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THEORY OF CONFORMAL CONNECTIONS

By Koicai OGIUE

Introduction.

The main purpose of the present paper is to give a modern introduction to the
theory of conformal connections. There were, historically, several approaches to
this subject. Our approach here is based on the theory of G-structures. We shall
now briefly explain our method.

For a manifold M? of dimension #n, we construct the bundle P2(M) of frames
of 2nd order contact. Its structure group will be denoted by G*x). We define a
certain subgroup H2(z) of G%x) which is isomorphic with an isotropy subgroup of
the conformal transformation group K(») acting on the Mobius space of dimension
n. A conformal structure on a manifold M is a subbundle P of P*M) with
structure group H%*n).

A conformal connection for the given conformal structure P is a Cartan con-
nection satisfying some extra conditions. It will be shown that we can associate
with each conformal structure a naturally defined conformal connection, so-called
normal conformal connection.

§1. Prolongations of a Lie algebra.

Let V be a real vector space of dimension # and g a Lie algebra of endo-
morphisms of V. g may be considered as a subspace of V® V*=Hom (V, V)=gi(V),
where V* denotes the dual space of V. The first prolongation g of g is defined
to be gV =gRV*N VRSV VRV*RV* where S(V*) denotes the space of
symmetric tensors of degree 2 over V* Since g®V*=Hom (V,¢), an element
Teg®V* is in ¢ if and only if

Tw)-v=Tw)-u for all =,veV.

Set g®=(g®)® and, in general, g**P=(g*)®. The space g is called the k-th
prolongation of g. Then

g(k) :g® V*® ® V* n V@Slc—H( V*).

k-times

We call that g is of finite type if g®=0 for some (and hence all larger) k. If

Received October 31, 1966.
1) Throughout this paper, we shall denote by M a connected manifold of dimension
>3, unless otherwise stated.
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g® =20 for all £ then g is said to be of infinite type.

Let (,) be a non-degenerate symmetric bilinear form on V (of arbitrary
signature). Let o(V) be the orthogonal algebra of ( , ), that is, o(V') is the set of
Aegl(V) such that

(Au, v)+(u, Av)=0 for all u,veV.
ProposITION 1. o(V)®=0.
Proof. For any Teo(V)® and any u,v,weV we have

(T@w)-v, w)=(T() u, w)=—(u, T() -w)=—(u, T(w)-v)
=(Tw)-u, v)=(T(u)-w, v)=—(w, T(u)-v)
=—(T(u)-v, w).

Thus (T(u)v, w)=0. Since w is arbitrary and ( , ) is non-degenerate, T(#)»=0 for
all #,veV. Hence T(u)=0 for all xeV. This implies 7=0. (Q.E.D.)

Let (,) be as before and let (V) denote its conformal algebra. That is,
(V) is the set of Aegl(V) such that

(Au, v)+(u, Av)=2-(u, v) for all w,veV,
where 2 is some scalar depending on A.
ProrosiTION 2. (V)P is isomorphic with V*.
Proof. For any Tec(V)® we have a linear form 2 on V defined by
(T'(w)v, w)+-(v, T(w)w)=A(u)- (v, w).

Thus we have a linear mapping of cw(V)®P—V* A T lying in its kernel would
lie in o( V) and thus vanish by Proposition 1. Hence the mapping is injective.
Let us show that it is also surjective. To this effect we observe that ( , ) induces
an isomorphism of V onto V*. Thus #eV is mapped onto #*eV* where u*(»)
=(u,v) for every veV. If we replace (,) by p(, ), then under the new isomorphism
u gets sent into pw*. In particular, the isomorphism of V®V* onto V*RV
induced by ( , ) is independent of the scalar p. Let us denote this isomorphism by
¢. For any u*eV* let p2 V¥->VRV*QRV* be defined by

) 0)=v® u*— (u* Qv)+u*@®)-I,
where [ is the identity in gl(V). From

(¥ )01 =u*(W2) - 01+ 0¥(01) V2 —(v1, V) 4,
we have
(o *)(01)v2 = p(et* Y0201

Furthermore,
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((*)(©1)v2, v5)+(V2, p(06™)(01)05)=20* (1) (02, v3).

These imply that u(x*) is an element of co( V)®. Thus (V) is isomorphic with
v (Q.ED.)

ProrosiTiON 3. If dimV =3, then co( V)@ =0.
Proof. For any u,v,z,yeV and for any Tecw(V)® we have
(T(u) U).Z', y)+(x) T(uv v)y)=2(u, v)’(x’ y)$

where 2 is a symmetric bilinear form on V depending on 7. If 2 vanishes, then
T belong to o(V)® and hence must vanish. Since 2 is symmetric, to prove that a
given A vanishes it suffices to show that A(w, #) vanishes identically. Let us choose
u# and » with (#, v)=0. Then

A, u)- (v, 0)=2(T (e, w)v, v)=2(T (0, VIus, v)=—2(u, T, V)v)
=—2u, T(v, v)u)=—A, v)-(u, u).

Thus for every pair of orthonormal vectors # and » we have
A(u, w)=—2A(v, v).
If dimV =3, for every orthonormal vectors #, v, w we have
A(u, u)=—Av, v)=Aw, w)=—Au, u).
Hence A(u, #)=0. (Q.ED.)

The explicit treatment will be given in §4.

§2. G-structures.

Let M be a manifold of dimension #. A linear frame # at a point xeM is an
ordered basis Xj, -+, X, of the tangent space T (M). Let L(M) be the set of all
linear frames # at all points of M and let = be the mapping of L(M) onto M
which maps a linear frame # at z into x.

The general linear group GL(n, R) acts on L(M) on the right as follows: If
a=(a®)eGL(n,R) and u=(X,, ---, X3) is a linear frame at =z, then ua is, by definition,
the linear frame (Xa{X,, -, 2} X;)? at x.

In order to introduce a differentiable structure in L(M), let (z%,---,z") be a
local coordinate system in a coordinate neighborhood U in M. Every frame # at
reU can be expressed uniquely in the form u=(Xj, -, X») with X,=23X%?09/0xz*),
where (X*) is a non-singular matrix. This shows that z=%U) is in one-to-one
correspondence with UXGL(%n,R). We can make L(M) into a differentiable mani-
fold by taking (%) and (X% as a local coordinate system in =~%(U). L(M) is a

2) Indices i, j, &, --- run over the range 1,2, --,% and to simplify notation we adopt the
convention that all repeated indices under a summation sign are summed.
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principal fibre bundle over M with structure group GL(n,R). We call L(M) the
bundle of linear frames over M.

A linear frame # at x can also be defined as an isomorphism of R™ onto Tu(M).
The two definitions are related to each other as follows: let ey, ---, e, be the natural
basis for R". A linear frame u#=(Xj, ---, X») at « can be given as a linear mapping
u: R"—Ty(M) such that u(e;)=X,. The action of GL(#%,R) on L(M) can be ac-
cordingly interpreted as follows:

Consider a=(a%)eGL(xn,R) as a linear transformation of R" which maps e, into
Yase;, Then wa: R"—T»(M) is the composite of the following two mappings:

R* —— R™"— To(M).

A G-structure on a differentiable manifold M is, by definition, a reduction of
the structure group GL(n, R) of the bundle of linear frames L(M) to the subgroup G.

Let (,) be a non-degenerate symmetric bilinear form on R™ and let O(%) be
its orthogonal group. An O(n)-structure O(M) on M is the same as a Riemannian
metric g. In fact, given O(M), set g.(X, Y)=(u"'X, u~'Y) for every X,Ye To(M)
and #€O(M) with n(#)=2. From the definition of O(xn), ¢.(X, Y) is independent of
u with n(u)==x. Conversely, given a Riemannian metric on M, we let O(M) be the
set of all orthonormal frames, that is, of all #e L(M) which are isometries of R"
onto T(M).

Let (, ) be as before and let CO(») be its conformal group, that is, set of all
elements ¢eGL(n, R) such that

(au, av)=2-(u, v) for all «,veR",

where 2 is a positive function depending on a. A CO(n)-structure CO(M) on M is
the same as a “conformal structure” on M. Two Riemannian metric ¢ and § on
M are said to be conformally related if there exists a positive function p on M
such that §=p?g. Let {g} be a class of conformally related Riemannian metrics on
M. For an element g of {g}, CO(M) is defined as the set of all »e L(M) such that

09X, V)=p- X, u'Y) for all X, YeTo(M).

Clearly CO(M) does not depend on the choice of ge{g}. Hence the set of all
classes of conformally related Riemannian metrics on M are in one-to-one corre-
spondence with the set of all CO(n)-structures on M. This fact will be treated in
§ 8 from slightly different point of view.

§3. Jets and frames of higher order contact (Theory of Ehresmann-Kobayashi).

Let M be a manifold of dimension # and R™ be a real number space of di-
mension #. Let U and V be neighborhoods of the origin 0 in R®. Two mappings
f: U-M and ¢: V—M give rise to the same 7-jet at 0 if they have the same
partial derivatives up to order » at 0. The equivalence class of f, thus defined,
is denoted by 75(f).
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If fis a diffeomorphism of a neighborhood of 0 onto an open subset of M,
then the r-jet j5(f) at 0 is called an 7r-frame at xz=f(0). The set of M will be
denoted by P"(M).

Let G"(#n) be the set of r-frames ji(g) at 0eR" where ¢ is a diffeomorphism
from a neighborhood of 0eR™ onto a neighborhood of 0eR”. The G"(n) is a group
with multiplication defined by the composition of jets, that is, 75(¢)-72(¢")=75(geg’).
The group G"(n) acts on P"(M) on the right by 75(f)-75(¢)=755(feg) for j5(f)e P"(M)
and ji(¢)eG"(n). Then P"(M) is a principal fibre bundle over M with group G"(»).
PY(M) is nothing but the bundle of linear frames L(M) with structure group G'(n)
=GL(n, R).

From now on we shall be mainly interested in P%(M) and P'M).

We shall now define a 1-form on P*M) with values in R™gl(%, R), where
gl(n, R) denotes the Lie algebra of GL(n,R). Let X be a vector tangent to P*M)
at u=j%f). Denote by X’ the image of X under the natural projection P2(M)—P (M),
it is a vector tangent to PYM) at «'=jif). Since f is a diffeomorphism of a
neighborhood of the origin 0€R"™ onto a neighborhood of f(0)eM, it induces a
diffeomorphism of a neighborhood of e=ji(id.)e P'(R™) onto a neighborhood of
J(f)e P (M). The latter induces on isomorphism of the tangent space R"+-gl(%, R)
of PYR™) at e onto the tangent space of PY(M) at «'=ji(f); this isomorphism will
be denoted by .

The canonical form 0 on P*M) is defined by

0 X)=a"1(X").

Since # depends only on u#=j%f), 6(X) is well defined. The 1-form ¢ takes its
values in R"+gl(n, R).

We define an action of G*#n) on R"4-gl(n, R) which will be denoted by ad. Let
jX9)eG*n) and ji(f)e PY(R™). The mapping of a neighborhood of ec PY(R™) onto a
neighborhood of ee P*(R") defined by

3 —gero07")

induces a linear isomorphism of the tangent space R™gl(n, R) of P'(R"™) at e onto
itself. This linear isomorphism depends only on jXg) and will be denoted by ad(j¥g)).

Since G*#x) acts on PXM) on the right, every element A of the Lie algebra
a%(n) of G*(m) induces a vector field A* on P* M), which will be called the funda-
mental vector field corresponding to A.

ProrosITION 4. Let 0 be the canonical form on P*(M). Then
(1) 0(A*)=A’  for Aecgim)
where A’egl(n,R) is the image of A under the natural homomorphism
g% (n)—g'(n)=gl(n, R)
(i) R¥0=ada)0  for aeGin)

where R, denotes the action of aeG*n) on P*M).
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ProposiTION 5. Let M and M’ be manifolds of the same dimension n and let
0 and 0’ be the canonical forms on P*M) and P*M’) vespectively. Let f: M—DM’
be a diffeomorphism and denote by the same letter f the induced bundle isomorphism
PXM)Y—PYM"). Then

£’ =0.

Conversely, if F: P*(M)—P*M’) is a bundle isomorphism such that
F*9'=0,

then F is induced by a diffeomorphism f of the base manifolds.

We shall now express the canonical form of P*M) in terms of the local
coordinate system of P* M) which arises in a natural way from a local coordinate
system of M. For this purpose it suffice to consider the case M=R". Let e;, -, e,
be the natural basis for R” and (%, -+, 2") the natural coordinate system in R™
Each frame #=j%f) of R™ has a unique polynomial representation of the form

f(:c):Z’(u‘—l—Z’u;xf—l— %Zu;kxka>ei
where z=2x%; and «%=uy,. We take (u*, u}, %) as the natural coordinate system
in P¥R"™. Restricting # and #% to G*(n) we obtain the natural coordinate system
in G*n), which will be denoted by (s, si). For u=ji(f)e PA(M) with
f(x)=2<u’+2u§wf+ %Eu}kxfx’“>ei
and s=j4g)eG*(n) with
g(x)=2 (2 sta? + %Z sﬁx!x’ﬂ)e,
we have u-s=ji(fog) with
(ﬂg)(m):E(W-l—Z%}(Zs{x‘—i— %25{;,:0‘:::’“)
1 7, J ml 1 Nl L@ k .M 1 k M .0
+§Zujk Zslx—l—gaswxx sty —|—~2~Zsmw 20 ) te;
=X [u“—l—fu}s{xl—f— %Z(u}s{k + mSISE) Lt LE A=+ }ei.
Hence the action of G*#x) on P*R") is given by
(22, w3, 0 )(S%, Sui)= (1, 2u}St, 2u}Slu+ 2 uimSSE).
In particular, the multiplication in G%#) is given by

(S5, S5)(85, ) =(2's}s), 25]she+2SimsisE).



THEORY OF CONFORMAL CONNECTIONS 199

Similarly we can introduce a coordinate system («% #%) in PYR™) and a coordi-
nate system (s%) in G'(n) so that the natural homomorphisms P*R™)—P*R"™) and
G*n)—G'(n) are given by (w*, w3, wi)—(w*, ui) and (s, si)—(st) respectively.

Let {E, E']} be the basis for R"+gl(n,R) defined by E.=(0/0u?)., E}=(3/dul)..
We set

0=30'F;+Y0F1.
From the definition of the canonical form 6, we obtain by a straightforward
calculation the following formulae (cf. [4]);
0t = Yvidu®,
0= 2vidul— Sviuf vidut,
where (v%) denotes the inverse matrix of (#%). From these formulae we have

ProposiTioN 6. Let 0=(6% 0%) be the canonical form on P*M). Then
dbt=—Y6i NG,

§4. Mobius spaces and Mobius groups.

Let E™ be a Euclidean space of dimension # with coordinate system (%, ---, ™)

and with metric e=(e,;).
Let E™? be a Euclidean space of dimension #-+2 with coordinate system

@ v -+ ¥, =), and with metric
0 0 -1\ ®
E=Ep=| 0 & 0].
—1 0 0

Let P,., be the real projective space of dimension #+1, constructed from E™*?%
with homogeneous coordinate system (¥° v% -+, 9", v°). Let E"=E"U {co} be the
one point compactification of E® by a so-called “ point at infinity ”.

A hypersphere S*~! in E” may be represented by the ratio of #+2 real numbers
a’, at, -, a" a° as follows:
(1) e jylyt—22 e jraryt+2a>=0.
A point (a% at, -+, @", a*) in E**2—{0} can also be considered as a point in P**,

If @0 and Yejpa’a*—2a°a==0, the equation (1) gives a real hypersphere of
radius {(Jeza’ab*—2a’a)/a’a’}? and centered at (a'/a’, ---,a"/a"). In particular,
Seppa’a*—2a°a>=0 is the condition for the equation (1) to represent a point sphere,

that is, a single point (e'/a’, ---, a"/a®).
Let © denote the set of all point hyperspheres. If we let the special case

3) Indices a, B, -+ ;un over the range 0,1, 2, .-, #, co.
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a’=a'=---=q"=0 correspond to the point at infinity {co} in Z*, the elements of &
are in one-to-one correspondence with the points of 27
Let @ be the quadric in Pn,; defined by the equation

2epylyt—2y y>=0.

Then the elements of & are in one-to-one correspondence with the points of Q.

We set ar=y*/y° for i=1, ---, n and we shall take (z?, ---, ™) as a local coordinate
system of E" in the neighborhood defined by %°%0. Then E” is homeomorphic
with Q. We call E" the Mobius space of dimension 7.

An element of the projective transformation group PL(n-+1,R) of P,,; which
leaves @ invariant induces a transformation of Z".

Let O(n+2) denote the set of all elements s=(s§) of GL(z+2, R) which leave
the metric § invariant, that is, 3%,,sis4=¢,,, and denote by Q the cone in E"**
defined by the equation X&,;y“y*=0. Then O(n+2) acts transitively on Q~ and every
element of O(n+2) leaves ( invariant. Hence it induces a transformation of E".
The group of transformations of E" induced from O(n+2) is called the Mobius
group of E™ and denoted by K(n). K(x) is isomorphic with the factor group of
O(n+2) by the subgroup {e, —e}, where e denotes the identity of O@-2).

Let y=@° v*, v*) and ¥=@° 7%, ¥=) with &,y y*=0 3&,4°9?=0 be two points
in Q. Let f be a transformation of O given by 7=f(y). Then there exists an
element s=(s}) in O(n+2) such that y“=2XsgyP. Corresponding with the transfor-
mation f of O we can induce a transformation of E" and denote it by the same
letter f which is given by Z=f(z) with a*=v*/¢°, 2*=7*/y°. Then

2syyf _ syt H sy A sey” | siA- 25y y') +su(yly’)
Isgyt SO siyitshyT SSHEsYy yO)+ by

=
On the other hand, the equation 3&.,y"y*=0 implies Yejy/y*—2¢°y==0, that is,
Seppax’z®=2y"y°. Hence we have

st Xsvar 4§ Vstepal zk
SH—Z'ijf—I-% ngoejkxj.x"c ’

(2) =

Under the conditions X&,,siss=8,s components s; of s are completely determined
by s, st, s} and si. Hence we set

X2

So 33
3 at= Qe=— a,=
(3) s = 5

S
So

and we shall take (¢, @3, @;) as a local coordinate system of K(») in the neighborhood
of the identity defined by sj=0. We see, from the construction, that (af) is an
element of CO(#), the conformal group with respect to the metric e. Hence the
group K(n) is a semidirect product of R”, CO(%) and (R")*.

ProposiTION 7. Let w=(0", 0%, w;) be the Maurer-Cartan forms on K(n) which
coincide with da*, das, da, at the identity. Then the equations of Maurer-Cartan of
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K(#n) arve given by

do*=—3 i\ o,
(4) doi=— 20 N\ ofi— o' Nw;— Nete o, A0l 4052 0 A oF,

dw,;=—Yw; N\ wk,
where (e9¥)=(e,;)"

Proof. If we set
(05)=s"*dsed(n+2), where s=(s§)e On+2),

then we have 2¢,0%+28,,03=0, that is,

53—{-5;‘3:0, &_)80:0, J)?:.E’ekj&'){,“,
(5)
eyl Yeywh=0, ®% =Y}, 05,=0.
Thus we have
@} ®Y 0
&=(DF)=| @} o) ety |,
0 ZE]C]'(T)(’,C '—C-l-)g

If we set s=¢, then we get ®j=ds;. On the other hand, we get {rom (3)
da*=ds:,

(6) da}=dsi—0oids,
da,=ds}

at the identity e. Moreover w*=da@*, oi=da}, w,=da, at the identity, hence we
have
W=,
(7) O =o%— 050},
W; =0,
The equation ®=s"'ds implies do§=—2»* Ao} from which our proposition follows,

since the Lie group K(») is isomorphic with O(n-2)/{e, —e}. (Q.ED)

The dual of Proposition 7 may be formulated as follows. Let m=R", m* be its
dual and let co(z) be the Lie algebra of CO(n).

ProrosiTION 8. The Lie algebra Y(n) of K(n) is the divect sum:
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f(n)=1a-+co(n)+m*
with the following bracket operation; If u,vem, u*, v*em* and U, Vec(n), then

[u, v] =0, [u*, v¥]=0,
[U, u]=Uun, [u*, Ul=u*U,
(U, V]I=UV-VT,

—
[ot, w*} =0 Q 0e* —o* Q) e+ 26*(2e)- ]

where u*Qu denotes its dual under the isomorphism m* Qm—mQm* and I denotes
the identity matrix of degree n.

The left invariant vector fields on K(x) which coincide with d/da, 8/das, 9/da,
at the identity form a natural basis for m, co(z) and m* respectively. Let 0 be the
point of the Mdbius space E" with coordinate (0, ---,0). Let H be the isotropy sub-
group of K(zn) at 0 so that E"=K(#n)/H. Then H is the semidirect product of CO(#n)
and (R™)*, and the Lie algera ) of A is given by co(z)+m*. Proposition 8 implies
that the homogeneous space E"=K(n)/H is not weakly reductive.

In terms of the local coordinate system (at, a3 @;) of K(n) which is valid in a
neighborhood containing H, the subgroup H is defined by @*=0. For the elements

of H we have from

28,5055 =Eup and si=0

that
s¢=0,
s7=0,
sise=1,
(8)

\' K —
Nep sish=e¢,,
Sesksl=ss%,

Yep sk s, =25 52
We have also, from the equations (8),

1 ..
Sy = -TZeJ’“sg Sk
So

and

eI s sp.

Sh=

0
0

Thus the transformation induced by an element of H is given by the equation of
the form;
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Ystx?+(1/2s9) 2" 8% ste jx? 2*

Ir= < =
Se+ 2807 +4(1/483) XS, She jux? 2®
Y@+ (12) 2 eMe jragaianl o
14+ Yax)+(1/4)Ye%e jpagaixn’ o*
hence we have
. 1.
(9) T=Xatp + 5 2(eYe jp@a 0y — Al — aya;) I Tt

§5. Cartan connections.

Let M be a manifold of dimension #, G a Lie group, H a closed subgroup of
G with dim G/H=» and P a principal fibre bundle over M with structure group H.

Since H acts on P on the right, every element A of the Lie algebra %) of H,
as is well known, induces in a natural manner a vector field on P, called the
Sfundamental vector field corresponding to A. This vector field will be denoted by
A*. Since H acts along fibres, A* is vertical, that is, tangent to the fibre at each
point. For each element a¢eH, the action of @ on P will be denoted by R.. We
are now in position to define the notion of Cartan connection. It is a 1-form @ on
P with value in the Lie algebra g of G satisfying the following conditions:

(@) w(A¥)=A for every Ae})

(b) Rrw=ad(@™?) o, that is, o(R,X)=ad(a*)-o(X) for every aeH and every
vector X of P, where ad denotes the adjoint representation of H on g;

(¢) w(X)=0 for every non zero vector X of P.

The condition (c) means that o defines an isomorphism of the tangent space at
each point of P onto the Lie algebra g and hence implies the absolute parallel-
izability of P.

Let G be the Mobius group K(») acting on an n-dimensional Mobius space and
I be an isotropy subgroup of G so that G/H is the Mobius space. Let M be an
arbitrary manifold of dimension »# and P be a principal fibre bundle over M with
structure group H. We fix the natural basis for the Lie algebra f(») as described
in §4.

A Cartan connection o in P is then given, with respect to this basis, by a set
of 1-forms wt, %, w, on P.

The structure equations of the Cartan connection o are given by

(I) dor'=— Yo N\ +Q,
(I1) dwi=— Yo\ oli— o' N j— Yette o, N o' 013 op At +Q3,
(IID) dw,=— oy N\Noki+Q,.

For the sake of simplicity, we shall take these equations as a definition of the 2-
forms Q, Q, Q,. We call (Q9) the forsion form of the Cartan connection » and
(3, Q;) the curvature form of .
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ProrosiTION 9. The torsion and the curvature forms can be written as follows:

Qi— —;—ZKiklw"/\a)Z,
10) Q= —é— YKok Ao,

—

QJ= -EEKJ‘M(U’C/\(DL

wheve K, Kt and K are funclions on P.

Proof. Condition (c) implies that the algebra of differential forms on P is
generated by %, ¢, o, and functions.

To show that the torsion and the curvature forms do not involves @} and w,,
it is sufficient to prove the following three statements;

(i) The forms w*, restricted to each fibre of P, vanish identically;

(ii) The forms o} and w,, restricted to each fibre, remain linearly independent
at every point of the fibre;

(iii) The torsion and curvature forms, restricted to each fibre, vanish identically.

Condition (a) implies (i) and (ii).

To prove (iii), consider the restriction of the structure equation (I) to a fibre,
then by (i), the torsion form, restricted to the fibre, vanishes identically. By con-
dition (a), the restriction of the structure equations (II) and (III) to a fibre must
coincide with the Maurer-Cartan equation of H. It follows that the curvature form,
restricted to the fibre, vanishes identically. (Q.E.D.)

In order that the form w=(o? 0}, 0;) defines a Cartan connection in P, the
following conditions must be imposed on «* and %

@) o0¥(A*)=0 and 0}(A¥)=A} for every A=(A3 Aj)eco(n)+m*=Yh) where A*is
the fundamental vector field corresponding to A;

b)) R¥(w, wd)=adla ) e, i) for every aeH, where

ad(a™): m--co(n)—m-+co(n)
is the mapping
Hn)m*— ¥(n)/m*
induced by
ad(a™): ¥(n)—¥n),
(¢)) If X is a tangent vector to P such that o¥(X)=0, then X is vertical.

ProprosITION 10. Let P be a principal fibve bundle over M with structure group
H. Given v, and o} satisfying (@'), (b'), (c’) and
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(11) do*=—Y i\ o*

then there exists a unique Cartan connection w=(o*, % w;) with the following
properties:

(12) FN=0, ie, JK%;=0,

Proof. Uniqueness. We shall study first the relationship between two Cartan
connections w=(w*, @*,, w,) and d=(w, 0}, &;) with the given («?, w?). By conditions
(a) and (c), we can write

(B,-—a),zZ'Ajkw",

where the coefficients Ay are functions on P. Let
1 U
9}2—521{1]'1‘;1(0 /\(D

and

Q;z —;—Z'Kijklw’“/\wl

be defined by the structure equations (II) of the Cartan connections @ and & re-
spectively. Then we have

Q;—Q}zw’/\(c?)j~wj)+2'ei’°eﬂ(c5k~a)k)/\a)l—5§2’(&')k—-a)k)/\w’“
=Y A jpo* A0+ Yete jy Apmo™ N\l — 053 Ayo! A\ oF
= 2( —B%A]k—l“ Zsi“sﬂAak—i-Bﬁ»Au)wk/\wl

that is,

Kij— K= —0i A ju+ 0} A+ Tty Aai— 3% jr Aar+ 04U Arr— Awr).
Hence
Zf?im — YK =n(An—Auw),

SKiu—2Kyu=m—1)A— Ay+en2ed* Aar.
The conditions (12) and (13) imply

(14) Am=Auw
and
(15) (n—1D)Aj—Aij+epde¥ Agy =0,

From (14) and (15), we have
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(n—2)Aji+e; Y Aqr=0.
Multiplying by &* and summing with respect to 7 and /, we obtain
(n—1)2e* Aur, =0,
hence
et Agr=0 if n>1.

Thus we get Ay=0 if #>2, in other words, ® = if #>2.

Existence. Assuming that there is at least one Cartan connection &=(o", %, @,)
with the given (0% 0}) satisfying (11), we shall show the existence of a Cartan
connection w=(w*, 0%, w,) satisfying (12) and (13). If we define

1
2(n—1)n—2)

1

= R

YKk — eju2 e K

(16) Ap= =2y

and set
a)]=&')j—Z'Ajkwk

then o=(0*, w}, w;) is a Cartan connection with the required properties.

To complete the proof of the proposition, we have now only to prove that
there exists at least one Cartan connection w with the given (@, »%). Let {U,} be
a locally finite open covering of M with a partition of unity {¢.}. If o, is a
Cartan connection in P|U, with the given (w? %), then X(p,°7)w, is a Cartan con-
nection in P with the given (e, 0% where n: P—M is the projection. Hence, our
problem is reduced to the case where P is a trivial bundle. Fix a cross section
g: M—P, and set w{X)=0 for every vector tangent to ¢(}M). If Y is an arbitrary
vector of P, then we can write uniquely

Y=R,X+V

where X is a vector tangent to ¢(M) and ecH and V is a vector tangent to a
fibre of P so that V can be extended to a unique fundamental vector field A* of
P with AeY. By condition (a) and (b), a Cartan connection » must satisfy the
following condition:

o(Y)=ad(a™) - o(X)+A.
This determines o (Y). (Q.E.D.)

ProrosiTiON 11. Let P be a principal fibre bundle over M with structure group H.
If o=(0", 0}, w;) is a Cartan connection with the properties (11), (12) and (13) of
Proposition 10, then its curvature forms possess the following properties:

an SQNw'=0, that is, Kiju+Ki;+Kip=0
(18) SQUAw=0, that is, Kpu+Ki+Kijx=0,



THEORY OF CONFORMAL CONNECTIONS 207
19) If Q=0 and dim M>3, then Q,=0.
Proof. (17). From the structure equation (II) of a Cartan connection, we have
SQN=Ydos A\w? + Yo AN+ St Ao, Aw?
+ et o N o' Ne? — 2o Ao N o!
=Zdwi A\’ + 2o N\ (—do’)
=d(oj A\ o)
=d(—da)
=0.
(18). From the structure equation (III), we get
QN0 =Zdw, N+ Zop NN\
=XYdw, N\ + Yo \(—dw*)
=d3(o;\w?).

On the other hand, taking the trace of the structure equation (II) and taking
account of (12) we get

Sdwt=nSw; N\,
that is Yw;Aw* is a exact form, hence
2Q, Na?=0.

(19). By applying exterior differentiation to the structure egation (II) and
setting Q4=0, we obtain

W' \Q;—Setke ;Qu N o' 052 Qp A =0,
This, together with (18), implies
@' N\ Q;— Yetke ;Qp A wt=0,
that is,
St Qu N w? — Zel*Qp Awr=0.

Then 2e*QuAw’ Awr*=0. Hence 2Xe¢*QAw*=0 provided that dim M>3. This,
together with Proposition 9, implies that there exist 1-forms z* such that

Yk Q=1 Aw
Thus we have
0= AN’ =TI N0’ \@*
=(c*+)No* N
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This implies that 7?47/ is a linear combination of ®* and '’ for any 7 and j
(ix7). Therefore we can easily see that z* is proportional to w’. Hence we have
Q,=0. (Q.ED.)

§6. Conformal structures and conformal connections.

Let H?(n) be the subset of G*#) consisting of elements (a3, a%) with Xeyakal
=pe,; (0>0), that is, (¢%)eCOn), and @ =2 paaat —atar—aia, for some (a;)

PRrRoOPOSITION 12. H*n) forms a subgroup of G*n) of dimension n(n+1)/2+1.

Proof. Let (@}, ai) and (&, @) be in H%n). By the consideration in §3, we
have

(@, @) as, atw)=(2aiat, Xaial+ 3 atmalay).
Since a@%=2e%pa.ai—asar—ata, and @4 =2'c"e a0} —diar—aid,, we get
2@al+ 2 Aimaay= 2'e%e jxbob}— bibi—bib,
where b,=a;+Yaat, by=2XatateCO(n). This implies (&, aix)a, al) € HY(n).
(QED.)
The Lie algebra %?(»%) of H*(n) is the direct sum:
h(n)=co(n)+co(n)®

with the following bracket operation; If (A%), (B%eco(n) and (A%), (Bi)eco(n)™,
then

[(AD), (BHI=(2 A;Bi— 2B A%)ec(n),
[(A%), (Buw)l=(2AiB%— 3Bt Al— X Bt ;AL e co(n)
and
[(A%), (Bi)]=0.
As in §4, let I be the isotropy subgroup at 0e€E" of K(n) acting on the

Mobius space E™.

ProrosiTiON 13. For each element acH, let f be the transformation of E"
induced by a as in §4. Then a—jif) gives an isomorphism of H onto H*(n).
Moreover if a€H has coordinate (@, a3, a;) where a*=0, with vespect to the local
coordinate system in K(n) induced in §4, then the corresponding element of H?*(n)
has coordinate (a3, X% ja.0;—asar—aia;).

Proof. This is evident from the explicit expression (9) of the transformation
J. (cf. Proposition 2) (QED.)
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The induced isomorphism of § onto §*(#n) is given by (A% Ap)—(AL Je¥eiA,
—0tA—0tA ).

From Proposition 13 and the proof of Proposition 12, we see that the multipli-
cation in H is given by (&, 4,)(a}, a;)=(2aa%, a;+2acdh).

From Propositions 2, 3 and 13, a CO(n)-structure on a manifold M is equivalent
to the reduction of the structure group G*w) of P*M) to the subgroup H*(n).
(cf. [2]).®

A conformal structure on a manifold M is, by definition, a sub-bundle P of
P2(M) with structure group H?2(n).

Let 6=(6? 6% be the canonical form on PZ*AM). Given a conformal structure
P on M, let us denote by the same letters the restriction of 6 to P.

A conformal connection associated with a conformal structure P is, by definition,
a Cartan connection w=(w*, »%, »;) in P such that e*=#".

THEOREM 14. For each conformal structure P of a manifold M, there is a
unique conformal comnection v=(o*, w3, w;) such that

(1) o'=0 and 0i=0% so that do*=—Yoi o,
(ii) 30i=0,

Proof. This is an immediate consequence of Propositions 4, 6 and 10.

(QED.)

The unique conformal connection for P given in Theorem 14 is called the
normal conformal connection associated with the conformal structure P.

The cohomology class determined by the torsion form (Q%) is called the first
order structure tensor of the conformal structure P, and the cohomology classes
determined by the curvature forms (Q%) and (Q;) are called the second and the
thivd ovder structure temsors of P respectively.

A Mobius space B"=K(n)/H of dimension # has a natural conformal structure.
The normal conformal connection (o?, w3 ;) associated with it corresponds to the
Maurer-Cartan form of the group K(x) and its structure equations are nothing but
the equations of Maurer-Cartan for the group K(z) so that Q‘=0, Qi=0 and Q,=0.

§7. Natural frames and coefficients of conformal connections.

Let P be a conformal structure on a manifold M and U a coordinate neighbor-
hood in M with local coordinate system (z,---, 2™). Let o: U—P be a local cross
section given by () —(z% %, 0%) and Ux H¥n)=P|U the isomorphism induced by
o. Let (@}, ak), with Jenadial=pe;; (0>0) and a¥=2e"ea.a}—atar—ata,, be the
coordinate in H?(#). Then the natural coordinate system (u*, %, #%) in P|U can
be written as

4) Every CO(n)-structure 1s 1-flat and hence has a unique prolonged subbundle of P2(M).
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ut=x,
uy=2aiak,
uty=2otaly+ Totnalap.
Let 0=(6%, 0%) be the canonical form on P2*(M) restricted to P and set
gr=c*0,
gi=001,
Then we obtain the following formulae (cf. § 3);
20) 0t =3big*,
0i=Zbidat— Sete jpayf*+-a ;004052 a 0%+ Xbidial,

where (b%) denotes the inverse matrix of (a%). Let (0, ®} »;) be the normal con-
formal connection in P and set

P*=c*w*=S1lidx",
di=o*wi= I} dx",
¢, =0%w, =1} ;dx".
Then we obtain the following formulae:
=3t
1) wi=Xbida%— Jetle o+ a0t 405 ar o+ Xbpdlial,
w,=da;— 3 arwk+a,> aro® + Yakp,— —;—Z’ €20 3 @p®.

We call IIf, II%; and II;; the coefficients of the normal conformal connection with
respect to the local cross section a.

ProrosiTioN 15. Let P be a conformal structure on M and (of, 0% ;) the
normal conformal connection in P. Let U be a coordinate neighborhood in M with
local coordinate system (x',---,x™). Then there is a wunique local cross section
a: U—P¥M) such that

c*wt=dx" and o*Ywt=0).
If we set for such a o
o*wi=3Ti;de* and  o*w,=21;dz*
then
My=11f;  and  p=Tl,
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Proof. For an arbitrary point # of P, we choose a local coordinate system
(z', ---, z™) with origin x=nr(%) such that, in terms of the local coordinate system
(w?, us, ) in PA(M) induced by (2, -+, ™), u is given by (0, 6%, ). Let &: U—P¥M)
be the cross section given by

ur=xt, u%=0%, uip=—T"%,

¥

where each I'% is a certain function of «?, -, 2"
given by

We take ¢ as the cross section

ut=x", u}=5§, %}:kZ* %k,
where

H;k = F";k—- -7]/;— (5§2Fﬁk+5};ZF§§]— Zeiarﬁaejk).

Then, from the expression for #% in terms of (s, #}, %) given in § 3, we obtain
o* @y =11 ;dz”.

Clearly, o is a cross section with the desired properties.
To prove the uniqueness, let §: U— P* M) be another cross section with the
desired properties and set

Frwy=2 ﬁ,ﬁ sdx®.
From (21); and o*w*=d*w'*=dz*, we obtain
o*wl= ST ;dxt=(0%a,;)dz*+ 02 (0¥ ar)da® — Seile (o™ ay)dx* + ¢,
F* o= ST} da* = (5% a;)du 40, 3(F* ar)du® — Seie j(5* ar)da*-+ gt
Hence we have
1T~ 11y =0+ Oipr— St oo,
where we set ¢,=(F*a;)—(d*a;). From
o*Swi=5*Swi=0),
we obtain
or1=+=0,=0.

The remaining assertions are immediate consequences of the facts that Q=0 and
>Q:=0. (Q.ED.)

We call ¢ in Proposition 15 the natural cross section or the natural frame of
P associated with («?, ---, 2™).
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§8. Riemannian connections and conformal connections.

The group G'(#)=GL(n, R) can be considered as the subgroup of G*#) con-
sisting of the elements (a3 a%) with @%=0. Thus O#)cCOn)C H¥n)c G*(n).
Since G%x) acts on P¥ M), the subgroups O(n) and H?*(n) act on P*(M). We con-
sider the associated bundle P*M)/O(xn) and P*(M)/H*n) with fibres G*x)/O(n) and
G*(n)/H*(n) respectively.

ProposITION 16  The cross sections M—P*M)/O(n) are in one-to-one corre-
spondence with the Riemannian connection of M.

Proof. Let (u*, u} u%) be the local coordinate system in P?*(M) induced from
a local coordinate system (x*) in M as in §3. We introduce a local coordinate
system (2%, 2, 2ix) in P*(M)/O(n) in such a way that the natural mapping P* M)
—P¥M)/O(n) is given by the equations.

Zi=u,
Zi=x,
2= uh ] where (v5)=(u%)"".

Then a cross section I': M—P*M)/O(n) is given, locally, by a set of {unctions
T4=T% (%, -+, 2™ with I'4=T}, as follows:

(2%, 25, %) =(at, %, —T'%).

Then we can see without difficulty that the behavior of the functions I'
under the change of coordinate systems of M is the same as that of Christoffel’s
symbols. (Q.ED.)

Since the reduction of structure group to H?*#n) and the cross sections
M— P*(M)/H?(n) are in one-to-one correspondence, the conformal structures of M
are in one-to-one correspondence with the cross sections M— P2 M)/H?*n).

Every Riemannian connection I': M— P*(M)/O(n), composed with the natural
mapping a5: P*(M)/O(n)—P*(M)| H*n), gives a conformal structure M—P(M)/H?(n).

P¥M)0(n) ﬂ) P¥M)/H*(n)

NG
I‘\ /
M
A Riemannian connection is said to belong to a conformal structure P if T

induces P in the manner described above. We say that two Riemannian connections
are conformally related if they belong to the same conformal structure.

ProprosITION 17. Two Riemannian connections whose Chyisloffel's symbols
are given by {}} and {’,E} are conformally rvelated if and only if there exists a 1-
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Sform with components ¢; such that

J i ; . ,
l]k = [jk } +0%0u+0ipi—01 2 g%

Proof. Let P be a conformal structure on M. An element (a?, Y¢% jaqat
—dyar—aia;) of H*n) induces the transformation of P* M) given by

(ue, oty whe)— (0, Supa, Sup(Ee e juanal— abay—afa )+ Sub,alal).
It induces the transformation of P*M)/O(xn) given by
(2 *, 2%%)— (2, *, 2+ Yevle jrabhvl— 043 a,bhvi— ot aybivd)
where (b5)=(a¢)™" and WH=(uH)'. If we put ¢,=Fa,bhv?, then
Zje= 25+ e up1— 05— 04,

Let CO(M) be the principal fibre boundle over M with structure group CO(x)
and we call it the conformal bundle of M. Let M* be the kernel of the natural
homomorphism H*n)—CO(n) so that COM)=P/M*. Let u’eCO(M) be the image
of #e P under the natural projection P—CO(M). Then #’ induces a conformal iso-
morphism E"—T,(M) where x=n(x#). Thus our assertion is clear. (Q.ED.)

Two Riemannian metrics ¢=(g:;) and §=(g:;) on M is said to be conformally
related if there exists a function p>0 on A such that §=p?%. If §=(g;;) is con-
formally related to g=(gs:;) then there exists a 1-form ¢=(¢,) such that

jk| ik

] i ) ) L
{ g ‘=I l+5}50k+51@90j—gjkzg”(ﬁz

where {}} and {'ﬁ:} denote the Christoffel’s symbols of ¢ and § respectively. Thus
conformally related Riemannian metrics define conformally related Riemannian con-
nections. This implies that a conformal struc-
ture is given by a class of conformally related )
Riemannian metrics. PH(M)
Let T M—P2M)/O(n) be a Riemannian
connection. It corresponds naturally to a reduc-
tion of the structure group to O(s). In other 7(OM))
words, it induces an isomorphism 7 of the ortho-
normal frame bundle O(M) into P%M). Thus
a Riemannian connection I' belongs to a con-
formal structure P if and only if the corre-
sponding subbundle 7(O(M)) of PXM) with o)
structure group O(n) is contained in P.

AP

ProprositiOoNs 18. Let I' be a Riemannian connection of M belonging to the con-
Jormal structure P and 7. O(M)—PCP*M) the corresponding isomorphism. Let
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(0%, 0%) be the canonical form of P*M) restricted to P. Then (y*0%) is the canonical
Jorm of PYM) restricied to O(M) and (y*0%) is the commection form of T.

Proof. Let U be a coordinate neighborhood in M with local coordinate system
(x, -+, 2™). Let (u'?, %) and (u?, %, u'x) be local coordinate systems in O(M)c PY(M)
and in Pc P¥M) respectively, induced from (z?, ---, 2"). Let {%} be the Christoffel’s
symbols of the Riemannian connection I' with respect to the local coordinate system
(zY, --+,2™). Then 7: O(M)—P is given, locally, by

u=u',
=)

i
bq

Let o: U—P?* M) be the natural cross section of P. Let ¢’: U—PYM) be the
natural cross section, that is, the local cross section given by (x%)—(z? d%). Then,
from the expression for 6% in terms of («?, %}, u%) given in § 3, we obtain

= —2{ ]u"}u';ﬁ.

0= Zv’,ﬁdu”;—l—fv’};{;} w'h' W'hdu.

Hence we have

i

ldx". (QED)

Let P be a conformal structure on M. We shall explain Weyl’'s conformal
curvature tensor of P. Let CO(M) denotes the principal fibre bundle over M with
structure group CO(n) and we call it the conformal bundle of M associated with P.
Let (o, w3, »;) be the normal conformal connection associated with P. Let M* be
the kernel of the natural homomorphism H*7%)—CO(#n) so that CO(M)=P/M*. Let
m* be the Lie algebra of M*, then m* is nothing but co(z)® and hence isomorphic
with (R™)*.

ProposiTiON 19.
(i) t+Q5=0  for every Aem*,
(i) L,Q5=0  for every Aew*

where ¢y and Ly denote the interior product and the Lie differentialion will respect
to the fundamental vector field A* corresponding to Aem*.

Proof. The equation (i) follows from Proposition 9.
We have

L Q=de ;o440 4:d Q%=1 ,1.dQ3
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by (i). By taking exterior derivative of the structure equation (II) and using the
facts that Q¢=0, we have

A= 2R Nafi—Yop \NQk—a* \NQj4-Tete ;Qp A —5.5Q N ook

The right hand side of this equation vanishes for fundamental vector fields A*
corresponding to Aem*, hence ¢,.dQ%=0. This proves (ii). (Q.ED)

By the Proposition above, we see that 2-form (Q%) can be projected down to the
bundle CO(M)=P|M*. 1t follows that (Q%) defines a tensor field of type (1.3) on
M. This tensor field is called the conformal curvature temsor of Weyl; it depends
only on the conformal structure P.

§9. Geodesics and completeness.

Let P be a conformal structure on a manifold M and (¢, o}, ;) the normal
conformal connection associated with 2. With each element £=(£, -+, &™) of E®,
we can associate a unique vector field &% of P with the following properties:

()=,  oi(§)=0,  o,(§%)=0.

We call &* the standard horizontal vector field corresponding to &.
A curve x, in M is called a “ geodesic” of the given conformal structure if

. =n((exp tE*)uo)

for some standard horizontal vector field &* and for some point #,€P, where
n: P—DM is the projection. We call ¢ a canonical parameter of the geodesic x;.
On the other hand, a curve xz;==(x'(s), -+, x™(s)) in M is called a conformal circle
of the given conformal structure if

Azt . dixd dx® dllé, dx? dx* _— dxt dx? dx®
Y1IE ax LA AT ) § U § DA
s T3 e s ds ds ds el e T
dx? dx® dxv d2x? dx® daxb d2x® dxt dx™\ dxt
O, —— e Ve s, — athatiy k) —
My as as T e’k(dsz +2 M= ds)( ase Tl =gs ds) s
ot
4 YeiTl, ;s =0

for some parameter s, where II% and Il are the coefficients of the normal con-
formal connection.

THEOREM 20. Let P be a conformal structure on M. [If we disregard para-
metrizations, then the “ geodesics” of P ave the same as the conformal circles of P.

Proof. Let U be a coordinate neighborhood in M with local coordinate system
(z', -+, z"). Let o: U—Phbe a cross section such that ¢*e*=dz* and let Ux H=P|\U
the isomorphism induced by ¢. Let (g%, @;) be the coordinate system in A introduced
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in §4. We may take (z%, @% @;) as a coordinate system in P|U.

Let (B, B, B;) be the components of the standard horizontal vector field &%,
E=(¢", -, £"eE", with respect to the natural basis 9/0z*, 9/da’, d/0a,. From (21)
and the definition of the standard horizontal vector field we have

Br=2Xajg*,

dlc

B§= Ze‘”e,-ka}lalé" kl(l] a’

—a;— a;t —aydapst— 211

B =—a]2ak$k Zajﬂkl d + 26 €]kdaab€

Set uy=(exp tE*)uo=(x(t), ai(t), a;(t)), then we get

sy,
Hence we have
+g—2€“”aaab Cgl =0.

If we make a change of parameter f=i#(s) satisfying the differential equation

. 1 d?x? dx* dx®\ [ d*x* . Loda™ dx? dxF
{t,s}—§2@jk< ds® + M 5 ds ds >< ds® +2H“" ds ds >

where

(51— B3 (e pay:
dst/ ds  2\ds*/ ds)’
then the given geodesic of P is a conformal circle of P and vice versa. (Q.E.D.)

The conformal structure P is called complele if every standard horizontal vector
field is complete, that is, generates a 1-parameter group of global transformations.
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§10. Conformal transformations and flat conformal structures.

Let P and P’ be conformal structures on manifolds M and M’ of the same
dimension # respectively. A diffeomorphism f: M—M’ is called conformal (with
respect to P and P’) if f, prolonged to a mapping of P2%(M) onto P*M’), maps P
onto P’. In particular, a transformation f of M is called conformal (with respect
to P) if it maps P onto itself.

A conformal structure P on a manifold M is called flat if, for each point of
M, there exists a neighborhood U and a conformal diffeomorphism of U onto an
open subset of a Mobius space. Every vector field X on M generates a 1-parameter
local group of local transformations. This local group, prolonged to P%*/), induces
a vector field on P%(M), which will be denoted by X. We call X an infinitesimal
conformal transformation (with respect to P) if the local 1-parameter group of local
transformations generated by X in a neighborhood of each point of A consists of
local conformal transformations.

ProrosiTION 21. Let w=(w*, 0% w;) be the novmal conformal comnection as-
sociated with P. For a vector field X on M, the following conditions are mutually
equivalent:

(1) X is an infinitesimal conformal transformation of M,

(ii) X is tangent to P at every point of P;

(iii) Lzo=0;

(iv) Lg&*=0 for every £cE", where &* is the standard hovizontal vector field
corresponding to &.

Proof. (1)=>(ii). Let ¢; and & be the local 1-parameter groups of local transfor-
mations generated by X and X respectively. If X is an infinitesimal conformal
transformation, then ¢, is a local conformal transformation and hence ¢, maps P
into itself. Thus X is tangent to P at every point of P. N

(ii)=>@). If X is tangent to P at every point of P, the integral curve of X
through each point of P is contained in P and hence each @ maps P into itself.
This means that each ¢, is a local conformal transformation and hence X is an
infinitesimal conforml transformation.

(i)=>(iii). Since the normal conformal connection w=(w? »?, w;) is canonically
associated with P, every conformal transformation, prolonged to P, leaves w invariant.
Hence we have (iii).

(iii)=>(@{v). If Lgw=0, then

0=2X - (i(6%) =(Lgo)(E)+0(Lge*) = 0/(LgE¥),
0= X (0}(6")=(Lgoi)(e¥) + oy Le*) =0y Lxé*)
and
0=X - (0 =(Lgo)(E) + o Lee*) =0 Li5Y).
On the other hand, the (#+1)(#+2)/2 1-forms (e, w} w;) are linearly independent
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cverywhere on P and define an absolute parallelism on P. Hence we have Lz&*=0.
(iv)>(i). Let P(u,) be the set of points in P which can be joined to #, by an
integral curve of a standard horizontal vector field. Then Uy erP(#to)=P. From
Lgé*=0, @ leaves each P(u,) invariant and hence leaves P invariant, that is, ¢; is
a local conformal transformation. Hence X is an infinitesimal conformal transfor-
mation. (Q.E.D.)

THEOREM 22. Let P be a conformal structure on a manifold M of dimension
n. Then

(i) The set of all infinitesimal conformal transformations of M, denoted by
WM), is @ Lie algebva of dimension at most (n+1)n+2)/2=dim P;

(ii) The subset of (M) consisting of complete vector fields, denoted by (M),
is a subalgebra of (M),

(iii) The group of conformal transformations of M, denoted by (M), is a Lie
transformation group with Lie algebra (M),

@(iv) If the conformal structure P is complete, every infinitesimal conformal
transformation is complete, i.e., (M)=t(M).

Proof. (i). Since the normal conformal connection (o, w} ;) is canonically
associated with a conformal structure P, every conformal transformation, prolonged
to P, leaves (o, o}, w;) invariant. Let ©(P) be the set of vector fields X on P pro-
longed from Xet(M). Then ¢(M) is isomorphic with ¢(P) under the correspondence
X—X. Let u be an arbitrary point of P. Ths follgwing lemma implies that the
linear mapping ¢: ¢(P)—Tw(P) defined by ¢(X)=X, is injective so that dim t(P)
=dim Tu(P)=n+1)(n-+2)/2.

LEMMA. If an element X of «(P) vanishes at some point of P, then it vamshes
identically on P.

Proof of Lemma. If X.=0, then N)?m:O for every aeH*n). Let U be the
set of points z=m(u)e M such that X,=0. Then U is closed in M. Since M is
connected, it suffices to show that U is open. Assume )?u=0. Let b, be a local
1-parameter group of local transformations generated by a standard horizontal
vector field &% in a neighborhood of #. Since [)?, &¥]=0 by Proposition 21, X is
invariant by b, and hence X’bm=0. On the other hand, the points of the form
7(b:u) cover a neighborhood of x=n(x) when & and ¢ vary. This proves that U is
open.
(ii) 1is clear.

(iii) Every 1-parameter subgroup of €(}/) induces an infinitesimal conformal
transformation which is complete on M and, conversely, every complete infinitesimal
conformal transformation generates a 1-parameterNsubgroup of &(M).

(iv) It suffices to show that every element X of ¢(P) is complete. Let #, be
an arbitrary point of P and let ¢ (|¢/<9) be a local 1-parameter group of local
transformations generated by X. We shall prove that @w) is defined for every
uweP and |¢|<d. Then it follows that X is complete. For any point # of P, there
are a finite number of standard horizontal vector fields &¥, ---,&F and an element
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a€ H*n) such that
u=(b} 0l o b u0)a,

where each b% is the 1-parameter group of transformations of P generated by &¥.
Then we define ¢, () by

Plw)=(b},0b%y0 Ui (Pplu))a  for [¢<a.

From (iv) of Proposition 21, it follows that the above definition is independent of
the choice of &F,---, &F. (Q.ED.)

THEOREM 23. If the Lie algebra (M) of infinitesimal conformal transfor-
mations of M is of dimension (n-+1)Yn+2)/2, then the normal conformal connection
of P has vanishing curvatuve.

Proof. Let E be the identity matrix in co(z) and £* the fundamental vector
field on P corresponding to E. Let &* and &’* be the standard horizontal vector
fields on P. Then we have

[E* &¥]=6* and  [E* &*]=¢&*%

The exterior differentiation applied to the structure equations (II) and (III) yields
0=—Y QN+ o A Qb+ A\ Qj— Jethe ;) Qp Nl +dQ:,
0=—IQNf+ oy N U+dQ,.

Hence we have

L Q4=(dotgttuped) Q= 4dQ}=0
and
LzQ,=(dotpttpeod)Q,=5dQ,=Q,,

where Lz« and ¢z« denote the Lie differentiation and the interior product with re-
spect to E'* respectively. Therefore,

E*.Que*, &%) =(LuQi)(EX, &%)+ QUIE*, &4, %) +QyE*, [E*, §*])
=2Q(&*, &%)
and
L%-Q (%, &%) =(LmQy)(E¥, &%) +QuUIE*, §¥], §7%)+Qi(E%, [£%, £%])
=3Q(&*, £%).

On the other hand, if X is the infinitesimal transformation of P induced by an
infinitesimal conformal transformation Xet(M), then from
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Ly Q= Ly(dwj+ X 0p \ofi+-0* Ao+ Seite oy Aot — 53 o, N k) =0,
LQ,= Lg(do;+ S we \ok)=0
and from (iv) of Proposition 21, we obtain
X.Quex, %)= (LeQi)(E¥, £ QYLK 641, &)+ QueEx, [X, £4))=0
and
X-Q,(8%, &%) =(LaQ))(&", &)+ Q(X, £, &%)+Q,6%, [X, &5))=0.

Since dim E(NM)=dim P, for every point # of P, there exists an element X of (/)
such that X,=F% We have therefore

2QYEX, EHNu=(E*- Q&% &%))u=(X - Q4(£*, &)y =0

and
3(Q(EX, &) u=(E*- Q(E%, £%)),= (X - Q,(&*, £%)),=0.

Since # is an arbitrary point of P, we have Q%=0 and Q,=0. (Q.E.D.)

THEOREM 24. A conformal structure P on a manifold M is flat if and only if
the normal conformal commection has vanishing curvature.

Proof. Since the normal conformal connection of the conformal structure on
a Mobius space has vanishing curvature, the normal conformal connection of a flat
conformal structure has also vanishing curvature.

To prove the converse, let P be a conformal structure on A whose normal
conformal connection (@* @}, w;) has vanishing curvature. The structure equations
on P reduce to the equations of Maurer-Cartan for the group K(%). It follows that,
given a point # of P, there exists a diffeomorphism % of a neighborhood N’ of the
identity of K(») onto a neighborhood N of # which sends (e, 0}, w;) into the
Maurer-Cartan forms of K(z). In an obvious manner, we extend % to a diffeo-
morphism %: N’-H—N-H*n). Let U'==n/(N’) and U==(N), where =’: K(n)—K(xn)|H
and =1 P—M. Then z’-(U’)=N’-H and =~ (U)=N-H*#n). By construction,
L o/~ (U")—r~Y(U) is a bundle isomorphism. If we consider K(x) as the natural
conformal structure on the Mobius space K(n)/H (cf. §6), then we see that % sends
the normal conformal connection of P into that of K(z). In a unique manner, we
can extend % to a bundle isomorphism /%: P¥U’)—P*U). We see that #* sends
the canonical form of P*U) into that of P%(U’). By Proposition 5, %~ is induced
by a diffeomorphism of U’ onto U. (QED.)

COROLLARY. A conformal structure P on a manifold of dimension >3 is flal
if and only if the conformal curvature tensov of Weyl vanishes.

Proof. This follows from Proposition 11 and the definition of the conformal
curvature tensor of Weyl (cf. § 8). (Q.ED.)



THEORY OF CONFORMAL CONNECTIONS 221

THEOREM 25. Let P be a complete flat conformal structure on a simply con-
nected manifold M of dimension n. Then theve is a conformal diffeomorphism of
M onto a Mobius space of dimension n.

Proof. This follows from the definition of flatness and the standard continu-
ation argument. (Q.E.D.)

§11. Conformal connections on Riemannian manifolds.

In this section M will denote always a Riemannian manifold with metric g¢.
Let O(M) be the orthonormal frame bundle over M determined by the metric ¢
and T’ the Riemannian connection on O(M). Let P be the conformal structure on
M naturally associated with O(M) as in §8. Let U be a coordinate neighborhood
in M with local coordinate system (z', ---, "). Let (¢, 6%) be the canonical from on
P2 M) restricted to P and ¢: U—P?* M) a local cross section and set

t=g*fi= STlidx®,
Pi=0%0t=3TI} ;dz".
ProprosiTION 26. There exists a cross section o U—DP*M) such thal

Mi=3,

7
M= { 1}
wherve {4} denote the Christoffel's symbols of the Riemannian connection T.

Proof. This is an immediate consequence of Proposition 18. (Q.E.D.)

ProposiTION 27. Let (o, 0%, w;) be the normal conformal connection associated
with P and o. U—PXM) the cross section given in Proposition 26. If we sel for
such a o

¢,=a*w]=2’ﬂkjdx",
then

1 'R
~ g Rt =gy

wheve R, and R denote the components of the Ricci tensor and the scalar curvalure
of g respectively.
Proof. From Proposition 26 and the equation (21) we have
wr=Ybidx*

wy=Ibida— 2 g%g a0t + a0t + 0t ayw® + 2},

Bl .4
al}ajdm.
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Set

- 1 R
wj=daj_2akw§+aj2akwk+2a’;<_ P R+ 2n—1)(n—2) gkz>dxl
— %Z’g“"g jEQalp®®.
Then
Pr=c*or=dx",

i
¢;=a*w;.=2l kj}dxk,

— 1
s~ R

R
2(n—1)n—2) g"’)dxk'

Since the normal conformal connection is uniquely associated with P, it suffices to
prove that (e?, 0%, @;) is the normal conformal connection. Let Q¢ be the curvature
form of the connection (@*, i, ®;). From the structure equation (II) we have

1 , 1, . .

o*Qi= 52 (Rzm— pr—;) (iR j1—0iR ju+20%g . Rax— 307°q i Rar)
R o o
o Degy Cn ol | dstAds,

where Riy denote the components of the curvature tensor of the Riemannian con-
nection I'. If we set

Qg = % Z'K}'ucu"/\a)’

and
A 1 )
Cia=Rip— n—_-_‘g(alchjl—5ijk+ZgwgﬂRak— 20 1 Rar)
(23) »
T = n—2) (0k051— 079 jx),
then

O'*Kjvkz = C;u

We can easily see that 3Ci,;=0 and XYC?%;=0. Hence YKiy=0 and ¥K?%;=0.
This proves that (e, w}, ;) is the normal conformal connection. (Q.ED.)

The Cl; are the components of the conformal curvature tensor of Weyl of the
Riemannian manifold M.
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ProposiTiON 28. If dim M=3, then Qi=0, that is, the conformal curvature
tensor of Weyl vanishes identically.

Proof. Let C%; be the components of the conformal curvature tensor of Weyl
and set Ci,-u=2'ng“m. Then

Cijlclz —Cjint= —Cijzk and Cijlcl=cklij~

Let 0 be an arbitrary point of M. By choosing a coordinate system such that
gi;=0;; at 0, together with (13), we have XC;;;;=0 at 0. Hence

C2121+C3131=01 CIZIZ+C3232=0’ CI313+02323:O)
0313220, Cz123=0 and C1213=0 at 0.

This implies C;;x=0 at 0. Since C,;u are components of a tensor field and 0 is an
arbitrary point of M, C;;;=0 at every point of M. (Q.E.D.)

THEOREM 29. The conformal structure P on a Riemannian manifold of
dimension 3 is flat if and only if Q,=0.

Proof. This is an immediate consequence of Theorem 24 and Proposition 28.

(QED)

Let (0, 0%, w;) be the normal conformal connection associated wifh P. Let ¢
be the local cross section given in Proposition 26 and set ¢*Q,=(1/2)YC;udx* Ndx'.
From the structure equation (III) and Proposition 27 we have

1 1 oR oR
(24) Cjkl: 7*—2 (Rjk;l—le;k) - m (gjijT —0gj 8—30"—>’
where Rj; denote the components of the covariant derivative of the Ricci tensor
with respect to the Riemannian connection T.
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