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THEORY OF CONFORMAL CONNECTIONS

BY KOICHI OGIUE

Introduction.

The main purpose of the present paper is to give a modern introduction to the
theory of conformal connections. There were, historically, several approaches to
this subject. Our approach here is based on the theory of G-structures. We shall
now briefly explain our method.

For a manifold M υ of dimension n, we construct the bundle P\M) of frames
of 2nd order contact. Its structure group will be denoted by G\ή). We define a
certain subgroup H\n) of G\n) which is isomorphic with an isotropy subgroup of
the conformal transformation group K(n) acting on the Mobius space of dimension
n. A conformal structure on a manifold M is a subbundle P of P2(M) with
structure group H\ή).

A conformal connection for the given conformal structure P is a Cartan con-
nection satisfying some extra conditions. It will be shown that we can associate
with each conformal structure a naturally defined conformal connection, so-called
normal conformal connection.

§ 1. Prolongations of a Lie algebra.

Let F be a real vector space of dimension n and Q a Lie algebra of endo-
morphisms of F. G may be considered as a subspace of F(g)F*=Hom(F, F)=gϊ(F),
where F * denotes the dual space of F. The first prolongation gc υ of β is defined
to be g α ) =g(x)F*n F(x)S 2(F*)c F(x)F*(x)F*, where S\V*) denotes the space of
symmetric tensors of degree 2 over F*. Since g(x)F*=Hom(F,β), an element
TGQ®V* is in gα ) if and only if

T(u) v = T(v) u for all u,veV.

Set &w=(&»)<» and, in general, gCfc+1)=(gCfc))(1\ The space g(W is called the k-th
prolongation of q. Then

gα)=g(g)F*(x) (x)F*n

We call that g is of finite type if g c w = 0 for some (and hence all larger) k. If

Received October 31, 1966.
1) Throughout this paper, we shall denote by M a connected manifold of dimension

^3, unless otherwise stated.
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for all k then g is said to be of infinite type.
Let ( , ) be a non-degenerate symmetric bilinear form on V (of arbitrary

signature). Let o(F) be the orthogonal algebra of ( , ), that is, o(F) is the set of
such that

(Au, v)+(u, Av)=0 for all u, v€ V.

PROPOSITION 1. o(F) c υ =O.

Proof. For any T€θ(F) (1) and any u,v,WGV we have

(T(u)'V,w)=(T(v)-u,w)=-(u, T(v) w)=-(u, T{w)'V)

Thus (T(u)v,w)=0. Since w is arbitrary and ( , ) is non-degenerate, T(u)v=0 for
all u,vtV. Hence Γ(w)=0 for all UGV. This implies Γ=0. (Q.E.D.)

Let ( , ) be as before and let co(F) denote its conformal algebra. That is,
co(F) is the set of AG$(V) such that

(Au,v)+(u,Av)=λ-(u,v) for all u,

where λ is some scalar depending on A.

PROPOSITION 2. co(F) ( 1 ) is isomorphic with F * .

Proof. For any T€co(F) (1 ) we have a linear form i o n F defined by

(T(u)v9w)+(v, T(u)w)=λ(uy(v,w).

Thus we have a linear mapping of cΰ(F)cυ—»F*. A T lying in its kernel would
lie in o(F) c υ and thus vanish by Proposition 1. Hence the mapping is injective.
Let us show that it is also surjective. To this effect we observe that ( , ) induces
an isomorphism of V onto F*. Thus uzV is mapped onto ^*€F* where u*(v)
=(u, v) for every v$V. If we replace ( , ) by p(,), then under the new isomorphism
u gets sent into pu*. In particular, the isomorphism of V®V* onto V*(><)V
induced by ( , ) is independent of the scalar p. Let us denote this isomorphism by
φ. For any ^*€F*, let μ: V*-^V(g)V*(g)V* be defined by

μ(u*){v)=v(g)u*—φ(u* (g)v)+u*(v) -1,

where / is the identity in βϊ( F). From

μO*)Oi)#2 = U*(V2) tfi + tt*(tfi) V2 — (VU V2)

we have

μ(u*)(Vi)V2=μ(u*)(v2)v1.

Furthermore,
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These imply that μ(u*) is an element of co(F)α ). Thus co(F)c υ is isomorphic with
F*. (Q.E.D.)

PROPOSITION 3. / / d i m F ^ 3 , then co(F)(2)=O.

Proof. For any u,v,x,yGV and for any T€co(V)C2:> we have

(Γ(«, v)x, y)+(x, T(uy v)y)=λ(u, v)-(xy y\

where λ is a symmetric bilinear form on F depending on T. If λ vanishes, then
T belong to o( F)C 2 ) and hence must vanish. Since λ is symmetric, to prove that a
given λ vanishes it suffices to show that λ(uy u) vanishes identically. Let us choose
u and v with (u,v)=0. Then

λ(uy u)-(vy υ)=2{T(u, u)v, v)=2(T(u, v)uy v)=-2(u, T(u, v)v)

— —2{uy T(yy v)u)——λ{υ, v)-(uy u).

Thus for every pair of orthonormal vectors u and v we have

λ(uy u)= —ά(v, v).

If dimF^3, for every orthonormal vectors u,υ,w we have

λ(u, u)=— λ(v, v)=λ(w, w)=— λ(u, u).

Hence λ(u,ύ)=0. (Q.E.D.)

The explicit treatment will be given in § 4.

§ 2. (r-structures.

Let M be a manifold of dimension n. A linear frame u at a point XGM is an
ordered basis Xu -,Xn of the tangent space TX(M). Let L(M) be the set of all
linear frames u at all points of M and let π be the mapping of L(M) onto M
which maps a linear frame u at x into x.

The general linear group GL(n, R) acts on L(M) on the right as follows: If
a=(a))QGL(ny R) and u=(Xίt •• ,-Xw) is a linear frame at x, then ^^ is, by definition,
the linear frame (Σa{XJf •'•yΣa3

nXjf'
) at x.

In order to introduce a differentiate structure in L(M), let O1, •• ,^re) be a
local coordinate system in a coordinate neighborhood Z7 in M. Every frame « at
XGU can be expressed uniquely in the form u=(Xu •••, Xw) with X%=ΣX\{d\dxk),
where (X*) is a non-singular matrix. This shows that π~\U) is in one-to-one
correspondence with Ux GL(n, R). We can make L(M) into a differentiate mani-
fold by taking (#*) and (̂ Γ*) as a local coordinate system in π~\U). L(M) is a

2) Indices i, , k, ••• run over the range 1, 2, •••, w and to simplify notation we adopt the
convention that all repeated indices under a summation sign are summed.
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principal fibre bundle over M with structure group GL(n, R). We call L(M) the
bundle of linear frames over M.

A linear frame u at x can also be defined as an isomorphism of Rn onto TX(M).
The two definitions are related to each other as follows: let elf- ,en be the natural
basis for Rn. A linear frame u=(Xu -~,Xn) at x can be given as a linear mapping
u: Rn-»TX(M) such that u(et)=Xt. The action of GL(n,R) on L{M) can be ac-
cordingly interpreted as follows:

Consider a=(a))£GL(n, R) as a linear transformation of Rn which maps e3 into
Σa)βi. Then ua: Rn—>TX(M) is the composite of the following two mappings:

A G-structure on a differentiate manifold M is, by definition, a reduction of
the structure group GLin, R) of the bundle of linear frames L(M) to the subgroup G.

Let ( , ) be a non-degenerate symmetric bilinear form on Rn and let O(ή) be
its orthogonal group. An O(n)-structure 0{M) on M is the same as a Riemannian
metric g. In fact, given O(M), set gx(X, Y)=(u~1X,u-1Y) for every X,YeTx(M)
and usO(M) with π(u)=x. From the definition of O(^), g^(X, F) is independent of
u with π(u)=x. Conversely, given a Riemannian metric on M, we let O(M) be the
set of all orthonormal frames, that is, of all UGL(M) which are isometries of Rn

onto TX(M).
Let ( , ) be as before and let CO(ή) be its conformal group, that is, set of all

elements aeGL(nfR) such that

(au,av)=λ-(u,v) for all u,vςRn,

where λ is a positive function depending on a. A CO(n)-structure CO(M) on M is
the same as a " conformal structure " on M. Two Riemannian metric g and g on
M are said to be conformally related if there exists a positive function p on M
such that g=p2g. Let {#} be a class of conformally related Riemannian metrics on
M For an element g of {gr}, CO(M) is defined as the set of all ueL(M) such that

gx(X, Y)=p (u^X, u-χ Y) for all X, Ye TX(M).

Clearly CO(M) does not depend on the choice of gz{g}. Hence the set of all
classes of conformally related Riemannian metrics on M are in one-to-one corre-
spondence with the set of all COO)-structures on M. This fact will be treated in
§ 8 from slightly different point of view.

§ 3. Jets and frames of higher order contact (Theory of Ehresmann-Kobayashi).

Let M be a manifold of dimension n and Rn be a real number space of di-
mension n. Let U and V be neighborhoods of the origin 0 in Rn. Two mappings
/: U—+M and g: V-+M give rise to the same r-jet at 0 if they have the same
partial derivatives up to order r at 0. The equivalence class of /, thus defined,
is denoted by
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If / is a diffeomorphism of a neighborhood of 0 onto an open subset of M,
then the r-jet fo(f) at 0 is called an r-frame at x=f(0). The set of M will be
denoted by Pr(M).

Let Gr(n) be the set of r-frames fo(g) at OeRw, where g is a diffeomorphism
from a neighborhood of OGR™ onto a neighborhood of OGR7*. The GrO) is a group
with multiplication defined by the composition of jets, that is, jrQ(g)-Jl(g')=jl(g°g').
The group Gr(n) acts on P r(M) on the right by jl(f)'jr

o(g)=jro(f°g) for fo(f)£Pr(M)
and Jl(g)€Gr(n). Then Pr(M) is a principal fibre bundle over M with group Gr(n).
P\M) is nothing but the bundle of linear frames L(M) with structure group G\n)
=GL(n, R).

From now on we shall be mainly interested in P\M) and P\M).
We shall now define a 1-form on P\M) with values in Rn+$(n, R), where

gί(w, R) denotes the Lie algebra of GL(n, R). Let X be a vector tangent to P\M)
at u=jl(f). Denote by X 7 the image of X under the natural projection P\M)-*P\M),
it is a vector tangent to P\M) at u'=j\(f). Since / is a diffeomorphism of a
neighborhood of the origin θ€Rw onto a neighborhood of / ( O ) G M , it induces a
diffeomorphism of a neighborhood of e=j\(id.)£P\Rn) onto a neighborhood of
jl(f)£P1(M). The latter induces on isomorphism of the tangent space Rπ+gϊ(^, R)
of P\Rn) at e onto the tangent space of P\M) at u'=jl(f); this isomorphism will
be denoted by ύ.

The canonical form θ on P\M) is defined by

Since ώ depends only on u=j&f), β(X) is well defined. The 1-form β takes its
values in Rn+$Kn, R).

We define an action of G\n) on R?i+0Ϊ(^, R) which will be denoted by ad. Let
jl(g)eG\ή) and ;{(/)€P^R"). The mapping of a neighborhood of eGP\Rn) onto a
neighborhood of ezPι(Rn) defined by

induces a linear isomorphism of the tangent space Rn-\-$(n, R) of Px(Rn) at e onto
itself. This linear isomorphism depends only on j\(g) and will be denoted by ad(jl(g)).

Since G\ή) acts on P\M) on the right, every element A of the Lie algebra
tf(ri) of G\ή) induces a vector field A* on P\M), which will be called the funda-
mental vector field corresponding to A.

PROPOSITION 4. Let θ be the canonical form on P2(M). Then

(i) 0(A*)=A' for Attf(ή)

where Ar € $l(n, R) is the image of A under the natural homomorphism

(ii) Rtθ=ad(a~1)θ for aGG2(n)

where Ra denotes the action of azG\ri) on P\M).
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PROPOSITION 5. Let M and Mf be manifolds of the same dimension n and let
θ and θr be the canonical forms on P\M) and P\M') respectively. Let f: M-*Mr

be a diffeomorphism and denote by the same letter f the induced bundle isomorphism
P\M)->P\Mf). Then

f*θ'=θ.

Conversely, if F: P\M)—*P\Mf) is a bundle isomorphism such that

then F is induced by a diffeomorphism f of the base manifolds.

We shall now express the canonical form of P\M) in terms of the local
coordinate system of P2{M) which arises in a natural way from a local coordinate
system of M. For this purpose it suffice to consider the case M=Rn. Let eu '-,en

be the natural basis for Rn and (x1, •••, xn) the natural coordinate system in RΛ
Each frame u=j&f) of Rn has a unique polynomial representation of the form

where x=Σxιei and u)k—ulj. We take (u1, u), ufa) as the natural coordinate system
in P2(Rn). Restricting u) and u)k to G\ή) we obtain the natural coordinate system
in G2(n), which will be denoted by (5), s}k). For u=Jl{f)zP2{M) with

and s=jl(g)zG2(n) with

we have u s=jl(f°g) with

1 Σu)k(Σs{xι+ -i Σsiaxιxa) (istx™ + ~

xk + - L
J

Hence the action of G\ή) on P2(Rn) is given by

(u\ u), uι

jk)(s), s}k)=(u\ Σulsι

Jt Σulsι

jk+Σulmsιjs%).

In particular, the multiplication in G\ή) is given by

(β*, SJtXs}, s)k)=(Σstsl, Σ
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Similarly we can introduce a coordinate system (u\ uf) in P\Rn) and a coordi-
nate system (s}) in G\ή) so that the natural homomorphisms P2(RW)-»P1(RW) and
GXή)-*G\ή) are given by (u\ u], u)k)-+(u\ uf) and (sj, s)k)-*(s)) respectively.

Let {Et,E{} be the basis for Rn+αϊ(«,R) defined by Eτ=(d/du% Ei=(d/du}%.
We set

θ=ΣθiEi+Σθi

jE\.

From the definition of the canonical form θ, we obtain by a straightforward
calculation the following formulae (cf. [4]);

θ*=Σviduk,

θ)=2W«* - Σv\uk

hύv\du\

where (v)) denotes the inverse matrix of (u% From these formulae we have

PROPOSITION 6. Let θ=(θi,θί

j) be the canonical form on P2(M). Then

§ 4. Mδbius spaces and Mόbius groups.

Let En be a Euclidean space of dimension n with coordinate system (y1, - ,yn)
and with metric ε=(ε v ).

Let En + 2 be a Euclidean space of dimension n+2 with coordinate system
(y°, y\ ••-, yn, 2/00), and with metric

0

0

- 1

0

0

- 1

0

0

Let PTO+i be the real projective space of dimension n-\-l, constructed from En+2,
with homogeneous coordinate system (y°fy

1,'-',ynyy°°). Let Ξw=ErιU{oo} be the
one point compactification of E71 by a so-called " point at infinity ".

A hypersphere S71'1 in Έn may be represented by the ratio of n-\-2 real numbers
a°, a1, •••, an, a°° as follows:

A point (a0, a1, •' ,an,aco) in En+2— {0} can also be considered as a point in P ? M 1.
If #°3F0 and ΣεJka

Jak—2a°aco^0, the equation (1) gives a real hypersphere of
radius {(ΣeJka'ak—2a°aoo)/a0a0}1/2 and centered at (a1la°,~;an/a0). In particular,
Σεjka

Jak—2a°aoo=0 is the condition for the equation (1) to represent a point sphere,
that is, a single point (a1^0, '-',an/a°).

Let @ denote the set of all point hyperspheres. If we let the special case

3) I n d i c e s α, β, ••• r u n o v e r t h e r a n g e 0 , 1 , 2, •••, n, 00.
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ao=a1 = '-=an=O correspond to the point at infinity {00} in Ξn, the elements of ©
are in one-to-one correspondence with the points of Ξn.

Let Q be the quadric in Pw+i defined by the equation

ΣeJky>y*-2y0y°°=0.

Then the elements of © are in one-to-one correspondence with the points of Q.
We set xl=yl/y° for z=l, •••, n and we shall take (x1, •••, xn) as a local coordinate

system of Ξ7* in the neighborhood defined by y°^0. Then Ξn is homeomorphic
with Q. We call En the Mobius space of dimension n.

An element of the projective transformation group PL(n+l, R) of Pw+i which
leaves Q invariant induces a transformation of Ξn.

Let 0{n+2) denote the set of all elements s=(sβ) of GL(n+2, R) which leave
the metric ε invariant, that is, Σελμs

λ

as$=εaβ, and denote by Q the cone in En+2

defined by the equation Σεaβy
ayβ=0. Then O(n-\-2) acts transitively on Q and every

element of CKn+2) leaves Q invariant. Hence it induces a transformation of Ξn.
The group of transformations of Ξn induced from O(n-\-2) is called the Mobius
group of Ξ71 and denoted by K(ή). K(ή) is isomorphic with the factor group of
O(n-{-2) by the subgroup {e, —e}, where e denotes the identity of O(n+2).

Let y=(y°yy\yo°) and y=(ψ,ψ,y°°) with Σεaβy
ayP=0 Σεaβy

ap=0 be two points
in Q. Let / be a transformation of Q given by y=f(y). Then there exists an
element s=(sa

β) in O(n+2) such that ya=Σsa

βy
β. Corresponding with the transfor-

mation / of Q we can induce a transformation of Ξn and denote it by the same
letter / which is given by x=f(x) with xι=yι/y°, xι=yι/y°. Then

X ~

On the other hand, the equation Σεaβy
ayβ=0 implies ΣεjkyJyk—2y°yoo=0, that is,

Σεj kx
Jxk=2yco/y°. Hence we have

( } X ~

Under the conditions Σελμs
λ

as
μβ—εaβy components 5̂  of 5 are completely determined

by sj, si, s°j and 55. Hence we set

ςt nt QO

OQ OQ OQ

and we shall take (a1, a}, a^) as a local coordinate system of K(n) in the neighborhood
of the identity defined by sJ^O. We see, from the construction, that (aj) is an
element of CO(n), the conformal group with respect to the metric ε. Hence the
group K(n) is a semidirect product of Rn, CO(ή) and (Rw)*.

PROPOSITION 7. Let ω=(ωι,ωι

J}ωj) be the Maurer-Cartan forms on K{n) which
coincide with da1, da), da3 at the identity. Then the equations of Maurer-Cart an of
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K(n) are given by

dωι= —Σω%/\ωk

f

( 4 ) dω)=— Σωl/\ω)—ωιAωj—Σέikεjlωk/\ωι-\-δ)Σωk/\ωk

1

where (ε t0=(ety)"1.

Proof. If we set

(ωt£)=s~1dss'ξ(n+2), where s=(sa

β)€ O(n+2),

then we have Σerβώ
r

a-\-Σearω
rβ=Q, that is,

(5)
l (01=0.

Thus we have

ω] 0

0 2 εΛyά>f -ύ>S

If we set s = e , then we get ώj=c?sj. On the other hand, we get from (3)

<fa*=dteί,

( 6 ) da)=ds)-δ)dsl

at the identity e. Moreover ωz=da\ ω)=da), ω3=da3 at the identity, hence we
have

(7)

The equation ώ=s~1ds implies dώa

β=—Σώa

rΛώrβ from which our proposition follows,
since the Lie group K(n) is isomorphic with 0(n+2)/{e, —e}. (Q.E.D.)

The dual of Proposition 7 may be formulated as follows. Let m=R w , m* be its
dual and let co(w) be the Lie algebra of CO(ή).

PROPOSITION 8. The Lie algebra ί(n) of K(n) is the direct sum:
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ϊ(«)=tίt+co(ra)+ttι*

with the following bracket operation) If u,vem, u*, y*€m* and U, Veco(n), then

[u,v]=0, [«*,»*]=0,

[U,u] = Uu, [u*,U)=u*U,

[U,V]=UV-VU,

[u, u*]=u (g) u*—u* (S) u-\-u*(u) Ί

where ύ*®u denotes its dual under the isomorphism m* (g) m->m (x) m* and I denotes
the identity matrix of degree n.

The left invariant vector fields on K(n) which coincide with d/da\ d\da%

v d\da3

at the identity form a natural basis for m, co(̂ ) and m* respectively. Let 0 be the
point of the Mobius space Ξn with coordinate (0, •••,()). Let H be the isotropy sub-
group of K(n) at 0 so that Ξn=K(n)/H. Then H is the semidirect product of CO(n)
and (Rw)*, and the Lie algera ϊ) of H is given by co(0+m*. Proposition 8 implies
that the homogeneous space Ξn=K(n)IH is not weakly reductive.

In terms of the local coordinate system (a\ a}, a3) of K(n) which is valid in a
neighborhood containing H, the subgroup H is defined by α*=0. For the elements
of H we have from

Σελμs
λ

as
μ

β=εaβ and s$=0

that

s7=0,

s o ° s ~ = l ,
( 8 )

Σekιs£,sl>=ί

We have also, from the equations (8),

and

S - - " 2 ^ 2 ε SjSk'

Thus the transformation induced by an element of H is given by the equation of
the form;
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_? _ Σs)x'+(ll2s°0)Σεaι s»as

_ Σa)x>+(ll2)Σεaιεjkaaa\χiχk

hence we have

(9 ) x* = Σa)χJ + y Σ(εaιεjkaaa\ - a)ak - a\a3

§ 5. Cartan connections.

Let M be a manifold of dimension n, G a Lie group, JEZ" a closed subgroup of
G with dim GjH=n and P a principal fibre bundle over M with structure group H.

Since iJ acts on P on the right, every element A of the Lie algebra ΐj of 77,
as is well known, induces in a natural manner a vector field on P, called the
fundamental vector field corresponding to A. This vector field will be denoted by
A*. Since H acts along fibres, A* is vertical, that is, tangent to the fibre at each
point. For each element aeH, the action of a on P will be denoted by Ra. We
are now in position to define the notion of Cartan connection. It is a 1-form ω on
P with value in the Lie algebra g of G satisfying the following conditions:

(a) ω(A*)=A for every A^
(b) Rtω=ad(ΰΓ1) ω, that is, ω(RaX)=ad(a"1)-ω(X) for every azH and every

vector X of P, where ad denotes the adjoint representation of H on g;
(c) ω(X)^Q for every non zero vector X of P.
The condition (c) means that ω defines an isomorphism of the tangent space at

each point of P onto the Lie algebra g and hence implies the absolute parallel-
izability of P.

Let G be the Mobius group K{n) acting on an ^-dimensional Mobius space and
H be an isotropy subgroup of G so that G/H is the Mobius space. Let M be an
arbitrary manifold of dimension n and P be a principal fibre bundle over M with
structure group H. We fix the natural basis for the Lie algebra l(n) as described
in §4.

A Cartan connection ω in P is then given, with respect to this basis, by a set
of 1-forms ω\ ω), ω3 on P.

The structure equations of the Cartan connection ω are given by

(II) dω)=-

(III) dω3 = -

For the sake of simplicity, we shall take these equations as a definition of the 2-
forms Q\ Ω}, Ωj. We call (Ω*) the torsion form of the Cartan connection ω and
(Ω], Ωj) the curvature form of ω.
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PROPOSITION 9. The torsion and the curvature forms can be written as follows:

(10)

where K1^ Kljki and KJU are functions on P.

Proof. Condition (c) implies that the algebra of differential forms on P is
generated by ωι, ωj, ω3 and functions.

To show that the torsion and the curvature forms do not involves ω) and ω3,
it is sufficient to prove the following three statements;

( i ) The forms ωι, restricted to each fibre of P, vanish identically;
(ii) The forms ω) and ωJf restricted to each fibre, remain linearly independent

at every point of the fibre;
(iii) The torsion and curvature forms, restricted to each fibre, vanish identically.
Condition (a) implies (i) and (ii).
To prove (iii), consider the restriction of the structure equation (I) to a fibre,

then by (i), the torsion form, restricted to the fibre, vanishes identically. By con-
dition (a), the restriction of the structure equations (II) and (III) to a fibre must
coincide with the Maurer-Cartan equation of H. It follows that the curvature form,
restricted to the fibre, vanishes identically. (Q.E.D.)

In order that the form ω=(ω\ωί

J}ωJ) defines a Cartan connection in P, the
following conditions must be imposed on ωι and ω)\

(a7) ω\A*)=Q and ω%A*)=Ai for every A=(A), Aj)eco(«)+tn*=l) where A* is
the fundamental vector field corresponding to A;

(b') Rt(ω%,ωil)=ad(a~'1)(ωι,ω)) for every aεH, where

ad{a~ι)\

is the mapping

K»)/m*-*ϊ(»)/m*

induced by

(c') If X is a tangent vector to P such that ω*(X)=0, then X is vertical.

PROPOSITION 10. Let Pbe a principal fibre bundle over M with structure group
H. Given ω%, and ω) satisfying (a'), (b')> (c') and
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(11) dω*=-Σωl/\ω*

then there exists a unique Cartan connection ω=(ωι,ω}iω/) with the following
properties'.

(12) ΣΩl=0, i.e., ΣK\jk=0,

(13)

Proof. Uniqueness. We shall study first the relationship between two Cartan
connections ω={ω%

iω
%

Jyωj) and ώ = {ωi

iω),ωj) with the given (ω\ ωj). By conditions
(a) and (c), we can write

where the coefficients Ajk are functions on P. Let

and

be defined by the structure equations (II) of the Cartan connections ω and ω re-
spectively. Then we have

= ΣAJkω* A ωk+ΣεikεjlAk7nω
m Aωι~ δ)ΣAklω

ι A ωk

^Σi-

that is,

Hence

ΣK\kl-ΣKhkι=n{Akι-Alk\

ΣKijtt--ΣKijiι=(n-l)Ajl--Aιj+εjlΣetaΛa*.

The conditions (12) and (13) imply

(14) Akt=Alk

and

(15) (n

From (14) and (15), we have
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Multiplying by εjι and summing with respect to j and /, we obtain

(n-l)Σε*aAak=0,

hence

ΣεkaAak=0 if n>\.

Thus we get Aμ=0 if n>2, in other words, ώ=ω if n>2.
Existence. Assuming that there is at least one Cartan connection ώ=(ωz

fω),ώj)
with the given (ω\ ωj) satisfying (11), we shall show the existence of a Cartan
connection ω = (ω\ωt

J,ωJ) satisfying (12) and (13). If we define

A*= hΣR^ ΊφhwΣR^ 2(n-lXn-2) ' " * * • "

and set

ωj=ώj—ΣAjkω
k

then ω=(ωι,ω},ωj) is a Cartan connection with the required properties.
To complete the proof of the proposition, we have now only to prove that

there exists at least one Cartan connection ω with the given (ω\ ωj). Let {Ua} be
a locally finite open covering of M with a partition of unity {φa}. If ωa is a
Cartan connection in P\Ua with the given (ω\ωj), then Σ(φaoπ)ωa is a Cartan con-
nection in P with the given (ωι, ωj) where π: P-^M is the projection. Hence, our
problem is reduced to the case where P is a trivial bundle. Fix a cross section
σ: M-^Py and set ωj(X) = 0 for every vector tangent to σ(M). If Y is an arbitrary
vector of P, then we can write uniquely

Y=RaX+V

where X is a vector tangent to σ(M) and a^H and V is a vector tangent to a
fibre of P so that V can be extended to a unique fundamental vector field A* of
P with Az\ By condition (a) and (b), a Cartan connection ω must satisfy the
following condition:

ω(Y)=ad(a-1)-ω(X)+A.

This determines ω/Γ). (Q.E.D.)

PROPOSITION 11. Let P be a principal fibre bundle over M with structure group H.
If ω=(ω\ωιj,ωj) is a Cartan connection with the properties (11), (12) and (13) of
Proposition 10, then its curvature forms possess the following properties'.

(17) 2Ώ}Λω>=0, that is, If V«+#**«/+#%*=0.

(18) ΣΩjΛωJ = 0, that is, KJkι+Kkij+Kιjk=0,
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(19) // Ω}=0 and dimM>3, then Ω,=0.

Proof. (17). From the structure equation (II) of a Cartan connection, we have

= d(-dωi)

=0.

(18). From the structure equation (III), we get

J=ΣdωJΛ<DJ+ΣωkΛa

= ΣdωjA(ύ3JrΣωkA{—dωk)

On the other hand, taking the trace of the structure equation (II) and taking
account of (12) we get

Σdω\=nΣωi A ωz,

that is ΣwiAω1 is a exact form, hence

(19). By applying exterior differentiation to the structure eqation (II) and
setting Ω}=0, we obtain

This, together with (18), implies

ω*ΛΩj- ΣεikejιQk A ωι = 0,

that is,

ΣεikQk AωJ-

Then ΣεikΩkΛa>JΛa>t=0. Hence ΣεikΩkAωι=0 provided that dimM>3. This,
together with Proposition 9, implies that there exist 1-forms τ% such that

ΣείkΩk=τιAω\

Thus we have
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This implies that τ^+τ 7 is a linear combination of ωι and ω 7 for any i and j
(i^j). Therefore we can easily see that τι is proportional to ω\ Hence we have
Ω,=0. (Q.E.D.)

§6. Conformal structures and conformal connections.

Let H\n) be the subset of G\n) consisting of elements (#j, ajk) with Σεkιa\a]
= pεtJ (/o>0), that is, (aj)ζCO(n), and a)k=Σεaιεjkaaa\-a)ak-alad for some (aj)

PROPOSITION 12. H\ή) forms a subgroup of G\ή) of dimension n(n-\-l)/2-\-l.

Proof. Let (a), a)k) and (<zj, ά)k) be in H\ή). By the consideration in § 3, we
have

Since a)k=Σεaιεjkaaa\—a)ak—a\a3 and άjk—Σεaιεjkάadi—άjάk—άkάj, we get

where bj=aj+Σάka
k

Jf b%j=ΣάiaιjeCO(ri). This implies (άj, &jk)(a),a)k)sH2(ή).
(Q.E.D.)

The Lie algebra ή2(») of H\n) is the direct sum:

with the following bracket operation; If (ΛJ), (5})€co(n) and (A)k), (B)k)QCΐ>(n)(Λ\
then

KA}), (£})] =(ΣAlB «-ΣB%A)) € CO(Λ),

and

KA)k),(B%)]=0.

As in §4, let // be the isotropy subgroup at 0eΞw of K(ή) acting on the
Mobius space Ξn.

PROPOSITION 13. For each element a€H, let f be the transformation of Ξn

induced by a as in § 4. Then a-^jl(f) gives an isomorphism of H onto H\ή).
Moreover if a zH has coordinate (aι,a),aj) where aι=0, with respect to the local
coordinate system in Kin) induced in § 4, then the corresponding element of H\ή)
has coordinate {a)yΣεaιεjkaaa\—a)ak—alaj).

Proof. This is evident from the explicit expression (9) of the transformation
/. (cf. Proposition 2) (Q.E.D.)
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The induced isomorphism of ΐ) onto ψ(n) is given by (A), Λj)-^(A), Σεiaεj1cAa

-3}Ak-δtAj).
From Proposition 13 and the proof of Proposition 12, we see that the multipli-

cation in H is given by (ά),ά3)(a),aJ)=(ΣάiaΊc

J,aj-\-Σάka
1j).

From Propositions 2, 3 and 13, a CO(^)-structure on a manifold M is equivalent
to the reduction of the structure group G\ή) of P\M) to the subgroup H%n).
(cf. [2]).4)

A conformal structure on a manifold M is, by definition, a sub-bundle P of
P\M) with structure group H2(ri).

Let θ=(θi

J 0j) be the canonical form on P\M). Given a conforma] structure
P on M, let us denote by the same letters the restriction of θ to P.

A conformal connection associated with a conformal structure P is, by definition,
a Car tan connection ω=(ωι, ω), ω3) in P such that ωι=θί.

THEOREM 14. For each conformal structure P of a manifold M, there is a
unique conformal connection ω=(ωι, ω), ωj) such that

( i ) ωi=θi and ω}=0* so that dω'ι^-~Σωi

k/\o)k

1

( i i) ΣΩi=0,

(ϋi)

Proof. This is an immediate consequence of Propositions 4, 6 and 10.
(Q.E.D.)

The unique conformal connection for P given in Theorem 14 is called the
normal conformal connection associated with the conformal structure P.

The cohomology class determined by the torsion form (Ω*) is called the first
order structure tensor of the conformal structure P, and the cohomology classes
determined by the curvature forms (Ωj) and (Ωy) are called the second and the
third order structure tensors of P respectively.

A Mδbius space Ξn=K(n)/H of dimension n has a natural conformal structure.
The normal conformal connection (ω\ ω), ω3) associated with it corresponds to the
Maurer-Cartan form of the group K(n) and its structure equations are nothing but
the equations of Maurer-Cartan for the group K(ri) so that Ω*=0, Ωj=O and Ω^=0.

§ 7. Natural frames and coefficients of conformal connections.

Let P be a conformal structure on a manifold M and U a coordinate neighbor-
hood in M with local coordinate system (a?1, ~',%n). Let σ: U-^P be a local cross
section given by (oβi)—*(x\σt

Jfσ
%

jk) and UxH2(n)^P\U the isomorphism induced by
σ. Let (a),a)ic\ with Σεkιa\a)=pεi3 (p>0) and a)k=Σεaιejkaaa\—ai

jak—alaJ1 be the
coordinate in H\ή). Then the natural coordinate system (u\ u), u)k) in P\U can
be written as

4) Every CO(^)-structure is l-flat and hence has a unique prolonged subbundle of P2(M).
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u%=Σσ\aι

jk

Let 0=(0*,0}) be the canonical form on P\M) restricted to P and set

Then we obtain the following formulae (cf. §3);

θ*=Σbίφk,
(20)

where (b)) denotes the inverse matrix of (a)). Let (ω% ω), ω/) be the normal con-
formal connection in P and set

ψj=σ*a)j—Σΐίkjdxk.

Then we obtain the following formulae:

(21) ω ^ ^ μ

La

We call Π£, II}fc and Π^ the coefficients of the normal conformal connection with
respect to the local cross section σ.

PROPOSITION 15. Let P be a conformal structure on M and (ω*, α>$, ωά) the
normal conformal connection in P. Let U be a coordinate neighborhood in M with
local coordinate system (x1,'"fx

n). Then there is a unique local cross section
σ: U-+P\M) such that

σ^ωί = dx'1 and l

If we set for such a σ

σ*ω)=ΣτilJdxk and σ*ωJ =

then

Πj fc=Πi, and Π,*=Π
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Proof. For an arbitrary point u of P, we choose a local coordinate system
(x1, --,xn) with origin x=π(u) such that, in terms of the local coordinate system
(u\ «}, u)k) in P\M) induced by (x\ •••, ^ n ) , α is given by (0, δ*, *). Let σ: U-*P\M)
be the cross section given by

uι=xι, u)=δ), u%=—Ti

Jkf

where each Γj^ is a certain function of x1, - ,xn. We take σ as the cross section
given by

where

ΠJ t=ΓJ f c ( ^

Then, from the expression for θ) in terms of (uit u), u)k) given in § 3, we obtain

Clearly, σ is a cross section with the desired properties.
To prove the uniqueness, let σ: U—>P\M) be another cross section with the

desired properties and set

σ*ω)=ΣUi

kjdxk.

From (21)2 and σ*ωι=σ*ωι=dxι, we obtain

σ*ω)=ΣUljdxk=(σ*aj)dxz+d^Ha+aύdx*

ff *ω}=ΣUijdx*=(σ*aj)dx*+δ}Σ(σ*ak)dxk - l ^

Hence we have

where we set <Pj=(σ*aj)—(σ*aj). From

we obtain

The remaining assertions are immediate consequences of the facts that Ω*=0 and
2Ώ}=0. (Q.E.D.)

We call σ in Proposition 15 the natural cross section or the natural frame of
P associated with (x1, - ,xn).
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§ 8. Riemannian connections and conformal connections.

The group G1(n)=GL(nf R) can be considered as the subgroup of G\ri) con-
sisting of the elements {a),a)k) with a%=0. Thus O(ri)aCO(ή)(zH\ή)<zG\ή).
Since G\ή) acts on P\M\ the subgroups O(n) and H\n) act on P\M). We con-
sider the associated bundle P\M)\O{ri) and P\M)\H\ri) with fibres G\n)\O{n) and
G\ri)\H\ri) respectively.

PROPOSITION 16 The cross sections M-+P2(M)/O(n) are in one-to-one corre-
spondence with the Riemannian connection of M.

Proof. Let (u\ u), u)k) be the local coordinate system in P\M) induced from
a local coordinate system (x1) in M as in § 3. We introduce a local coordinate
system (z\ z), z)k) in P\M)/O(n) in such a way that the natural mapping P\M)
-*P2(M)/O(ή) is given by the equations.

z%=Σu%qvψl where (v})=(uj)-\

Then a cross section Γ: M-*P2(M)/O(n) is given, locally, by a set of functions
Γjk=ΓU (x\-~,xn) with Tjjc^Tlj as follows:

(z\z),z)k)={x\*,-T)k).

Then we can see without difficulty that the behavior of the functions Y)k

under the change of coordinate systems of M is the same as that of ChristoffeΓs
symbols. (Q.E.D.)

Since the reduction of structure group to H\ri) and the cross sections
M-^P\M)\H\n) are in one-to-one correspondence, the conformal structures of M
are in one-to-one correspondence with the cross sections M-+P2(M)jH\ri).

Every Riemannian connection Γ: M—>P2(M)/O(n), composed with the natural
mapping ϋS\ P\M)IO(ή)->P%M)IH2(ή), gives a conformal structure M-+P\M)IH\n).

P2(M)/O(n) - ^ U P\M)IH\n)

Γ\>/
M

A Riemannian connection is said to belong to a conformal structure P if Γ
induces P in the manner described above. We say that two Riemannian connections
are conformally related if they belong to the same conformal structure.

PROPOSITION 17. Two Riemannian connections whose ChήstoffeVs symbols
are given by {jk} and {μ} are conformally related if and only if there exists a 1-
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form with components ψι such that

213

Σgilφι-

Proof. Let P be a conformal structure on M An element (a*, Σεaιεjkaaal
—a)ak—a\aj) of H\n) induces the transformation of P\M) given by

(u\ u),

It induces the transformation of P2(M)/O(n) given by

{z\ *, z}*)—(2% *> zh+Σε%kapbζi^-δ}Σapbξvϊ--δtΣapbζtή)

where (^)=(«J)"1 and (y})=(«})-1. If we put φ3=Σavb\υ% then

Zjk=z}Λ + Σείlεjkψι—δ}y>Λ—δ

Let CO(M) be the principal fibre boundle over M with structure group CO(ή)
and we call it the conformal bundle of M. Let M* be the kernel of the natural
homomorphism H\ή)—CO{n) so that CO(M)^P/M*. Let u'eCO(M) be the image
of u£P under the natural projection P-^CO(M). Then &' induces a conformal iso-
morphism Έn—>TX(M) where x=π(u). Thus our assertion is clear. (Q.E.D.)

Two Riemannian metrics g=(gij) and g=(gij) on M is said to be conformally
related if there exists a function p>0 on M such that g=p2g. If g={g%j) is con-
formally related to g=(gi/) then there exists a 1-form φ=(ψj) such that

|y*j
- gjkΣgίlψι

• P\M)

•P

where {/fc} and {/fc} denote the ChristoffeΓs symbols of g and g respectively. Thus
conformally related Riemannian metrics define conformally related Riemannian con-
nections. This implies that a conformal struc-
ture is given by a class of conformally related
Riemannian metrics.

Let Γ: M~*P2(M)IO(n) be a Riemannian
connection. It corresponds naturally to a reduc-
tion of the structure group to O(n). In other
words, it induces an isomorphism γ of the ortho-
normal frame bundle O(M) into P\M). Thus
a Riemannian connection Γ belongs to a con-
formal structure P if and only if the corre-
sponding subbundle γ{O(M)) of P\M) with
structure group O(n) is contained in P.

O(M)

PROPOSITIONS 18. Let Γ be a Riemannian connection of M belonging to the con-
formal structure P and γ: O(M)->PcP2(M) the corresponding isomorphism. Let
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(θ1, θj) be the canonical form of P\M) restricted to P. Then {γ^θ1) is the canonical
form of P\M) restricted to O(M) and (γ*θj) is the connection form of Γ.

Proof. Let U be a coordinate neighborhood in M with local coordinate system
O1, •••, xn). Let (un, u'j) and (uι, u)> ufa) be local coordinate systems in O(M)aP1(M)
and in P<zP\M) respectively, induced from (a?1, ••-,#*). Let {/fc} be the ChristoffeΓs
symbols of the Riemannian connection Γ with respect to the local coordinate system
{x\ - Ίx

n). Then γ: O(M)-*P is given, locally, by

uι=uH,

Let σ: U-*P\M) be the natural cross section of P. Let af\ U->P\M) be the
natural cross section, that is, the local cross section given by (#*)—•(#*, δ)). Then,
from the expression for θ) in terms of {u\ u), u)k) given in § 3, we obtain

ί h 1
T u j — ̂ υ k a i / t / J t k ί f , I h J laU '

Hence we have

σ'*(γ*θ})=Σ\£.\ dxK (Q.E.D.)

Let P be a conformal structure on M. We shall explain WeyΓs conformal
curvature tensor of P. Let CO(M) denotes the principal fibre bundle over M with
structure group CO{n) and we call it the conformal bundle of M associated with P.
Let (ω% ω), a)/) be the normal conformal connection associated with P. Let M* be
the kernel of the natural homomorphism H\ri)-*CO{n) so that CO(M)=P/M*. Let
m* be the Lie algebra of M*, then m* is nothing but co(nYΌ and hence isomorphic
with (Rn)*.

PROPOSITION 19.

(i) cA*Q}=0 for every

(ii) LA*Ωιj=0 for every

where cA* and LA* denote the interior product and the Lie differentiation with respect
to the fundamental vector field A* corresponding to Aζm*.

Proof. The equation (i) follows from Proposition 9.

We have

LASij=dcA*Q* + cA*dΩj=cA*dΩ)
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by (i). By taking exterior derivative of the structure equation (II) and using the
facts that Ω*=0, we have

ή—Σω\ Λ Ω$ - ωι Λ Ωy+Σε^ε^Qj, Λωι- δ)ΣQk A ωk.

The right hand side of this equation vanishes for fundamental vector fields A*
corresponding to A cm*, hence eA*d^l)—O. This proves (ii). (Q.E.D)

By the Proposition above, we see that 2-form (Ωj) can be projected down to the
bundle CO(M)=P/M*. It follows that (Ω}) defines a tensor field of type (1. 3) on
M. This tensor field is called the conformal curvature tensor of Weyl; it depends
only on the conformal structure P.

§ 9. Geodesies and completeness.

Let P be a conformal structure on a manifold M and (ω\ ω), ω/) the normal
conformal connection associated with P. With each element ζ=(ζ\ '->ξn) of En,
we can associate a unique vector field ζ* of P with the following properties:

We call f* the standard horizontal vector field corresponding to ξ.
A curve xt in M is called a " geodesic " of the given conformal structure if

for some standard horizontal vector field f* and for some point uo€P, where
π: P~>M is the projection. We call t a canonical parameter of the geodesic xt.
On the other hand, a curve xs=(x\s\ --,xn(s)) in M is called a conformal circle
of the given conformal structure if

<Fχ% , o v m ^ 2 ^ ̂ * , v dR)k dxJ dxk

 π . _ J ^ ώ^ ώ f c

ds" ' " 3* ds2 ds ' ~ ds ds ds ' al]* ds ds ds

. ^ ttJϋ*7 Ct»Λ/ iXJj , V7 / u- tv , VTTT- ^ ^ ^ w \ | (* Λ , V7-ΓT7 ^ ^ ^ ^ \ U>J°\(
ds

for some parameter 5, where Π^ and Tίjk are the coefficients of the normal con-
formal connection.

THEOREM 20. Let P be a conformal structure on M. If we disregard para-
metrizations, then the " geodesies " of P are the same as the conformal circles of P.

Proof. Let U be a coordinate neighborhood in M with local coordinate system
(x\ ~,xn). Let σ: U->Phe a cross section such that σ*ω%=dx% and let UxH=P\U
the isomorphism induced by σ. Let {a), a3) be the coordinate system in H introduced
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in § 4. We may take (x\ a), a3) as a coordinate system in P\ U.
Let (Z?% B)y Bj) be the components of the standard horizontal vector field £*,

ξ=(ζ\ - , Γ ) € E n , with respect to the natural basis d/dx\ djda), d/daj. From (21)
and the definition of the standard horizontal vector field we have

dt Δ

Set ut=(exptξ*)uo=(x%t),a}(t),aj{t)), then we get

dx% _p.

dt ~ '

Λ

dt

Hence we have

, qyπ-i ^ ^ ^ χ f e , v ^Πjfc ώ 7 ώ &

 v ώ ^ dxJ dxk

jk dt2 dt * dt dt dt ^ al Jk dt dt dt

dxJ dxk dxι

 v tι( d2xι

 yτΎ, dxJ dxk \ , ^ , Λ T T dxk

k~ 77 " 7, 7 , "T~O^ji7^ I 7 „ Γ 2.

d t

If we make a change of parameter t=t(s) satisfying the differential equation

dxa dxb \ ( d2xk yTik dxι dxm \ y π dxJ dxk

rs2 ιm ds ds ) jk ds ds '

where

x°'Oί~ ds"/ ds 2\ds2/ ds)>

then the given geodesic of P is a conformal circle of P and vice versa. (Q.E.D.)

The conformal structure P is called complete if every standard horizontal vector
field is complete, that is, generates a 1-parameter group of global transformations.
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§ 10. Conformal transformations and flat conformal structures.

Let P and Pf be conf ormal structures on manifolds M and M' of the same
dimension n respectively. A diffeomorphism /: M-*Mr is called conformal (with
respect to P and P') if /, prolonged to a mapping of P\M) onto P\M'\ maps P
onto Pf. In particular, a transformation / o f M is called conformal (with respect
to P) if it maps P onto itself.

A conformal structure P on a manifold M is called jfatf if, for each point of
My there exists a neighborhood £/ and a conformal diffeomorphism of U onto an
open subset of a Mobius space. Every vector field X on M generates a 1-parameter
local group of local transformations. This local group, prolonged to P2(M), induces
a vector field on P2(M), which will be denoted by X. We call X an infinitesimal
conformal transformation (with respect to P) if the local 1-parameter group of local
transformations generated by X in a neighborhood of each point of M consists of
local conformal transformations.

PROPOSITION 21. Let ω==(ωι,ω}yωj) be the normal conformal connection as-
sociated with P. For a vector field X on M, the following conditions are mutually
equivalent'.

( i ) X is an infinitesimal conformal transformation of M;
(ii) X is tangent to P at every point of P;
(iii) Lχω=0;
(iv) L%ζ*=0 for every ξ€Έn, where ξ* is the standard horizontal vector field

corresponding to ξ.

Proof. (i)=>(ii). Let <pt and φt be the local 1-parameter groups of local transfor-
mations generated by X and X respectively. If X is an infinitesimal conformal
transformation, then φt is a local conformal transformation and hence ψt maps P
into itself. Thus^Z is tangent to P at every point of P.

(ii)=>(i). If X is tangent to P at every point of P, the integral curve of X
through each point of P is contained in P and hence each φt maps P into itself.
This means that each ψt is a local conformal transformation and hence X is an
infinitesimal conforml transformation.

(i)=Xiii). Since the normal conformal connection ω=(ωz,ω),ωj) is canonically
associated with P, every conformal transformation, prolonged to P, leaves ω invariant.
Hence we have (iii).

(iii)=>(iv). If Lχω=0, then

and

On the other hand, the (»+l)(»+2)/2 1-forms {ω%,ω),ωj) are linearly independent
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everywhere on P and define an absolute parallelism on P. Hence we have Lχξ*=0.
(iv)=>(i). Let P(u0) be the set of points in P which can be joined to u0 by an

integral curve of a standard horizontal vector field. Then {JuoepP(uo)=P. From
Lff*=0, φt leaves each P(u0) invariant and hence leaves P invariant, that is, ψt is
a local conformal transformation. Hence X is an infinitesimal conformal transfor-
mation. (Q.E.D.)

THEOREM 22. Let P be a conformal structure on a manifold M of dimension
n. Then

( i ) The set of all infinitesimal conformal transformations of M, denoted by
c(M), is a Lie algebra of dimension at most (w+l)(«+2)/2=dimP;

(ii) The subset of c(M) consisting of complete vector fields, denoted by c(M),
is a subalgebra of c(M);

(iii) The group of conformal transformations of M, denoted by S(M), is a Lie
transformation group with Lie algebra c(M);

(iv) // the conformal structure P is complete, every infinitesimal conformal
transformation is complete, i.e., c(M)=c(M).

Proof, (i). Since the normal conformal connection (ωι, ω), ω/) is canonically
associated with a conformal structure P, every conformal transformation, prolonged
to P, leaves (<w*, ωJj, ωj) invariant. Let c(P) be the set of vector fields X on P pro-
longed from Xsc(M). Then c(M) is isomorphic with c(P) under the correspondence
X-+X. Let u be an arbitrary point of P. The following lemma implies that the
linear mapping φ: c(P)—>Γω(P) defined by φ(X)=Xu is injective so that dimc(P)

Γ « G P ) = ( Λ + 1 ) ( « + 2 ) / 2 .

LEMMA. // an element X of c(P) vanishes at some point of P, then it vanishes
identically on P.

Proof of Lemma. If Z t t =0, then Xua=0 for every azH\ri). Let U be the
set of points x=π(u)eM such that Xu=0. Then U is closed in M. Since M is
connected, it suffices to show that U is open. Assume Xu=0. Let bt be a local
1-parameter group of local transformations generated by a standard horizontal
vector field £* in a neighborhood of u. Since [Xfζ*]=Q by Proposition 21, Z is
invariant by &£ and hence Xbtu=0. On the other hand, the points of the form
πφtu) cover a neighborhood of x=π{u) when f and ί vary. This proves that U is
open.

(ii) is clear.
(iii) Every 1-parameter subgroup of K(M) induces an infinitesimal conformal

transformation which is complete on M and, conversely, every complete infinitesimal
conformal transformation generates a 1-parameter^subgroup of S(M).

(iv) It suffices to show that every element X of c(P) is complete. Let u0 be
an arbitrary point of P and let φt (\t\<δ) be a local 1-parameter group of local
transformations generated by X. We shall prove that φt(u) is defined for every
UQP and \t\<δ. Then it follows that X is complete. For any point u of P, there
are a finite number of standard horizontal vector fields if, ••-,<?* and an element
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such that

where each b\ is the 1-parameter group of transformations of P generated by ξ*.
Then we define ψt{u) by

φM^ib^obl^- Όb^φ^uo^a for \t\<δ.

From (iv) of Proposition 21, it follows that the above definition is independent of
the choice of ζf, ••, ?£. (Q.E.D.)

THEOREM 23. / / the Lie algebra c(M) of infinitesimal conformal transfor-
mations of M is of dimension (n+l)(n+2)l2, then the normal conformal connection
of P has vanishing curvature.

Proof. Let E be the identity matrix in co(w) and E* the fundamental vector
field on P corresponding to E. Let <?* and ξ'* be the standard horizontal vector
fields on P. Then we have

[E*,ξ*]=ξ* and [£*, £'*]=£'*.

The exterior differentiation applied to the structure equations (II) and (III) yields

0= -ΣΩkf\ω)+ΣωkAΩ)+dΩJt

Hence we have

and

where LE* and tE* denote the Lie differentiation and the interior product with re-
spect to E* respectively. Therefore,

^J+QKtfi* ί*], ί;*)+Ω}(ί*, [£* f'

and

On the other hand, if X is the infinitesimal transformation of P induced by an
infinitesimal conformal transformation XGC(M), then from
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and from (iv) of Proposition 21, we obtain

Z Ω}(f*, £'*)=(L*ΩJ)(ί*, ξ'*)+Q)(lX, ?*], £'*)+Ωχ£*. [*, £'*])=0

and

X Ω/ί*, £'*) = (L*Ωy)(£*, £'*)+Ω,([*, £*], £'*)+Ω,(f*, [ I , £'*])=0.

Since dim c(M)=dimP, for every point & of P, there exists an element X of c(M)
such that XU=E$. We have therefore

2(Ω}(f*, £'*))«=(E* Ω}(£*, £'*))„=(*. Ω}(£*, £'*))«=0

and

3(Ω,(£* £'*))»=(E* Ω,(£*, £'*))«=(* Ωy(f*, £'*)) t t=0.

Since & is an arbitrary point of P, we have Ω}=0 and Ω^=0. (Q.E.D.)

THEOREM 24. A conformal structure P on a manifold M is flat if and only if
the normal conformal connection has vanishing curvature.

Proof. Since the normal conformal connection of the conformal structure on
a Mobius space has vanishing curvature, the normal conformal connection of a flat
conformal structure has also vanishing curvature.

To prove the converse, let P be a conformal structure on M whose normal
conformal connection (ωz, ω), ω/) has vanishing curvature. The structure equations
on P reduce to the equations of Maurer-Cartan for the group K(n). It follows that,
given a point u of P, there exists a diffeomorphism h of a neighborhood Nf of the
identity of K(ή) onto a neighborhood N of u which sends (ω%, ω), ω/) into the
Maurer-Cartan forms of Kin). In an obvious manner, we extend H o a diffeo-
morphism h: N'-H-»N-H\n). Let U' = π'(Jtf') and U=π(N\ where π': K(n)—K(n)IH
and π: P-*M. Then π'-\U')=N' H and π-\U)=NΉ2(n). By construction,
h: π'~1(U')-+π-1(U) is a bundle isomorphism. If we consider K(ή) as the natural
conformal structure on the Mδbius space K(ri)\H (cf. § 6), then we see that h sends
the normal conformal connection of P into that of Kin). In a unique manner, we
can extend h to a bundle isomorphism h: P2(U')-*P2(U). We see that A* sends
the canonical form of P2(U) into that of P2(U'). By Proposition 5, h is induced
by a diffeomorphism of U' onto CΛ (Q.E.D.)

COROLLARY. A conformal structure P on a manifold of dimension > 3 is flat
if and only if the conformal curvature tensor of Weyl vanishes.

Proof. This follows from Proposition 11 and the definition of the conformal
curvature tensor of Weyl (cf. § 8). (Q.E.D.)
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THEOREM 25. Let P be a complete flat conformed structure on a simply con-
nected manifold M of dimension n. Then there is a conformal diffeomorphism of
M onto a Mδbius space of dimension n.

Proof. This follows from the definition of flatness and the standard continu-
ation argument. (Q.E.D.)

§ 11. Conformal connections on Riemannian manifolds.

In this section M will denote always a Riemannian manifold with metric g.
Let O(M) be the orthonormal frame bundle over M determined by the metric g
and Γ the Riemannian connection on O(M). Let P be the conformal structure on
M naturally associated with O(M) as in § 8. Let U be a coordinate neighborhood
in M with local coordinate system (x1, --,xn). Let (θ\θ)) be the canonical from on
P2(M) restricted to P and σ: U—>P2(M) a local cross section and set

PROPOSITION 26. There exists a cross section σ: U->P\M) such that

HΛI
where {/&} denote the Christ off el}s symbols of the Riemannian connection Γ.

Proof. This is an immediate consequence of Proposition 18. (Q.E.D.)

PROPOSITION 27. Let (ωι, ω), ωj) be the normal conformal connection associated
with P and σ: U—>P\M) the cross section given in Proposition 26. // we set for
such a σ

φ3 = σ*ω3 — ΣT\kjdxk

y

then

1 7?
Π R + Q( 2 2 ) Π y * = ^ = 2 2(»-l)(«-2)

where Rjk and R denote the components of the Ricci tensor and the scalar curvature
of g respectively.

Proof. From Proposition 26 and the equation (21) we have
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Set

( 1 7? \

~Ί^2Rkl+ 2(n-iXn-2)gklΓ

Then

— —-Σgabgjkaaabω
k.

Pj — G ύ)j — Zι i A MX 5

Since the normal conformal connection is uniquely associated with P, it suffices to
prove that (ω% ω), ώj) is the normal conformal connection. Let Ω) be the curvature
form of the connection (ω\ ω), ώj). From the structure equation (II) we have

1 / 1
J 2 \ 3 n—2 J J J J

where Rfai denote the components of the curvature tensor of the Rίemannian con-
nection Γ. If we set

Q)=~ΣK)klω^Aωι

and

C)kl=R)u ^ΊT(δtRjl~δiRjk-\-Σg^gjlRak- Σg*agjkRaι)
Ύl — Δ

(23)

then

We can easily see that ΣC\kι=0 and ΣC)u=0. Hence ΣKUι=0 and
This proves that (ω\ ω), ώj) is the normal conformal connection. (Q.E.D.)

The C)kι are the components of the conformal curvature tensor of Weyl of the
Riemannian manifold M.
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PROPOSITION 28. //dim7kf=3, then Ωj=O, that is> the conformal curvature
tensor of Weyl vanishes identically.

Proof. Let C)u be the components of the conformal curvature tensor of Weyl
and set Cίjkι=ΣgίaC

a

jkl. Then

and 0%JU=CCkuj.

Let 0 be an arbitrary point of M. By choosing a coordinate system such that
ΰίj^δij at 0, together with (13), we have Σdju=0 at 0. Hence

l 3 1 3 + £-2323 = 0,

03132=0, C2i23=0 and Ci2i3=0 at 0.

This implies CiJkι=0 at 0. Since Cιjkι are components of a tensor field and 0 is an
arbitrary point of M, Q ^ = 0 at every point of M. (Q.E.D.)

THEOREM 29. The conformal structure P on a Riemannian manifold of
dimension 3 is flat if and only if Ωj=0.

Proof. This is an immediate consequence of Theorem 24 and Proposition 28.
(Q.E.D.)

Let (ω\ ω), ω/) be the normal conformal connection associated wifh P. Let σ
be the local cross section given in Proposition 26 and set σ*Ωj=(ll2)ΣCjkιdxkΛdxι.
From the structure equation (III) and Proposition 27 we have

(24) c ( R R ) [

where Rjk ι denote the components of the covariant derivative of the Ricci tensor
with respect to the Riemannian connection Γ.

BIBLIOGRAPHY

[ 1 ] CΛRTΛN, E., Les espaces a connexion conforme. Ann. Soc. Polon. Math. 2 (1923),
171-221.

[ 2 ] GUILLEMIN, V., The integrability problem for G-structures. Trans. A.M.S. 116
(1965), 544-560.

[ 3 ] GUILLEMIN, V., AND S. STERNBERG, An algebraic model of transitive differential
geometry. Bull. A.M.S. 70 (1964), 16-47.

[4] KOBAYASHI, S., Canonical forms on frame bundles of higher order contact. Proc.
Symposia in Pure Math., vol. 3, Differential geometry. A. M. S. (1961), 186-193.

[ 5 ] KOBAYASHI, S., AND K. NOMIZU, Foundations of differential geometry, vol. I.

Interscience Tracts, No, 15 (1963).



224 KOICHI OGIUE

[ 6 ] STERNBERG, S., Lectures on Differential geometry. Prentice-Hall (1964).
[ 7 ] TANAKA, N., Conformal connections and conformal transformations. Trans.

A.M.S. 92 (1959), 168-190.
[ 8 ] YANO, K , Sur la theoπe des espaces a connexion conforme. J. Fac. Sci. Imp.

Univ. Tokyo, Sect. 1, 4 (1939), 1-59.

DEPARTMENT OF MATHEMATICS,

TOKYO INSTITUTE OF TECHNOLOGY.




