\Gamma: M \rightarrow P^{2}(M) / O(n)$, composed with the natural mapping $\nsim: P^{2}(M) / O(n) \rightarrow P^{2}(M) / H^{2}(n)$, gives a conformal structure $M \rightarrow P^{2}(M) / H^{2}(n)$.

A Riemannian connection is said to belong to a conformal structure P if Γ induces P in the manner described above. We say that two Riemannian connections are conformally related if they belong to the same conformal structure.

Proposition 17. Two Riemannian connections whose Christoffel's symbols are given by $\{\hat{j} k\}$ and $\left\{\overline{y_{k}}\right\}$ are conformally related if and only if there exists a 1 -
form with components φ_{i} such that

$$
\overline{\left\{\begin{array}{c}
i \\
j k
\end{array}\right\}}=\left\{\begin{array}{c}
i \\
j k
\end{array}\right\}+\delta_{j}^{i} \varphi_{k}+\delta_{k}^{i} \varphi_{j}-g_{j k} \Sigma g^{i l} \varphi_{l}
$$

Proof. Let P be a conformal structure on M. An element ($a_{j}^{2}, \Sigma^{a} l_{\varepsilon_{j k}} a_{a} a_{l}^{2}$ $\left.-a_{j}^{2} a_{k}-a_{k}^{2} a_{j}\right)$ of $H^{2}(n)$ induces the transformation of $P^{2}(M)$ given by

$$
\left(u^{2}, u_{j}^{2}, u_{j k}^{2}\right) \rightarrow\left(u^{2}, \Sigma u_{p}^{\imath} a_{j}^{p}, \Sigma u_{p}^{2}\left(\sum \varepsilon^{a} \varepsilon_{\varepsilon_{j k}} a_{a} a_{l}^{p}-a_{j}^{p} a_{k}-a_{k}^{p} a_{j}\right)+\Sigma u_{p q}^{2} a_{j}^{p} a_{k}^{q}\right) .
$$

It induces the transformation of $P^{2}(M) / O(n)$ given by

$$
\left(z^{2}, *, z_{j k}^{2}\right) \rightarrow\left(z^{2}, *, z_{j k}^{2}+\sum \varepsilon^{i l} \varepsilon_{j k} a_{p} b_{q}^{p} v_{l}^{q}-\delta_{j}^{2} \Sigma a_{p} b_{q}^{p} q_{k}^{q}-\delta_{k}^{i} \Sigma a_{p} b_{q}^{p} v_{j}^{q}\right)
$$

where $\left(b_{j}^{i}\right)=\left(a_{j}^{i}\right)^{-1}$ and $\left(v_{j}^{i}\right)=\left(u_{j}^{i}\right)^{-1}$. If we put $\varphi_{j}=\sum a_{p} b_{q}^{p} v_{j}^{q}$, then

$$
\bar{z}_{j k}^{2}=z_{j k}^{2}+\sum^{i l} \varepsilon_{j k} \varphi_{l}-\delta_{j}^{i} \varphi_{k}-\delta_{k}^{i} \varphi_{j} .
$$

Let $C O(M)$ be the principal fibre boundle over M with structure group $C O(n)$ and we call it the conformal bundle of M. Let M^{*} be the kernel of the natural homomorphism $H^{2}(n) \rightarrow C O(n)$ so that $C O(M)=P / M^{*}$. Let $u^{\prime} \in C O(M)$ be the image of $u \in P$ under the natural projection $P \rightarrow C O(M)$. Then u^{\prime} induces a conformal isomorphism $\mathrm{E}^{n} \rightarrow T_{x}(M)$ where $x=\pi(u)$. Thus our assertion is clear.
(Q.E.D.)

Two Riemannian metrics $g=\left(g_{i j}\right)$ and $\bar{g}=\left(\bar{g}_{i j}\right)$ on M is said to be conformally related if there exists a function $\rho>0$ on M such that $\bar{g}=\rho^{2} g$. If $\bar{g}=\left(\bar{g}_{i j}\right)$ is conformally related to $g=\left(g_{i j}\right)$ then there exists a 1 -form $\varphi=\left(\varphi_{j}\right)$ such that

$$
\overline{\left\{\begin{array}{c}
i \\
j k
\end{array}\right\}}=\left\{\begin{array}{c}
i \\
j k
\end{array}\right\}+\delta_{j}^{i} \varphi_{k}+\delta_{k}^{i} \varphi_{j}-g_{j k} \Sigma g^{i l} \varphi_{l}
$$

where $\left\{{ }_{j k}^{2}\right\}$ and $\overline{\left\{\overline{\left.j_{j k}\right\}}\right\}}$ denote the Christoffel's symbols of g and \bar{g} respectively. Thus conformally related Riemannian metrics define conformally related Riemannian connections. This implies that a conformal structure is given by a class of conformally related Riemannian metrics.

Let $\Gamma: M \rightarrow P^{2}(M) / O(n)$ be a Riemannian connection. It corresponds naturally to a reduction of the structure group to $O(n)$. In other words, it induces an isomorphism γ of the orthonormal frame bundle $O(M)$ into $P^{2}(M)$. Thus a Riemannian connection Γ belongs to a conformal structure P if and only if the corresponding subbundle $\gamma(O(M))$ of $P^{2}(M)$ with
 structure group $O(n)$ is contained in P.

Propositions 18. Let Γ be a Riemannian connection of M belonging to the conformal structure P and $\gamma: O(M) \rightarrow P \subset P^{2}(M)$ the corresponding isomorphism. Let
$\left(\theta^{i}, \theta_{j}^{i}\right)$ be the canonical form of $P^{2}(M)$ restricted to P. Then $\left(\gamma^{*} \theta^{i}\right)$ is the canonical form of $P^{1}(M)$ restricted to $O(M)$ and $\left(\gamma^{*} \theta_{j}^{i}\right)$ is the connection form of Γ.

Proof. Let U be a coordinate neighborhood in M with local coordinate system $\left(x^{1}, \cdots, x^{n}\right)$. Let ($\left.u^{\prime i}, u_{j}^{\prime j}\right)$ and ($u^{2}, u_{j}^{2}, u_{j k}^{2}$) be local coordinate systems in $O(M) \subset P^{1}(M)$ and in $P \subset P^{2}(M)$ respectively, induced from $\left(x^{1}, \cdots, x^{n}\right)$. Let $\left\{{ }_{j k}^{2}\right\}$ be the Christoffel's symbols of the Riemannian connection Γ with respect to the local coordinate system $\left(x^{1}, \cdots, x^{n}\right)$. Then $\gamma: O(M) \rightarrow P$ is given, locally, by

$$
\begin{aligned}
u^{2} & =u^{\prime}, \\
u_{j}^{2} & =u^{\prime}{ }_{j}, \\
u_{j k}^{2} & =-\Sigma\left\{\begin{array}{c}
i \\
p q
\end{array}\right\} u_{j}^{\prime p} u_{j}^{\prime q} .
\end{aligned}
$$

Let $\sigma: U \rightarrow P^{2}(M)$ be the natural cross section of P. Let $\sigma^{\prime}: U \rightarrow P^{1}(M)$ be the natural cross section, that is, the local cross section given by $\left(x^{i}\right) \rightarrow\left(x^{2}, \delta_{j}^{i}\right)$. Then, from the expression for θ_{j}^{i} in terms of ($u^{2}, u_{j}^{2}, u_{j k}^{2}$) given in $\S 3$, we obtain

$$
\gamma^{* \theta_{j}^{i}=\Sigma v^{\prime} i} d u_{j}^{\prime k}+\Sigma v_{k}^{\prime}\left\{\begin{array}{c}
k \\
p q
\end{array}\right\} u_{h}^{\prime p} u^{\prime \prime}{ }_{j}^{\prime \prime} v_{l}^{\prime \prime} d u^{\prime \prime} .
$$

Hence we have

$$
\sigma^{\prime *}\left(\gamma^{*} \theta_{j}^{i}\right)=\Sigma\left\{\begin{array}{c}
i \tag{Q.E.D.}\\
k j
\end{array}\right\} d x^{k}
$$

Let P be a conformal structure on M. We shall explain Weyl's conformal curvature tensor of P. Let $C O(M)$ denotes the principal fibre bundle over M with structure group $C O(n)$ and we call it the conformal bundle of M associated with P. Let ($\omega^{2}, \omega_{j}^{2}, \omega_{j}$) be the normal conformal connection associated with P. Let M^{*} be the kernel of the natural homomorphism $H^{2}(n) \rightarrow C O(n)$ so that $C O(M)=P / M^{*}$. Let \mathfrak{m}^{*} be the Lie algebra of M^{*}, then \mathfrak{m}^{*} is nothing but $\mathfrak{c o}(n)^{(1)}$ and hence isomorphic with $\left(R^{n}\right)^{*}$.

Proposition 19.

$$
\begin{array}{cc}
\iota_{A}, \Omega_{j}^{2}=0 & \text { for every } A \in \mathfrak{m}^{*} \\
L_{A^{*}}, \Omega_{j}^{2}=0 & \text { for every } A \in \mathfrak{m}^{*} \tag{ii}
\end{array}
$$

where $\mathrm{C}_{A^{*}}$ and $L_{A^{*}}$ denote the interior product and the Lie differentialion with respect to the fundamental vector field A^{*} corresponding to $A \in \mathfrak{m}^{*}$.

Proof. The equation (i) follows from Proposition 9.
We have

$$
L_{A^{\prime}} \Omega \Omega_{j}^{2}=d c_{A^{2}} \Omega_{j}^{2}+c_{A^{*}} d \Omega_{j}^{2}=c_{A^{*}} d \Omega_{j}^{2}
$$

by (i). By taking exterior derivative of the structure equation (II) and using the facts that $\Omega^{i}=0$, we have

$$
d \Omega_{j}^{2}=\Sigma \Omega_{k}^{2} \wedge \omega_{j}^{k}-\Sigma \omega_{k}^{2} \wedge \Omega_{j}^{k}-\omega^{2} \wedge \Omega_{j}+\Sigma \varepsilon^{i k} \varepsilon_{j l} \Omega_{k} \wedge \omega^{l}-\delta_{j}^{i} \Sigma \Omega_{k} \wedge \omega^{k} .
$$

The right hand side of this equation vanishes for fundamental vector fields A^{*} corresponding to $A \in \mathfrak{m}^{*}$, hence $\iota_{A} \cdot d \Omega_{j}^{2}=0$. This proves (ii).
(Q.E.D)

By the Proposition above, we see that 2 -form $\left(\Omega_{j}^{i}\right)$ can be projected down to the bundle $C O(M)=P / M^{*}$. It follows that (Ω_{j}^{i}) defines a tensor field of type (1.3) on M. This tensor field is called the conformal curvature tensor of Weyl; it depends only on the conformal structure P.

§ 9. Geodesics and completeness.

Let P be a conformal structure on a manifold M and ($\omega^{2}, \omega_{j}^{2}, \omega_{j}$) the normal conformal connection associated with P. With each element $\xi=\left(\xi^{1}, \cdots, \xi^{n}\right)$ of E^{n}, we can associate a unique vector field ξ^{*} of P with the following properties:

$$
\omega^{i}\left(\xi^{*}\right)=\xi^{2}, \quad \omega_{j}^{2}\left(\xi^{*}\right)=0, \quad \omega_{j}\left(\xi^{*}\right)=0 .
$$

We call ξ^{*} the standard horizontal vector field corresponding to ξ.
A curve x_{t} in M is called a " geodesic" of the given conformal structure if

$$
x_{t}=\pi\left(\left(\exp t \xi^{*}\right) u_{0}\right)
$$

for some standard horizontal vector field ξ^{*} and for some point $u_{0} \in P$, where $\pi: P \rightarrow M$ is the projection. We call t a canonical parameter of the geodesic x_{t}. On the other hand, a curve $x_{s}=\left(x^{1}(s), \cdots, x^{n}(s)\right)$ in M is called a conformal circle of the given conformal structure if

$$
\begin{aligned}
& \quad \frac{d^{3} x^{\imath}}{d s^{3}}+3 \Sigma \Pi_{j k}^{i} \frac{d^{2} x^{\jmath}}{d s^{2}} \frac{d x^{k}}{d s}+\Sigma \frac{d \Pi_{j k}^{i}}{d s} \frac{d x^{\jmath}}{d s} \frac{d x^{k}}{d s}+\Sigma \Pi_{a l l}^{i} \Pi_{j k}^{a} \frac{d x^{l}}{d s} \frac{d x^{\jmath}}{d s} \frac{d x^{k}}{d s} \\
& -\Sigma \Pi_{j k} \frac{d x^{\jmath}}{d s} \frac{d x^{k}}{d s} \frac{d x^{2}}{d s}+\Sigma \varepsilon_{j k}\left(\frac{d^{2} x^{j}}{d s^{2}}+\Sigma \Pi_{a b}^{j} \frac{d x^{a}}{d s} \frac{d x^{b}}{d s}\right)\left(\frac{d^{2} x^{k}}{d s^{2}}+\Sigma \Pi_{l m}^{k} \frac{d x^{l}}{d s} \frac{d x^{m}}{d s}\right) \frac{d x^{2}}{d s} \\
& +\Sigma \varepsilon^{i a} \Pi_{k a} \frac{d x^{k}}{d s}=0
\end{aligned}
$$

for some parameter s, where $\Pi_{j k}^{i}$ and $\Pi_{j k}$ are the coefficients of the normal conformal connection.

Theorem 20. Let P be a conformal structure on M. If we disregard parametrizations, then the " geodesics" of P are the same as the conformal circles of P.

Proof. Let U be a coordinate neighborhood in M with local coordinate system $\left(x^{1}, \cdots, x^{n}\right)$. Let $\sigma: U \rightarrow P$ be a cross section such that $\sigma^{*} \omega^{2}=d x^{2}$ and let $U \times H=P \mid U$ the isomorphism induced by σ. Let (a_{j}^{2}, a_{j}) be the coordinate system in H introduced
in $\S 4$. We may take (x^{2}, a_{j}^{2}, a_{j}) as a coordinate system in $P \mid U$.
Let (B^{2}, B_{j}^{2}, B_{j}) be the components of the standard horizontal vector field ξ^{*}, $\xi=\left(\xi^{1}, \cdots, \xi^{n}\right) \in \mathrm{E}^{n}$, with respect to the natural basis $\partial / \partial x^{2}, \partial / \partial a_{j}^{2}, \partial / \partial a_{j}$. From (21) and the definition of the standard horizontal vector field we have

$$
\begin{aligned}
& B^{\imath}=\Sigma a_{k}^{i} \xi^{k}, \\
& B_{j}^{\imath}=\Sigma \varepsilon^{a l} \varepsilon_{j k} a_{a}^{2} a_{l} \xi^{k}-a_{j} \frac{d x^{2}}{d t}-a_{j}^{2} \Sigma a_{k} \xi^{k}-\Sigma \Pi_{k l}^{i} l a_{j}^{l} \frac{d x^{k}}{d t}, \\
& B_{j}=-a_{j} \Sigma a_{k} \xi^{k}-\Sigma a_{j}^{l} \Pi_{k l} \frac{d x^{k}}{d t}+\frac{1}{2} \Sigma \varepsilon^{a b_{\varepsilon_{j k}} a_{a} a_{b} \xi^{k} .}
\end{aligned}
$$

Set $u_{t}=\left(\exp t \xi^{*}\right) u_{0}=\left(x^{i}(t), a_{j}^{2}(t), a_{j}(t)\right)$, then we get

$$
\begin{aligned}
& \frac{d x^{2}}{d t}=B^{i} \\
& \frac{d a_{j}^{2}}{d t}=B_{j}^{2} \\
& \frac{d a_{j}}{d t}=B_{j .}
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \frac{d^{3} x^{2}}{d t^{3}}+3 \Sigma \Pi_{j k}^{i} \frac{d^{2} x^{j}}{d t^{2}} \frac{d x^{k}}{d t}+\Sigma \frac{d \Pi_{j k}^{i}}{d t} \frac{d x^{\jmath}}{d t} \frac{d x^{k}}{d t}+\Sigma \Pi_{a l}^{i} \Pi_{j k}^{a} \frac{d x^{l}}{d t} \frac{d x^{j}}{d t} \frac{d x^{k}}{d t} \\
- & 2 \Sigma \Pi_{j k} \frac{d x^{\jmath}}{d t} \frac{d x^{k}}{d t} \frac{d x^{2}}{d t}+3 \Sigma a_{\imath} \varepsilon^{\varepsilon}\left(\frac{d^{2} x^{\imath}}{d t^{2}}+\Sigma \Pi_{j k}^{i} k \frac{d x^{j}}{d t} \frac{d x^{k}}{d t}\right)+\Sigma \varepsilon^{a} \Pi_{k a} \frac{d x^{k}}{d t} \\
+ & \frac{3}{2} \Sigma \varepsilon^{a b} a_{a} a_{b} \frac{d x^{2}}{d t}=0 .
\end{aligned}
$$

If we make a change of parameter $t=t(s)$ satisfying the differential equation

$$
\{t, s\}=\frac{1}{2} \Sigma \varepsilon_{j k}\left(\frac{d^{2} x^{\jmath}}{d s^{2}}+\Sigma \Pi_{a b}^{i} \frac{d x^{a}}{d s} \frac{d x^{b}}{d s}\right)\left(\frac{d^{2} x^{k}}{d s^{2}}+\Sigma \Pi_{l m}^{k} \frac{d x^{l}}{d s} \frac{d x^{m}}{d s}\right)-\Sigma \Pi_{j k} \frac{d x^{\jmath}}{d s} \frac{d x^{k}}{d s},
$$

where

$$
\{t, s\}=\frac{d^{3} t}{d s^{3}} / \frac{d t}{d s}-\frac{3}{2}\left(\frac{d^{2} t}{d s^{2}} / \frac{d t}{d s}\right)^{2},
$$

then the given geodesic of P is a conformal circle of P and vice versa. (Q.E.D.)
The conformal structure P is called complete if every standard horizontal vector field is complete, that is, generates a 1-parameter group of global transformations.

§ 10. Conformal transformations and flat conformal structures.

Let P and P^{\prime} be conformal structures on manifolds M and M^{\prime} of the same dimension n respectively. A diffeomorphism $f: M \rightarrow M^{\prime}$ is called conformal (with respect to P and P^{\prime}) if f, prolonged to a mapping of $P^{2}(M)$ onto $P^{2}\left(M^{\prime}\right)$, maps P onto P^{\prime}. In particular, a transformation f of M is called conformal (with respect to P) if it maps P onto itself.

A conformal structure P on a manifold M is called flat if, for each point of M, there exists a neighborhood U and a conformal diffeomorphism of U onto an open subset of a Möbius space. Every vector field X on M generates a 1-parameter local group of local transformations. This local group, prolonged to $P^{2}(M)$, induces a vector field on $P^{2}(M)$, which will be denoted by \tilde{X}. We call X an infinitesimal conformal transformation (with respect to P) if the local 1-parameter group of local transformations generated by X in a neighborhood of each point of M consists of local conformal transformations.

Proposition 21. Let $\omega=\left(\omega^{2}, \omega_{j}^{2}, \omega_{j}\right)$ be the normal conformal connection associated with P. For a vector field X on M, the following conditions are mutually equivalent:
(i) X is an infinitesimal conformal transformation of M;
(ii) \tilde{X} is tangent to P at every point of P;
(iii) $L_{\tilde{X} \omega} \omega=0$;
(iv) $L_{\tilde{\chi}} \xi^{*}=0$ for every $\xi \in \mathrm{E}^{n}$, where ξ^{*} is the standard horizontal vector field corresponding to ξ.

Proof. (i) \Rightarrow (ii). Let φ_{t} and $\tilde{\varphi}_{t}$ be the local 1-parameter groups of local transformations generated by X and \tilde{X} respectively. If X is an infinitesimal conformal transformation, then φ_{t} is a local conformal transformation and hence $\tilde{\varphi}_{t}$ maps P into itself. Thus \tilde{X} is tangent to P at every point of P.
(ii) \Rightarrow (i). If \tilde{X} is tangent to P at every point of P, the integral curve of \tilde{X} through each point of P is contained in P and hence each $\tilde{\varphi}_{t}$ maps P into itself. This means that each φ_{t} is a local conformal transformation and hence X is an infinitesimal conforml transformation.
(i) \Rightarrow (iii). Since the normal conformal connection $\omega=\left(\omega^{2}, \omega_{j}^{2}, \omega_{j}\right)$ is canonically associated with P, every conformal transformation, prolonged to P, leaves ω invariant. Hence we have (iii).
(iii) \Rightarrow (iv). If $L_{\tilde{X}} \omega=0$, then

$$
\begin{aligned}
& 0=\tilde{X} \cdot\left(\omega^{i}\left(\xi^{*}\right)\right)=\left(L_{\tilde{X}} \omega^{i}\right)\left(\xi^{*}\right)+\omega^{i}\left(L_{\tilde{X}} \xi^{*}\right)=\omega^{i}\left(L_{\tilde{X}} \tilde{\xi}^{*}\right), \\
& 0=\tilde{X} \cdot\left(\omega_{j}^{2}\left(\xi^{*}\right)\right)=\left(L_{\tilde{X}} \omega_{j}^{i}\right)\left(\xi^{*}\right)+\omega_{j}^{2}\left(L_{\tilde{X}} \xi^{*}\right)=\omega_{j}^{2}\left(L_{X} \xi^{*}\right)
\end{aligned}
$$

and

$$
0=\tilde{X} \cdot\left(\omega_{j}\left(\xi^{*}\right)\right)=\left(L_{\tilde{X}} \omega_{j}\right)\left(\xi^{*}\right)+\omega_{j}\left(L_{\tilde{X}} \xi^{*}\right)=\omega_{j}\left(L_{\tilde{X}} \xi^{*}\right) .
$$

On the other hand, the $(n+1)(n+2) / 21$-forms ($\left.\omega^{2}, \omega_{j}^{2}, \omega_{j}\right)$ are linearly independent
cverywhere on P and define an absolute parallelism on P. Hence we have $L_{\tilde{X}}{ }^{*} *=0$.
(iv) \Rightarrow (i). Let $P\left(u_{0}\right)$ be the set of points in P which can be joined to u_{0} by an integral curve of a standard horizontal vector field. Then $U_{u_{0} \in P} P\left(u_{0}\right)=P$. From $L_{\tilde{X}} \xi^{*}=0, \tilde{\varphi}_{t}$ leaves each $P\left(u_{0}\right)$ invariant and hence leaves P invariant, that is, φ_{t} is a local conformal transformation. Hence X is an infinitesimal conformal transformation.
(Q.E.D.)

Theorem 22. Let P be a conformal structure on a manifold M of dimension n. Then
(i) The set of all infinitesimal conformal transformations of M, denoted by $\overline{\mathrm{c}}(M)$, is a Lie algebra of dimension at most $(n+1)(n+2) / 2=\operatorname{dim} P$;
(ii) The subset of $\overline{\mathfrak{c}}(M)$ consisting of complete vector fields, denoted by $\mathrm{c}(M)$, is a subalgebra of $\overline{\mathfrak{c}}(M)$;
(iii) The group of conformal transformations of M, denoted by $(5(M)$, is a Lie transformation group with Lie algebra c(M);
(iv) If the conformal structure P is complete, every infinitesimal conformal transformation is complete, i.e., $\mathfrak{c}(M)=\bar{c}(M)$.

Proof. (i). Since the normal conformal connection ($\omega^{2}, \omega_{j}^{2}, \omega_{j}$) is canonically associated with a conformal structure P, every conformal transformation, prolonged to P, leaves ($\omega^{2}, \omega_{j}^{j}, \omega_{j}$) invariant. Let $\bar{c}(P)$ be the set of vector fields X on P prolonged from $X \in \overline{\mathfrak{c}}(M)$. Then $\overline{\mathfrak{c}}(M)$ is isomorphic with $\overline{\mathfrak{c}}(P)$ under the correspondence $X \rightarrow \tilde{X}$. Let u be an arbitrary point of P. The following lemma implies that the linear mapping $\varphi: \bar{c}(P) \rightarrow T_{u}(P)$ defined by $\varphi(\tilde{X})=\tilde{X}_{u}$ is injective so that $\operatorname{dim} \bar{c}(P)$ $\leqq \operatorname{dim} T_{u}(P)=(n+1)(n+2) / 2$.

Lemma. If an element \tilde{X} of $\overline{\mathfrak{c}}(P)$ vanishes at some point of P, then it vanushes identically on P.

Proof of Lemma. If $\tilde{X}_{u}=0$, then $\tilde{X}_{u a}=0$ for every $a \in H^{2}(n)$. Let U be the set of points $x=\pi(u) \in M$ such that $\tilde{X}_{u}=0$. Then U is closed in M. Since M is connected, it suffices to show that U is open. Assume $\tilde{X}_{u}=0$. Let b_{t} be a local 1-parameter group of local transformations generated by a standard horizontal vector field ξ^{*} in a neighborhood of u. Since $\left[\tilde{X}, \xi^{*}\right]=0$ by Proposition $21, \tilde{X}$ is invariant by b_{t} and hence $\tilde{X}_{b_{t u}}=0$. On the other hand, the points of the form $\pi\left(b_{t} u\right)$ cover a neighborhood of $x=\pi(u)$ when ξ and t vary. This proves that U is open.
(ii) is clear.
(iii) Every 1-parameter subgroup of $\mathfrak{G}(M)$ induces an infinitesimal conformal transformation which is complete on M and, conversely, every complete infinitesimal conformal transformation generates a 1-parameter subgroup of $\mathbb{E}(M)$.
(iv) It suffices to show that every element \tilde{X} of $\overline{\mathfrak{c}}(P)$ is complete. Let u_{0} be an arbitrary point of P and let $\tilde{\varphi}_{t}(|t|<\delta)$ be a local 1-parameter group of local transformations generated by \tilde{X}. We shall prove that $\tilde{\varphi}_{t}(u)$ is defined for every $u \in P$ and $|t|<\delta$. Then it follows that \tilde{X} is complete. For any point u of P, there are a finite number of standard horizontal vector fields $\xi_{1}^{*}, \cdots, \xi_{k}^{*}$ and an element
$a \in H^{2}(n)$ such that

$$
u=\left(b_{l_{1}}^{1} \circ b_{t_{2}}^{2} \cdots \cdots b_{l_{k}}^{k} u_{0}\right) a,
$$

where each b_{t}^{2} is the 1-parameter group of transformations of P generated by ξ_{2}^{*}. Then we define $\tilde{\varphi}_{t}(u)$ by

$$
\tilde{\varphi}_{t}(u)=\left(b_{t_{1}}^{1} \circ b_{t_{2}}^{2} \circ \cdots \circ b_{t_{k}}^{c_{k}}\left(\tilde{\varphi}_{t}\left(u_{0}\right)\right)\right) a \quad \text { for } \quad|t|<\delta .
$$

From (iv) of Proposition 21, it follows that the above definition is independent of the choice of $\xi_{1}^{*}, \cdots, \xi_{k}^{*}$.
(Q.E.D.)

Theorem 23. If the Lie algebra $\overline{\mathfrak{c}}(M)$ of infinitesimal conformal transformations of M is of dimension $(n+1)(n+2) / 2$, then the normal conformal connection of P has vanishing curvature.

Proof. Let E be the identity matrix in $\operatorname{co}(n)$ and E^{*} the fundamental vector field on P corresponding to E. Let ξ^{*} and ξ^{*} be the standard horizontal vector fields on P. Then we have

$$
\left[E^{*}, \xi^{*}\right]=\xi^{*} \quad \text { and } \quad\left[E^{*}, \xi^{\prime *}\right]=\xi^{\prime *}
$$

The exterior differentiation applied to the structure equations (II) and (III) yields

$$
\begin{aligned}
& 0=-\Sigma \Omega_{k}^{2} \wedge \omega_{j}^{k}+\Sigma \omega_{k}^{2} \wedge \Omega_{j}^{k}+\omega^{2} \wedge \Omega_{j}-\sum \varepsilon^{i k_{j}} \varepsilon_{j l} \Omega_{k} \wedge \omega^{l}+d \Omega_{j}^{2}, \\
& 0=-\Sigma \Omega_{k} \wedge \omega_{j}^{k}+\Sigma \omega_{k} \wedge \Omega_{j}^{k}+d \Omega_{j} .
\end{aligned}
$$

Hence we have

$$
L_{E^{*}} \Omega_{j}^{2}=\left(d \circ \iota_{E^{*}}+\iota_{E^{*}} d\right) \Omega_{j}^{2}=\iota_{L^{*}} d \Omega_{j}^{2}=0
$$

and

$$
L_{E^{*}} \Omega_{j}=\left(d \circ \iota_{E^{*}}+\iota_{E^{*}} d\right) \Omega_{j}=\iota_{E^{*}} d \Omega_{j}=\Omega_{j},
$$

where $L_{E^{*}}$ and $\iota_{E^{*}}$ denote the Lie differentiation and the interior product with respect to E^{*} respectively. Therefore,

$$
\begin{aligned}
E^{*} \cdot \Omega_{j}^{2}\left(\xi^{*}, \xi^{\prime *}\right) & =\left(L_{E^{*}} \Omega_{j}^{i}\right)\left(\xi^{*}, \xi^{*}\right)+\Omega_{j}^{2}\left(\left[E^{*}, \xi^{*}\right], \xi^{*}\right)+\Omega_{j}^{2}\left(\xi^{*},\left[E^{*}, \xi^{\prime *}\right]\right) \\
& =2 \Omega_{j}^{2}\left(\xi^{*}, \xi^{\prime *}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
E^{*} \cdot \Omega_{j}\left(\xi^{*}, \xi^{\prime *}\right) & =\left(L_{E^{*}} \Omega_{j}\right)\left(\xi^{*}, \xi^{*}\right)+\Omega_{j}\left(\left[E^{*}, \xi^{*}\right], \xi^{\prime *}\right)+\Omega_{j}\left(\xi^{*},\left[E^{*}, \xi^{\prime *}\right]\right) \\
& =3 \Omega_{j}\left(\xi^{*}, \xi^{\prime}\right)
\end{aligned}
$$

On the other hand, if \tilde{X} is the infinitesimal transformation of P induced by an infinitesimal conformal transformation $X \in \bar{c}(M)$, then from

$$
\begin{aligned}
& L_{\tilde{X}} \Omega_{j}^{2}=L_{\tilde{X}}\left(d \omega_{j}^{2}+\Sigma \omega_{k}^{2} \wedge \omega_{j}^{k}+\omega^{2} \wedge \omega_{j}+\Sigma \varepsilon^{i k^{2}} \varepsilon_{j l} \omega_{k} \wedge \omega^{l}-\delta_{j}^{2} \Sigma^{\prime} \omega_{k} \wedge \omega^{k}\right)=0, \\
& L_{\tilde{X}} \Omega_{j}=L_{\tilde{X}}\left(d \omega_{j}+\Sigma \omega_{k} \wedge \omega_{j}^{k}\right)=0
\end{aligned}
$$

and from (iv) of Proposition 21, we obtain

$$
\tilde{X} \cdot \Omega_{j}^{2}\left(\xi^{*}, \xi^{\prime *}\right)=\left(L_{\tilde{X}} \Omega_{j}^{i}\right)\left(\tilde{\xi}^{*}, \xi^{\prime *}\right)+\Omega_{j}^{2}\left(\left[\tilde{X}, \xi^{*}\right], \xi^{*}\right)+\Omega_{j}^{2}\left(\xi^{*},\left[\tilde{X}, \xi^{\prime}\right]\right)=0
$$

and

$$
\tilde{X} \cdot \Omega_{j}\left(\xi^{*}, \xi^{\prime *}\right)=\left(L_{\tilde{X}} \Omega_{j}\right)\left(\xi^{*}, \xi^{*}\right)+\Omega_{j}\left(\left[\tilde{X}, \xi^{*}\right], \xi^{\prime} *\right)+\Omega_{j}\left(\xi^{*},\left[\tilde{X}, \xi^{*}\right]\right)=0 .
$$

Since $\operatorname{dim} \bar{c}(M)=\operatorname{dim} P$, for every point u of P, there exists an element X of $\bar{c}(M)$ such that $\widetilde{X}_{u}=E_{u}^{*}$. We have therefore

$$
2\left(\Omega_{j}^{2}\left(\xi^{*}, \xi^{\prime *}\right)\right)_{u}=\left(E^{*} \cdot \Omega_{j}^{2}\left(\xi^{*}, \xi^{\prime *}\right)\right)_{u}=\left(\tilde{X} \cdot \Omega_{j}^{2}\left(\xi^{*}, \xi^{\prime *}\right)\right)_{u}=0
$$

and

$$
\begin{equation*}
3\left(\Omega_{j}\left(\xi^{*}, \xi^{\prime *}\right)\right)_{u}=\left(E^{*} \cdot \Omega_{j}\left(\xi^{*}, \xi^{\prime *}\right)\right)_{u}=\left(\tilde{X} \cdot \Omega_{j}\left(\xi^{*}, \xi^{\prime *}\right)\right)_{u}=0 . \tag{Q.E.D.}
\end{equation*}
$$

Since u is an arbitrary point of P, we have $\Omega_{j}^{2}=0$ and $\Omega_{j}=0$.
Theorem 24. A conformal structure P on a manifold M is flat if and only if the normal conformal connection has vanishing curvature.

Proof. Since the normal conformal connection of the conformal structure on a Möbius space has vanishing curvature, the normal conformal connection of a flat conformal structure has also vanishing curvature.

To prove the converse, let P be a conformal structure on M whose normal conformal connection ($\omega^{2}, \omega_{j}^{2}, \omega_{j}$) has vanishing curvature. The structure equations on P reduce to the equations of Maurer-Cartan for the group $K(n)$. It follows that, given a point u of P, there exists a diffeomorphism h of a neighborhood N^{\prime} of the identity of $K(n)$ onto a neighborhood N of u which sends ($\omega^{2}, \omega_{j}^{2}, \omega_{j}$) into the Maurer-Cartan forms of $K(n)$. In an obvious manner, we extend h to a diffeomorphism $h: N^{\prime} \cdot H \rightarrow N \cdot H^{2}(n)$. Let $U^{\prime}=\pi^{\prime}\left(N^{\prime}\right)$ and $U=\pi(N)$, where $\pi^{\prime}: K(n) \rightarrow K(n) / H$ and $\pi: P \rightarrow M$. Then $\pi^{\prime-1}\left(U^{\prime}\right)=N^{\prime} \cdot H$ and $\pi^{-1}(U)=N \cdot H^{2}(n)$. By construction, $h: \pi^{\prime-1}\left(U^{\prime}\right) \rightarrow \pi^{-1}(U)$ is a bundle isomorphism. If we consider $K(n)$ as the natural conformal structure on the Möbius space $K(n) / H$ (cf. §6), then we see that h sends the normal conformal connection of P into that of $K(n)$. In a unique manner, we can extend h to a bundle isomorphism $h: P^{2}\left(U^{\prime}\right) \rightarrow P^{2}(U)$. We see that h^{*} sends the canonical form of $P^{2}(U)$ into that of $P^{2}\left(U^{\prime}\right)$. By Proposition 5, h is induced by a diffeomorphism of U^{\prime} onto U.
(Q.E.D.)

Corollary. A conformal structure P on a manifold of dimension >3 is flal if and only if the conformal curvature tensor of Weyl vanishes.

Proof. This follows from Proposition 11 and the definition of the conformal curvature tensor of Weyl (cf. §8).
(Q.E.D.)

Theorem 25. Let P be a complete flat conformal structure on a simply connected manifold M of dimension n. Then there is a conformal diffeomorphism of M onto a Möbius space of dimension n.

Proof. This follows from the definition of flatness and the standard continuation argument.
(Q.E.D.)

§ 11. Conformal connections on Riemannian manifolds.

In this section M will denote always a Riemannian manifold with metric g. Let $O(M)$ be the orthonormal frame bundle over M determined by the metric g and Γ the Riemannian connection on $O(M)$. Let P be the conformal structure on M naturally associated with $O(M)$ as in $\S 8$. Let U be a coordinate neighborhood in M with local coordinate system $\left(x^{1}, \cdots, x^{n}\right)$. Let $\left(\theta^{i}, \theta_{j}^{i}\right)$ be the canonical from on $P^{2}(M)$ restricted to P and $\sigma: U \rightarrow P^{2}(M)$ a local cross section and set

$$
\begin{aligned}
& \psi^{i}=\sigma^{*} \theta^{i}=\Sigma \Pi_{k}^{i} d x^{k}, \\
& \psi_{j}^{i}=\sigma^{*} \theta_{j}^{i}=\Sigma \prod_{k j}^{i} d x^{l .} .
\end{aligned}
$$

Proposition 26. There exists a cross section $\sigma: ~ U \rightarrow P^{2}(M)$ such that

$$
\begin{aligned}
\Pi_{j}^{i} & =\delta_{j}^{i}, \\
\Pi_{j k}^{i} & =\left\{\begin{array}{c}
i \\
j k
\end{array}\right\},
\end{aligned}
$$

where $\left\{\frac{p}{j k}\right\}$ denote the Christoffel's symbols of the Riemannian connection Γ.
Proof. This is an immediate consequence of Proposition 18.
Proposition 27. Let ($\omega^{2}, \omega_{j}^{2}, \omega_{j}$) be the normal conformal connection associated with P and $\sigma: U \rightarrow P^{2}(M)$ the cross section given in Proposition 26. If we set for such a σ

$$
\psi_{j}=\sigma^{*} \omega_{j}=\Sigma \Pi_{k j} d x^{k},
$$

then

$$
\begin{equation*}
\Pi_{j k}=-\frac{1}{n-2} R_{j k}+\frac{R}{2(n-1)(n-2)} g_{j k}, \tag{22}
\end{equation*}
$$

where $R_{j k}$ and R denote the components of the Ricci tensor and the scalar curvature of g respectively.

Proof. From Proposition 26 and the equation (21) we have

$$
\begin{aligned}
& \omega^{2}=\Sigma b_{k}^{i} d x^{k} \\
& \omega_{j}^{2}=\Sigma b_{k}^{2} d a_{j}^{k}-\Sigma g^{i l} g_{j k} a_{l} \omega^{k}+a_{j} \omega^{i}+\delta_{j}^{i} \Sigma a_{k} \omega^{k}+\Sigma b_{k}^{i}\left\{\begin{array}{c}
k \\
a l
\end{array}\right\} a_{j}^{l} d x^{a} .
\end{aligned}
$$

Set

$$
\begin{aligned}
\bar{\omega}_{\jmath}= & d a_{j}-\Sigma a_{k} \omega_{j}^{k}+a_{\jmath} \Sigma a_{k} \omega^{k}+\Sigma a_{j}^{k}\left(-\frac{1}{n-2} R_{k l}+\frac{R}{2(n-1)(n-2)} g_{k l}\right) d x^{l} \\
& -\frac{1}{2} \Sigma g^{a b} g_{j k} a_{a} a_{b} \omega^{k} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \psi^{2}=\sigma^{*} \omega^{2}=d x^{2}, \\
& \psi_{j}^{i}=\sigma^{*} \omega_{j}^{2}=\Sigma\left\{\begin{array}{c}
i \\
k j
\end{array}\right\} d x^{k}, \\
& \psi_{j}=\sigma^{*} \bar{\omega}_{j}=\Sigma\left(-\frac{1}{n-2} R_{k j}+\frac{R}{2(n-1)(n-2)} g_{k j}\right) d x^{k} .
\end{aligned}
$$

Since the normal conformal connection is uniquely associated with P, it suffices to prove that ($\omega^{2}, \omega_{j}^{2}, \bar{\omega}_{j}$) is the normal conformal connection. Let Ω_{j}^{2} be the curvature form of the connection ($\omega^{2}, \omega_{j}^{i}, \bar{\omega}_{j}$). From the structure equation (II) we have

$$
\begin{aligned}
\sigma^{*} \Omega_{j}^{i}= & \frac{1}{2} \Sigma\left(R_{j k l}^{i}-\frac{1}{n-2}\left(\delta_{k}^{i} R_{j l}-\delta_{l}^{i} R_{j k}+\Sigma g^{i a} g_{j l} R_{a k}-\Sigma g^{i a} g_{j k} R_{a l}\right)\right. \\
& \left.+\frac{R}{(n-1)(n-2)}\left(\partial_{k}^{i} g_{j l}-\delta_{l}^{i} g_{j k}\right)\right) d x^{k} \wedge d x^{l},
\end{aligned}
$$

where $R_{j k l}^{i}$ denote the components of the curvature tensor of the Riemannian connection Γ. If we set

$$
\Omega_{j}^{i}=\frac{1}{2} \Sigma K_{j k k}^{i} \omega \omega^{k} \wedge \omega^{l}
$$

and

$$
\begin{align*}
C_{j k l}^{i}= & R_{j k l}^{i}-\frac{1}{n-2}\left(\delta_{k}^{i} R_{j l}-\delta_{l}^{i} R_{j k}+\Sigma g^{2} g_{j l} R_{a k}-\Sigma g^{2} g_{j k} R_{a l}\right) \\
& -\frac{R}{(n-1)(n-2)}\left(\delta_{k}^{i} g_{j l}-\delta_{l}^{i} g_{j k}\right), \tag{23}
\end{align*}
$$

then

$$
\sigma^{*} K_{j k l}^{i}=C_{j k l}^{i} .
$$

We can easily see that $\Sigma C_{i k l}^{i}=0$ and $\Sigma C_{j i l}^{i}=0$. Hence $\Sigma K_{i k l}^{i}=0$ and $\Sigma K_{j i l}^{i}=0$. This proves that ($\omega^{2}, \omega_{j}^{2}, \bar{\omega}_{j}$) is the normal conformal connection.

The $C_{j k l}^{2}$ are the components of the conformal curvature tensor of Weyl of the Riemannian manifold M.

Proposition 28. If $\operatorname{dim} M=3$, then $\Omega_{j}^{i}=0$, that is, the conformal curvature tensor of Weyl vanishes identically.

Proof. Let $C_{j k l}^{\imath}$ be the components of the conformal curvature tensor of Weyl and set $C_{i j k l}=\Sigma g_{i a} C^{a}{ }_{j k l l}$. Then

$$
C_{i j k l}=-C_{j i k l}=-C_{i j l k} \quad \text { and } \quad C_{i j k l}=C_{k l i j} .
$$

Let 0 be an arbitrary point of M. By choosing a coordinate system such that $g_{i j}=\delta_{i j}$ at 0 , together with (13), we have $\Sigma C_{i j i l}=0$ at 0 . Hence

$$
\begin{gathered}
C_{2121}+C_{3131}=0, \quad C_{1212}+C_{3232}=0, \quad C_{1313}+C_{2323}=0, \\
C_{3132}=0, \quad C_{2123}=0 \quad \text { and } \quad C_{1213}=0 \quad \text { at } 0 .
\end{gathered}
$$

This implies $C_{i j k l}=0$ at 0 . Since $C_{i j k l}$ are components of a tensor field and 0 is an arbitrary point of $M, C_{i j k l}=0$ at every point of M.
(Q.E.D.)

Theorem 29. The conformal structure P on a Riemannian manifold of dimension 3 is flat if and only if $\Omega_{j}=0$.

Proof. This is an immediate consequence of Theorem 24 and Proposition 28.

Let ($\omega^{2}, \omega_{j}^{2}, \omega_{j}$) be the normal conformal connection associated wifh P. Let σ be the local cross section given in Proposition 26 and set $\sigma^{*} \Omega_{j}=(1 / 2) \Sigma C_{j k l} d x^{k} \wedge d x^{l}$. From the structure equation (III) and Proposition 27 we have

$$
\begin{equation*}
C_{j k l}=\frac{1}{n-2}\left(R_{j k ; l}-R_{j l ; k}\right)-\frac{1}{2(n-1)(n-2)}\left(g_{j k} \frac{\partial R}{\partial x^{l}}-g_{j l} \frac{\partial R}{\partial x^{k}}\right), \tag{24}
\end{equation*}
$$

where $R_{j k ; l}$ denote the components of the covariant derivative of the Ricci tensor with respect to the Riemannian connection Γ.

Bibliography

[1] Cartan, E., Les espaces à connexion conforme. Ann. Soc. Polon. Math. 2 (1923), 171-221.
[2] Guilemin, V., The integrability problem for G-structures. Trans. A.M.S. 116 (1965), 544-560.
[3] Guillemin, V., and S. Sternberg, An algebraic model of transitive differential geometry. Bull. A.M.S. 70 (1964), 16-47.
[4] Kobayashi, S., Canonical forms on frame bundles of higher order contact. Proc. Symposia in Pure Math., vol. 3, Differential geometry. A. M. S. (1961), 186-193.
[5] Kobayashi, S., and K. Nomizu, Foundations of differential geometry, vol. I. Interscience Tracts, No. 15 (1963).
[6] Sternberg, S., Lectures on Differential geometry. Prentice-Hall (1964).
[7] Tanaka, N., Conformal connections and conformal transformations. Trans. A.M.S. 92 (1959), 168-190.
[8] Yano, K., Sur la théorie des espaces à connexion conforme. J. Fac. Sci. Imp. Unıv. Tokyo, Sect. 1, 4 (1939), 1-59.

Department of Mathematics,
Tokyo Institute of Technology.

[^0]: Received October 31, 1966.

 1) Throughout this paper, we shall denote by M a connected manifold of dimension $\geqq 3$, unless otherwise stated.
[^1]: 2) Indices i, j, k, \cdots run over the range $1,2, \cdots, n$ and to simplify notation we adopt the convention that all repeated indices under a summation sign are summed.
[^2]: 3) Indices α, β, \cdots run over the range $0,1,2, \cdots, n, \infty$.
[^3]: 4) Every $C O(n)$-structure is 1-flat and hence has a unique prolonged subbundle of $P^{2}(M)$.
