THEORY OF CONFORMAL CONNECTIONS

By Koichi Ogiue

Introduction.

The main purpose of the present paper is to give a modern introduction to the theory of conformal connections. There were, historically, several approaches to this subject. Our approach here is based on the theory of G-structures. We shall now briefly explain our method.

For a manifold M^{1} of dimension *n*, we construct the bundle $P^2(M)$ of frames of 2nd order contact. Its structure group will be denoted by $G^2(n)$. We define a certain subgroup $H^2(n)$ of $G^2(n)$ which is isomorphic with an isotropy subgroup of the conformal transformation group K(n) acting on the Möbius space of dimension *n*. A conformal structure on a manifold *M* is a subbundle *P* of $P^2(M)$ with structure group $H^2(n)$.

A conformal connection for the given conformal structure P is a Cartan connection satisfying some extra conditions. It will be shown that we can associate with each conformal structure a naturally defined conformal connection, so-called normal conformal connection.

§1. Prolongations of a Lie algebra.

Let V be a real vector space of dimension n and g a Lie algebra of endomorphisms of V. g may be considered as a subspace of $V \otimes V^* = \text{Hom}(V, V) = \mathfrak{gl}(V)$, where V^* denotes the dual space of V. The first prolongation $\mathfrak{g}^{(1)}$ of g is defined to be $\mathfrak{g}^{(1)} = \mathfrak{g} \otimes V^* \cap V \otimes S^2(V^*) \subset V \otimes V^* \otimes V^*$, where $S^2(V^*)$ denotes the space of symmetric tensors of degree 2 over V^* . Since $\mathfrak{g} \otimes V^* = \text{Hom}(V, \mathfrak{g})$, an element $T \in \mathfrak{g} \otimes V^*$ is in $\mathfrak{g}^{(1)}$ if and only if

$$T(u) \cdot v = T(v) \cdot u$$
 for all $u, v \in V$.

Set $\mathfrak{g}^{(2)} = (\mathfrak{g}^{(1)})^{(1)}$ and, in general, $\mathfrak{g}^{(k+1)} = (\mathfrak{g}^{(k)})^{(1)}$. The space $\mathfrak{g}^{(k)}$ is called *the k-th* prolongation of \mathfrak{g} . Then

$$\mathfrak{g}^{(k)} = \mathfrak{g} \otimes \underbrace{V^* \otimes \cdots \otimes V}_{k\text{-times}} \cap V \otimes S^{k+1}(V^*).$$

We call that g is of finite type if $g^{(k)}=0$ for some (and hence all larger) k. If

Received October 31, 1966.

¹⁾ Throughout this paper, we shall denote by M a connected manifold of dimension ≥ 3 , unless otherwise stated.

 $\mathfrak{g}^{(k)} \neq 0$ for all k then g is said to be of infinite type.

Let (,) be a non-degenerate symmetric bilinear form on V (of arbitrary signature). Let $\mathfrak{o}(V)$ be the orthogonal algebra of (,), that is, $\mathfrak{o}(V)$ is the set of $A \in \mathfrak{gl}(V)$ such that

$$(Au, v)+(u, Av)=0$$
 for all $u, v \in V$.
 $\mathfrak{o}(V)^{(1)}=0$.

PROPOSITION 1.

Proof. For any $T \in \mathfrak{o}(V)^{(1)}$ and any $u, v, w \in V$ we have

$$(T(u) \cdot v, w) = (T(v) \cdot u, w) = -(u, T(v) \cdot w) = -(u, T(w) \cdot v)$$

= $(T(w) \cdot u, v) = (T(u) \cdot w, v) = -(w, T(u) \cdot v)$
= $-(T(u) \cdot v, w).$

Thus (T(u)v, w)=0. Since w is arbitrary and (,) is non-degenerate, T(u)v=0 for all $u, v \in V$. Hence T(u)=0 for all $u \in V$. This implies T=0. (Q.E.D.)

Let (,) be as before and let $\omega(V)$ denote its conformal algebra. That is, $\omega(V)$ is the set of $A \in \mathfrak{gl}(V)$ such that

$$(Au, v) + (u, Av) = \lambda \cdot (u, v)$$
 for all $u, v \in V$,

where λ is some scalar depending on A.

PROPOSITION 2. $co(V)^{(1)}$ is isomorphic with V^* .

Proof. For any $T \in \omega(V)^{(1)}$ we have a linear form λ on V defined by

$$(T(u)v, w) + (v, T(u)w) = \lambda(u) \cdot (v, w)$$

Thus we have a linear mapping of $co(V)^{(1)} \rightarrow V^*$. A *T* lying in its kernel would lie in $o(V)^{(1)}$ and thus vanish by Proposition 1. Hence the mapping is injective. Let us show that it is also surjective. To this effect we observe that (,) induces an isomorphism of *V* onto *V**. Thus $u \in V$ is mapped onto $u^* \in V^*$ where $u^*(v)$ =(u, v) for every $v \in V$. If we replace (,) by $\rho(,)$, then under the new isomorphism *u* gets sent into ρu^* . In particular, the isomorphism of $V \otimes V^*$ onto $V^* \otimes V$ induced by (,) is independent of the scalar ρ . Let us denote this isomorphism by ϕ . For any $u^* \in V^*$, let $\mu: V^* \rightarrow V \otimes V^* \otimes V^*$ be defined by

$$\mu(u^*)(v) = v \otimes u^* - \phi(u^* \otimes v) + u^*(v) \cdot I,$$

where I is the identity in $\mathfrak{gl}(V)$. From

$$\mu(u^*)(v_1)v_2 = u^*(v_2) \cdot v_1 + u^*(v_1) \cdot v_2 - (v_1, v_2) \cdot u,$$

we have

$$\mu(u^*)(v_1)v_2 = \mu(u^*)(v_2)v_1.$$

Furthermore,

$$(\mu(u^*)(v_1)v_2, v_3) + (v_2, \mu(u^*)(v_1)v_3) = 2u^*(v_1) \cdot (v_2, v_3).$$

These imply that $\mu(u^*)$ is an element of $\omega(V)^{(1)}$. Thus $\omega(V)^{(1)}$ is isomorphic with V^* . (Q.E.D.)

PROPOSITION 3. If dim $V \ge 3$, then $co(V)^{(2)} = 0$.

Proof. For any $u, v, x, y \in V$ and for any $T \in co(V)^{(2)}$ we have

 $(T(u, v)x, y) + (x, T(u, v)y) = \lambda(u, v) \cdot (x, y),$

where λ is a symmetric bilinear form on V depending on T. If λ vanishes, then T belong to $\mathfrak{o}(V)^{(2)}$ and hence must vanish. Since λ is symmetric, to prove that a given λ vanishes it suffices to show that $\lambda(u, u)$ vanishes identically. Let us choose u and v with (u, v)=0. Then

$$\lambda(u, u) \cdot (v, v) = 2(T(u, u)v, v) = 2(T(u, v)u, v) = -2(u, T(u, v)v)$$

= -2(u, T(v, v)u) = -\lambda(v, v) \cdot (u, u).

Thus for every pair of orthonormal vectors u and v we have

$$\lambda(u, u) = -\lambda(v, v).$$

If dim $V \ge 3$, for every orthonormal vectors u, v, w we have

$$\lambda(u, u) = -\lambda(v, v) = \lambda(w, w) = -\lambda(u, u).$$

Hence $\lambda(u, u) = 0$.

The explicit treatment will be given in §4.

§2. G-structures.

Let M be a manifold of dimension n. A linear frame u at a point $x \in M$ is an ordered basis X_1, \dots, X_n of the tangent space $T_x(M)$. Let L(M) be the set of all linear frames u at all points of M and let π be the mapping of L(M) onto M which maps a linear frame u at x into x.

The general linear group $GL(n, \mathbb{R})$ acts on L(M) on the right as follows: If $a=(a_j^i)\in GL(n, \mathbb{R})$ and $u=(X_1, \dots, X_n)$ is a linear frame at x, then ua is, by definition, the linear frame $(\Sigma a_1^j X_j, \dots, \Sigma a_n^j X_j)^{2})$ at x.

In order to introduce a differentiable structure in L(M), let (x^1, \dots, x^n) be a local coordinate system in a coordinate neighborhood U in M. Every frame u at $x \in U$ can be expressed uniquely in the form $u = (X_1, \dots, X_n)$ with $X_i = \sum X_i^k(\partial \partial x^k)$, where (X_i^k) is a non-singular matrix. This shows that $\pi^{-1}(U)$ is in one-to-one correspondence with $U \times GL(n, \mathbb{R})$. We can make L(M) into a differentiable manifold by taking (x^i) and (X_i^k) as a local coordinate system in $\pi^{-1}(U)$. L(M) is a

(u, u)=0.

(Q.E.D.)

²⁾ Indices i, j, k, \dots run over the range $1, 2, \dots, n$ and to simplify notation we adopt the convention that all repeated indices under a summation sign are summed.

principal fibre bundle over M with structure group $GL(n, \mathbb{R})$. We call L(M) the bundle of linear frames over M.

A linear frame u at x can also be defined as an isomorphism of \mathbb{R}^n onto $T_x(M)$. The two definitions are related to each other as follows: let e_1, \dots, e_n be the natural basis for \mathbb{R}^n . A linear frame $u = (X_1, \dots, X_n)$ at x can be given as a linear mapping $u: \mathbb{R}^n \to T_x(M)$ such that $u(e_i) = X_i$. The action of $GL(n, \mathbb{R})$ on L(M) can be accordingly interpreted as follows:

Consider $a = (a_j^i) \in GL(n, \mathbb{R})$ as a linear transformation of \mathbb{R}^n which maps e_j into $\Sigma a_j^i e_i$. Then *ua*: $\mathbb{R}^n \to T_x(M)$ is the composite of the following two mappings:

$$\mathbf{R}^n \xrightarrow{a} \mathbf{R}^n \xrightarrow{u} T_x(M).$$

A *G*-structure on a differentiable manifold M is, by definition, a reduction of the structure group $GL(n, \mathbb{R})$ of the bundle of linear frames L(M) to the subgroup G.

Let (,) be a non-degenerate symmetric bilinear form on \mathbb{R}^n and let O(n) be its orthogonal group. An O(n)-structure O(M) on M is the same as a Riemannian metric g. In fact, given O(M), set $g_x(X, Y) = (u^{-1}X, u^{-1}Y)$ for every $X, Y \in T_x(M)$ and $u \in O(M)$ with $\pi(u) = x$. From the definition of O(n), $g_x(X, Y)$ is independent of u with $\pi(u) = x$. Conversely, given a Riemannian metric on M, we let O(M) be the set of all orthonormal frames, that is, of all $u \in L(M)$ which are isometries of \mathbb{R}^n onto $T_x(M)$.

Let (,) be as before and let CO(n) be its conformal group, that is, set of all elements $a \in GL(n, \mathbb{R})$ such that

$$(au, av) = \lambda \cdot (u, v)$$
 for all $u, v \in \mathbb{R}^n$,

where λ is a positive function depending on a. A CO(n)-structure CO(M) on M is the same as a "conformal structure" on M. Two Riemannian metric g and \bar{g} on M are said to be conformally related if there exists a positive function ρ on Msuch that $\bar{g} = \rho^2 g$. Let $\{g\}$ be a class of conformally related Riemannian metrics on M. For an element g of $\{g\}$, CO(M) is defined as the set of all $u \in L(M)$ such that

$$g_x(X, Y) = \rho \cdot (u^{-1}X, u^{-1}Y) \quad \text{for all} \quad X, Y \in T_x(M).$$

Clearly CO(M) does not depend on the choice of $g \in \{g\}$. Hence the set of all classes of conformally related Riemannian metrics on M are in one-to-one correspondence with the set of all CO(n)-structures on M. This fact will be treated in §8 from slightly different point of view.

§3. Jets and frames of higher order contact (Theory of Ehresmann-Kobayashi).

Let *M* be a manifold of dimension *n* and \mathbb{R}^n be a real number space of dimension *n*. Let *U* and *V* be neighborhoods of the origin 0 in \mathbb{R}^n . Two mappings $f: U \to M$ and $g: V \to M$ give rise to the same *r*-jet at 0 if they have the same partial derivatives up to order *r* at 0. The equivalence class of *f*, thus defined, is denoted by $j_{c}^{*}(f)$.

If f is a diffeomorphism of a neighborhood of 0 onto an open subset of M, then the r-jet $j_0^r(f)$ at 0 is called an *r-frame* at x=f(0). The set of M will be denoted by $P^r(M)$.

Let $G^r(n)$ be the set of r-frames $j_0^r(g)$ at $0 \in \mathbb{R}^n$, where g is a diffeomorphism from a neighborhood of $0 \in \mathbb{R}^n$ onto a neighborhood of $0 \in \mathbb{R}^n$. The $G^r(n)$ is a group with multiplication defined by the composition of jets, that is, $j_0^r(g) \cdot j_0^r(g') = j_0^r(g \circ g')$. The group $G^r(n)$ acts on $P^r(M)$ on the right by $j_0^r(f) \cdot j_0^r(g) = j_0^r(f \circ g)$ for $j_0^r(f) \in P^r(M)$ and $j_0^r(g) \in G^r(n)$. Then $P^r(M)$ is a principal fibre bundle over M with group $G^r(n)$. $P^1(M)$ is nothing but the bundle of linear frames L(M) with structure group $G^1(n) = GL(n, \mathbb{R})$.

From now on we shall be mainly interested in $P^2(M)$ and $P^1(M)$.

We shall now define a 1-form on $P^2(M)$ with values in $\mathbb{R}^n + \mathfrak{gl}(n, \mathbb{R})$, where $\mathfrak{gl}(n, \mathbb{R})$ denotes the Lie algebra of $GL(n, \mathbb{R})$. Let X be a vector tangent to $P^2(M)$ at $u=j_0^2(f)$. Denote by X' the image of X under the natural projection $P^2(M) \rightarrow P^1(M)$, it is a vector tangent to $P^1(M)$ at $u'=j_0^1(f)$. Since f is a diffeomorphism of a neighborhood of the origin $0 \in \mathbb{R}^n$ onto a neighborhood of $f(0) \in M$, it induces a diffeomorphism of a neighborhood of $e=j_0^1(id) \in P^1(\mathbb{R}^n)$ onto a neighborhood of $j_0^1(f) \in P^1(M)$. The latter induces on isomorphism of the tangent space $\mathbb{R}^n + \mathfrak{gl}(n, \mathbb{R})$ of $P^1(\mathbb{R}^n)$ at e onto the tangent space of $P^1(M)$ at $u'=j_0^1(f)$; this isomorphism will be denoted by \tilde{u} .

The *canonical form* θ on $P^2(M)$ is defined by

$$\theta(X) = \tilde{u}^{-1}(X').$$

Since \tilde{u} depends only on $u=j_0^2(f)$, $\theta(X)$ is well defined. The 1-form θ takes its values in $\mathbb{R}^n+\mathfrak{gl}(n,\mathbb{R})$.

We define an action of $G^2(n)$ on $\mathbb{R}^n + \mathfrak{gl}(n, \mathbb{R})$ which will be denoted by *ad*. Let $j_0^2(g) \in G^2(n)$ and $j_0^1(f) \in P^1(\mathbb{R}^n)$. The mapping of a neighborhood of $e \in P^1(\mathbb{R}^n)$ onto a neighborhood of $e \in P^1(\mathbb{R}^n)$ defined by

$$j_0^1(f) \rightarrow j_0^1(g \circ f \circ g^{-1})$$

induces a linear isomorphism of the tangent space $\mathbb{R}^n + \mathfrak{gl}(n, \mathbb{R})$ of $P^1(\mathbb{R}^n)$ at *e* onto itself. This linear isomorphism depends only on $j_{\mathfrak{c}}^2(g)$ and will be denoted by $ad(j_{\mathfrak{c}}^2(g))$.

Since $G^2(n)$ acts on $P^2(M)$ on the right, every element A of the Lie algebra $\mathfrak{g}^2(n)$ of $G^2(n)$ induces a vector field A^* on $P^2(M)$, which will be called the *fundamental vector field* corresponding to A.

PROPOSITION 4. Let θ be the canonical form on $P^2(M)$. Then

(i)
$$\theta(A^*) = A' \quad for \quad A \in \mathfrak{g}^2(n)$$

where $A' \in \mathfrak{gl}(n, \mathbb{R})$ is the image of A under the natural homomorphism

$$\mathfrak{g}^2(n) \rightarrow \mathfrak{g}^1(n) = \mathfrak{gl}(n, \mathbf{R})$$

(ii)
$$R_a^*\theta = ad(a^{-1})\theta$$
 for $a \in G^2(n)$

where R_a denotes the action of $a \in G^2(n)$ on $P^2(M)$.

PROPOSITION 5. Let M and M' be manifolds of the same dimension n and let θ and θ' be the canonical forms on $P^2(M)$ and $P^2(M')$ respectively. Let $f: M \rightarrow M'$ be a diffeomorphism and denote by the same letter f the induced bundle isomorphism $P^2(M) \rightarrow P^2(M')$. Then

$$f^*\theta' = \theta$$

Conversely, if F: $P^2(M) \rightarrow P^2(M')$ is a bundle isomorphism such that

 $F^*\theta' = \theta$,

then F is induced by a diffeomorphism f of the base manifolds.

We shall now express the canonical form of $P^2(M)$ in terms of the local coordinate system of $P^2(M)$ which arises in a natural way from a local coordinate system of M. For this purpose it suffice to consider the case $M=\mathbb{R}^n$. Let e_1, \dots, e_n be the natural basis for \mathbb{R}^n and (x^1, \dots, x^n) the natural coordinate system in \mathbb{R}^n . Each frame $u=j_0^2(f)$ of \mathbb{R}^n has a unique polynomial representation of the form

$$f(x) = \Sigma \left(u^{\imath} + \Sigma u^{\imath}_{j} x^{j} + \frac{1}{2} \Sigma u^{\imath}_{jk} x^{j} x^{k} \right) e_{i}$$

where $x = \sum x^i e_i$ and $u_{jk}^i = u_{kj}^i$. We take (u^i, u_j^i, u_{jk}^i) as the natural coordinate system in $P^2(\mathbb{R}^n)$. Restricting u_j^i and u_{jk}^i to $G^2(n)$ we obtain the natural coordinate system in $G^2(n)$, which will be denoted by (s_j^i, s_{jk}^i) . For $u = j_0^2(f) \in P^2(M)$ with

$$f(x) = \Sigma \left(u^{i} + \Sigma u^{i}_{j} x^{j} + \frac{1}{2} \Sigma u^{i}_{jk} x^{j} x^{k} \right) e_{i}$$

and $s=j_0^2(g)\in G^2(n)$ with

$$g(x) = \Sigma \left(\Sigma s_j^i x^j + \frac{1}{2} \Sigma s_{jk}^i x^j x^k \right) e_i$$

we have $u \cdot s = j_0^2(f \circ g)$ with

$$\begin{split} (f \circ g)(x) &= \Sigma \left\{ u^{i} + \Sigma u^{i}_{j} \left(\Sigma s^{i}_{l} x^{l} + \frac{1}{2} \Sigma s^{i}_{lk} x^{l} x^{k} \right) \right. \\ &+ \frac{1}{2} \Sigma u^{i}_{jk} \left(\Sigma s^{i}_{l} x^{l} + \frac{1}{2} \Sigma s^{i}_{la} x^{l} x^{a} \right) \left(\Sigma s^{k}_{m} x^{m} + \frac{1}{2} \Sigma s^{k}_{mb} x^{m} x^{b} \right) \right\} e_{i} \\ &= \Sigma \left\{ u^{i} + \Sigma u^{i}_{j} s^{i}_{l} x^{l} + \frac{1}{2} \Sigma (u^{i}_{j} s^{j}_{lk} + u^{i}_{jm} s^{i}_{l} s^{m}_{k}) x^{l} x^{k} + \cdots \right\} e_{i}. \end{split}$$

Hence the action of $G^{2}(n)$ on $P^{2}(\mathbb{R}^{n})$ is given by

 $(u^{\imath}, u^{\imath}_{j}, u^{\imath}_{jk})(s^{\imath}_{j}, s^{\imath}_{jk}) = (u^{\imath}, \Sigma u^{\imath}_{l}s^{l}_{j}, \Sigma u^{\imath}_{l}s^{l}_{jk} + \Sigma u^{\imath}_{lm}s^{l}_{j}s^{m}_{k}).$

In particular, the multiplication in $G^2(n)$ is given by

$$(\overline{s}_{j}^{i},\overline{s}_{jk}^{i})(s_{j}^{i},s_{jk}^{i}) = (\Sigma \overline{s}_{l}^{i} s_{j}^{l},\Sigma \overline{s}_{l}^{i} s_{jk}^{l} + \Sigma \overline{s}_{lm}^{i} s_{j}^{l} s_{k}^{m}).$$

Similarly we can introduce a coordinate system (u^i, u^i_j) in $P^1(\mathbb{R}^n)$ and a coordinate system (s^i_j) in $G^1(n)$ so that the natural homomorphisms $P^2(\mathbb{R}^n) \rightarrow P^1(\mathbb{R}^n)$ and $G^2(n) \rightarrow G^1(n)$ are given by $(u^i, u^i_j, u^i_{jk}) \rightarrow (u^i, u^i_j)$ and $(s^i_j, s^i_{jk}) \rightarrow (s^i_j)$ respectively.

Let $\{E_i, E_i^j\}$ be the basis for $\mathbb{R}^n + \mathfrak{gl}(n, \mathbb{R})$ defined by $E_i = (\partial/\partial u^i)_e$, $E_i^j = (\partial/\partial u^i_j)_e$. We set

$$\theta = \Sigma \theta^i E_i + \Sigma \theta^i E_i^j$$

From the definition of the canonical form θ , we obtain by a straightforward calculation the following formulae (cf. [4]);

$$\theta^{i} = \Sigma v_{k}^{i} du^{k},$$

$$\theta^{i}_{j} = \Sigma v_{k}^{i} du^{k}_{j} - \Sigma v_{k}^{i} u_{hj}^{k} v_{l}^{h} du^{l}_{j}$$

where (v_i^i) denotes the inverse matrix of (u_i^i) . From these formulae we have

PROPOSITION 6. Let
$$\theta = (\theta^i, \theta^i_j)$$
 be the canonical form on $P^2(M)$. Then
 $d\theta^i = -\Sigma \theta^i_k \wedge \theta^k$.

§4. Möbius spaces and Möbius groups.

Let E^n be a Euclidean space of dimension *n* with coordinate system (y^1, \dots, y^n) and with metric $\varepsilon = (\varepsilon_{ij})$.

Let E^{n+2} be a Euclidean space of dimension n+2 with coordinate system $(y^0, y^1, \dots, y^n, y^\infty)$, and with metric

$$\tilde{\varepsilon} = (\tilde{\varepsilon}_{\alpha\beta}) = \begin{pmatrix} 0 & 0 & -1 \\ 0 & \varepsilon_{ij} & 0 \\ -1 & 0 & 0 \end{pmatrix}^{3}.$$

Let P_{n+1} be the real projective space of dimension n+1, constructed from E^{n+2} , with homogeneous coordinate system $(y^0, y^1, \dots, y^n, y^\infty)$. Let $\Xi^n = E^n \cup \{\infty\}$ be the one point compactification of E^n by a so-called "point at infinity".

A hypersphere S^{n-1} in E^n may be represented by the ratio of n+2 real numbers $a^0, a^1, \dots, a^n, a^\infty$ as follows:

(1)
$$a^{0}\Sigma\varepsilon_{jk}y^{j}y^{k}-2\Sigma\varepsilon_{jk}a^{j}y^{k}+2a^{\infty}=0.$$

A point $(a^0, a^1, \dots, a^n, a^\infty)$ in $E^{n+2} - \{0\}$ can also be considered as a point in P^{n+1} .

If $a^0 \neq 0$ and $\Sigma \varepsilon_{jk} a^j a^k - 2a^0 a^\infty \geq 0$, the equation (1) gives a real hypersphere of radius $\{(\Sigma \varepsilon_{jk} a^j a^k - 2a^0 a^\infty)/a^0 a^0\}^{1/2}$ and centered at $(a^1/a^0, \dots, a^n/a^0)$. In particular, $\Sigma \varepsilon_{jk} a^j a^k - 2a^0 a^\infty = 0$ is the condition for the equation (1) to represent a point sphere, that is, a single point $(a^1/a^0, \dots, a^n/a^0)$.

Let S denote the set of all point hyperspheres. If we let the special case

³⁾ Indices α, β, \cdots run over the range $0, 1, 2, \cdots, n, \infty$.

 $a^0 = a^1 = \dots = a^n = 0$ correspond to the point at infinity $\{\infty\}$ in Ξ^n , the elements of \mathfrak{S} are in one-to-one correspondence with the points of Ξ^n .

Let Q be the quadric in P_{n+1} defined by the equation

$$\Sigma \varepsilon_{jk} y^{j} y^{k} - 2y^{0} y^{\infty} = 0.$$

Then the elements of \mathfrak{S} are in one-to-one correspondence with the points of Q. We set $x^i = y^i/y^0$ for $i=1, \dots, n$ and we shall take (x^1, \dots, x^n) as a local coordinate system of Ξ^n in the neighborhood defined by $y^0 \neq 0$. Then Ξ^n is homeomorphic with Q. We call Ξ^n the *Möbius space* of dimension n.

An element of the projective transformation group $PL(n+1, \mathbb{R})$ of \mathbb{P}_{n+1} which leaves Q invariant induces a transformation of Ξ^n .

Let $\tilde{O}(n+2)$ denote the set of all elements $s=(s^{\alpha}_{\beta})$ of $GL(n+2, \mathbb{R})$ which leave the metric $\tilde{\varepsilon}$ invariant, that is, $\Sigma \tilde{\varepsilon}_{\lambda\mu} s^{\lambda}_{\alpha} s^{\mu}_{\beta} = \tilde{\varepsilon}_{\alpha\beta}$, and denote by \tilde{Q} the cone in \mathbb{E}^{n+2} defined by the equation $\Sigma \tilde{\varepsilon}_{\alpha\beta} y^{\alpha} y^{\beta} = 0$. Then $\tilde{O}(n+2)$ acts transitively on \tilde{Q} and every element of $\tilde{O}(n+2)$ leaves \tilde{Q} invariant. Hence it induces a transformation of Ξ^{n} . The group of transformations of Ξ^{n} induced from $\tilde{O}(n+2)$ is called the *Möbius* group of Ξ^{n} and denoted by K(n). K(n) is isomorphic with the factor group of $\tilde{O}(n+2)$ by the subgroup $\{e, -e\}$, where *e* denotes the identity of $\tilde{O}(n+2)$.

Let $y=(y^0, y^i, y^\infty)$ and $\overline{y}=(\overline{y}^0, \overline{y}^i, \overline{y}^\infty)$ with $\Sigma \tilde{\varepsilon}_{\alpha\beta} y^a y^{\beta}=0$ $\Sigma \tilde{\varepsilon}_{\alpha\beta} \overline{y}^a \overline{y}^{\beta}=0$ be two points in \widetilde{Q} . Let f be a transformation of \widetilde{Q} given by $\overline{y}=f(y)$. Then there exists an element $s=(s^a_{\beta})$ in $\widetilde{O}(n+2)$ such that $\overline{y}^{\alpha}=\Sigma s^{\alpha}_{\beta} y^{\beta}$. Corresponding with the transformation f of \widetilde{Q} we can induce a transformation of Ξ^n and denote it by the same letter f which is given by $\overline{x}=f(x)$ with $x^i=y^i/y^0$, $\overline{x}^i=\overline{y}^i/\overline{y}^0$. Then

$$\bar{x}^{\imath} = \frac{\sum s^{\imath}_{\beta} y^{\beta}}{\sum s^{\imath}_{\beta} y^{\beta}} = \frac{s^{\imath}_{0} y^{0} + \sum s^{\imath}_{j} y^{j} + s^{\imath}_{\infty} y^{\infty}}{s^{0}_{0} y^{0} + \sum s^{\prime}_{j} y^{j} + s^{0}_{\infty} y^{\infty}} = \frac{s^{\imath}_{0} + \sum s^{\imath}_{j} (y^{j} / y^{0}) + s^{\imath}_{\infty} (y^{\infty} / y^{0})}{s^{0}_{0} + \sum s^{\prime}_{j} (y^{j} / y^{0}) + s^{0}_{\infty} (y^{\infty} / y^{0})}.$$

On the other hand, the equation $\Sigma \tilde{\varepsilon}_{\alpha\beta} y^{\alpha} y^{\beta} = 0$ implies $\Sigma \varepsilon_{jk} y^{j} y^{k} - 2y^{0} y^{\infty} = 0$, that is, $\Sigma \varepsilon_{jk} x^{j} x^{k} = 2y^{\infty}/y^{0}$. Hence we have

(2)
$$\bar{x}^{i} = \frac{s_{0}^{i} + \sum s_{j}^{i} x^{i} + \frac{1}{2} \sum s_{\infty}^{i} \varepsilon_{jk} x^{j} x^{k}}{s_{0}^{0} + \sum s_{j}^{0} x^{j} + \frac{1}{2} \sum s_{\infty}^{0} \varepsilon_{jk} x^{j} x^{k}}.$$

Under the conditions $\Sigma \tilde{\varepsilon}_{\lambda\mu} s^a_{\alpha} s^{\mu}_{\beta} = \tilde{\varepsilon}_{\alpha\beta}$, components s^{α}_{β} of s are completely determined by s^0_0, s^1_0, s^0_0 , s^1_0 , and s^1_j . Hence we set

(3)
$$a^{i} = \frac{S_{0}^{i}}{S_{0}^{0}}, \qquad a_{j}^{i} = \frac{S_{j}^{i}}{S_{0}^{0}}, \qquad a_{j} = \frac{S_{j}^{i}}{S_{0}^{0}}$$

and we shall take (a^i, a^i_j, a_j) as a local coordinate system of K(n) in the neighborhood of the identity defined by $s^0 \neq 0$. We see, from the construction, that (a^i_j) is an element of CO(n), the conformal group with respect to the metric ε . Hence the group K(n) is a semidirect product of \mathbb{R}^n , CO(n) and $(\mathbb{R}^n)^*$.

PROPOSITION 7. Let $\omega = (\omega^i, \omega_j^i, \omega_j)$ be the Maurer-Cartan forms on K(n) which coincide with da^i, da^i_j, da_j at the identity. Then the equations of Maurer-Cartan of

K(n) are given by

$$d\omega^{i} = -\Sigma \omega_{k}^{i} \wedge \omega^{k},$$

$$(4) \qquad \qquad d\omega_{j}^{i} = -\Sigma \omega_{k}^{i} \wedge \omega_{j}^{k} - \omega^{i} \wedge \omega_{j} - \Sigma \varepsilon^{ik} \varepsilon_{jl} \omega_{k} \wedge \omega^{l} + \delta_{j}^{i} \Sigma \omega_{k} \wedge \omega^{k},$$

$$d\omega_{j} = -\Sigma \omega_{k} \wedge \omega_{j}^{k},$$

where $(\varepsilon^{ij})=(\varepsilon_{ij})^{-1}$.

Proof. If we set

$$(\overline{\omega}_{\beta}^{\alpha}) = s^{-1}ds \in \tilde{\mathfrak{d}}(n+2), \quad \text{where} \quad s = (s_{\beta}^{\alpha}) \in \tilde{O}(n+2),$$

then we have $\Sigma \tilde{\epsilon}_{r\beta} \bar{\omega}_{\alpha}^{r} + \Sigma \tilde{\epsilon}_{\alpha r} \omega_{\beta}^{r} = 0$, that is,

(5)
$$\begin{split} \bar{\omega}_{0}^{0} + \bar{\omega}_{\infty}^{\infty} = 0, \quad \bar{\omega}_{0}^{\infty} = 0, \quad \bar{\omega}_{j}^{\infty} = \Sigma \varepsilon_{kj} \bar{\omega}_{0}^{k}, \\ \Sigma \varepsilon_{kj} \bar{\omega}_{i}^{k} + \Sigma \varepsilon_{ik} \bar{\omega}_{j}^{k} = 0, \quad \bar{\omega}_{\infty}^{i} = \Sigma \varepsilon^{ki} \bar{\omega}_{k}^{0}, \quad \bar{\omega}_{\infty}^{0} = 0. \end{split}$$

Thus we have

$$ar{\omega}\!=\!(ar{\omega}^{lpha}_{eta})\!=\!egin{pmatrix}ar{\omega}^{\scriptscriptstyle 0}_{\scriptscriptstyle 0}&ar{\omega}^{\scriptscriptstyle 0}_{\scriptscriptstyle J}&0\ ar{\omega}^{\scriptscriptstyle i}_{\scriptscriptstyle 0}&ar{\omega}^{\scriptscriptstyle i}_{\scriptscriptstyle J}&\Sigmaarepsilon^{\scriptscriptstyle k}kar{\omega}^{\scriptscriptstyle 0}_k\ 0&\Sigmaarepsilon_{k_J}ar{\omega}^{\scriptscriptstyle k}_{\scriptscriptstyle 0}&-ar{\omega}^{\scriptscriptstyle 0}_{\scriptscriptstyle 0}\end{pmatrix}\!.$$

If we set s=e, then we get $\bar{\omega}^{\alpha}_{\beta}=ds^{\alpha}_{\beta}$. On the other hand, we get from (3)

$$da^{i} = ds^{i}_{0},$$

$$(6) \qquad \qquad da^{i}_{j} = ds^{i}_{j} - \delta^{i}_{j} ds^{0}_{0},$$

$$da_{j} = ds^{0}_{j}$$

at the identity e. Moreover $\omega^i = da^i$, $\omega_j^i = da^i_j$, $\omega_j = da_j$ at the identity, hence we have

(7)
$$\omega^{i} = \overline{\omega}_{0}^{i},$$
$$\omega_{j}^{i} = \overline{\omega}_{j}^{i} - \overline{\delta}_{j}^{i} \overline{\omega}_{0}^{0},$$
$$\omega_{j} = \overline{\omega}_{j}^{0}.$$

The equation $\bar{\omega} = s^{-1}ds$ implies $d\bar{\omega}_{\bar{\rho}}^{a} = -\Sigma \bar{\omega}_{\bar{r}}^{a} \wedge \bar{\omega}_{\bar{\rho}}^{r}$ from which our proposition follows, since the Lie group K(n) is isomorphic with $\tilde{O}(n+2)/\{e, -e\}$. (Q.E.D.)

The dual of Proposition 7 may be formulated as follows. Let $\mathfrak{m}=\mathbb{R}^n$, \mathfrak{m}^* be its dual and let $\mathfrak{co}(n)$ be the Lie algebra of CO(n).

PROPOSITION 8. The Lie algebra $\mathfrak{t}(n)$ of K(n) is the direct sum:

$$\mathfrak{k}(n) = \mathfrak{n} + \mathfrak{co}(n) + \mathfrak{m}^*$$

with the following bracket operation; If $u, v \in m$, $u^*, v^* \in m^*$ and $U, V \in co(n)$, then

 $[u, v] = 0, \qquad [u^*, v^*] = 0,$ $[U, u] = Uu, \qquad [u^*, U] = u^*U,$ [U, V] = UV - VU, $[u, u^*] = u \otimes u^* - u^* \otimes u + u^*(u) \cdot I$

where $\widetilde{u^* \otimes u}$ denotes its dual under the isomorphism $\mathfrak{m}^* \otimes \mathfrak{m} \to \mathfrak{m} \otimes \mathfrak{m}^*$ and I denotes the identity matrix of degree n.

The left invariant vector fields on K(n) which coincide with $\partial/\partial a^i$, ∂

In terms of the local coordinate system (a^i, a^i_j, a_j) of K(n) which is valid in a neighborhood containing H, the subgroup H is defined by $a^i=0$. For the elements of H we have from

$$\Sigma \tilde{\epsilon}_{\lambda\mu} s^{\lambda}_{\alpha} s^{\mu}_{\beta} = \tilde{\epsilon}_{\alpha\beta}$$
 and $s^{i}_{0} = 0$

that

$$S_{0}^{\infty} = 0,$$

$$S_{J}^{\infty} = 0,$$

$$S_{0}^{0}S_{\infty}^{\infty} = 1,$$

$$\Sigma \varepsilon_{kl}S_{i}^{k}S_{J}^{l} = \varepsilon_{iJ},$$

$$\Sigma \varepsilon_{kl}S_{i}^{k}S_{\infty}^{l} = S_{i}^{0}S_{\infty}^{\infty},$$

$$\Sigma \varepsilon_{kl}S_{\infty}^{k}S_{\infty}^{L} = 2S_{\infty}^{0}S_{\infty}^{\infty}.$$

We have also, from the equations (8),

$$s_{\infty}^{i} = \frac{1}{s_{0}^{0}} \Sigma \varepsilon^{jk} s_{j}^{0} s_{k}^{i}$$

and

$$s^{0}_{\infty} = \frac{1}{2s^{0}_{0}} \Sigma \varepsilon^{jk} s^{0}_{j} s^{0}_{k}.$$

Thus the transformation induced by an element of H is given by the equation of the form;

$$\begin{split} \bar{x}^{i} &= \frac{\sum s_{i}^{i} x^{j} + (1/2s_{0}^{o}) \sum \varepsilon^{al} s_{a}^{o} s_{i}^{i} \varepsilon_{jk} x^{j} x^{k}}{s_{0}^{o} + \sum s_{0}^{o} x^{j} + (1/4s_{0}^{o}) \sum \varepsilon^{al} s_{a}^{o} s_{l}^{i} \varepsilon_{jk} x^{j} x^{k}} \\ &= \frac{\sum a_{j}^{i} x^{j} + (1/2) \sum \varepsilon^{al} \varepsilon_{jk} a_{a} a_{i}^{i} x^{j} x^{k}}{1 + \sum a_{j} x^{j} + (1/4) \sum \varepsilon^{al} \varepsilon_{jk} a_{a} a_{l} x^{j} x^{k}} \end{split}$$

hence we have

(9)
$$\bar{x}^i = \sum a^i_j x^j + \frac{1}{2} \sum (\varepsilon^{al} \varepsilon_{jk} a_a a^i_l - a^i_j a_k - a^i_k a_j) x^j x^k + \cdots.$$

§ 5. Cartan connections.

Let M be a manifold of dimension n, G a Lie group, H a closed subgroup of G with dim G/H=n and P a principal fibre bundle over M with structure group H.

Since H acts on P on the right, every element A of the Lie algebra \mathfrak{h} of H, as is well known, induces in a natural manner a vector field on P, called the *fundamental vector field* corresponding to A. This vector field will be denoted by A^* . Since H acts along fibres, A^* is vertical, that is, tangent to the fibre at each point. For each element $a \in H$, the action of a on P will be denoted by R_a . We are now in position to define the notion of Cartan connection. It is a 1-form ω on P with value in the Lie algebra \mathfrak{g} of G satisfying the following conditions:

(a) $\omega(A^*) = A$ for every $A \in \mathfrak{h}$

(b) $R_a^*\omega = ad(a^{-1})\cdot\omega$, that is, $\omega(R_aX) = ad(a^{-1})\cdot\omega(X)$ for every $a \in H$ and every vector X of P, where ad denotes the adjoint representation of H on g;

(c) $\omega(X) \neq 0$ for every non zero vector X of P.

The condition (c) means that ω defines an isomorphism of the tangent space at each point of P onto the Lie algebra g and hence implies the absolute parallelizability of P.

Let G be the Möbius group K(n) acting on an *n*-dimensional Möbius space and H be an isotropy subgroup of G so that G/H is the Möbius space. Let M be an arbitrary manifold of dimension n and P be a principal fibre bundle over M with structure group H. We fix the natural basis for the Lie algebra $\mathfrak{t}(n)$ as described in §4.

A Cartan connection ω in P is then given, with respect to this basis, by a set of 1-forms $\omega^i, \omega^i, \omega_j$ on P.

The structure equations of the Cartan connection ω are given by

(I)
$$d\omega^{i} = -\Sigma \omega_{k}^{i} \wedge \omega^{k} + \Omega^{i}$$

(II) $d\omega_{j}^{i} = -\Sigma \omega_{k}^{i} \wedge \omega_{j}^{k} - \omega^{i} \wedge \omega_{j} - \Sigma \varepsilon^{ik} \varepsilon_{jl} \omega_{k} \wedge \omega^{l} + \delta_{j}^{i} \Sigma \omega_{k} \wedge \omega^{k} + \Omega_{j}^{i},$

(III)
$$d\omega_{i} = -\Sigma \omega_{k} \wedge \omega_{i}^{k} + \Omega_{j}$$

For the sake of simplicity, we shall take these equations as a definition of the 2forms Ω^i , Ω^i_j , Ω_j . We call (Ω^i) the *torsion form* of the Cartan connection ω and (Ω^i_j, Ω_j) the *curvature form* of ω .

PROPOSITION 9. The torsion and the curvature forms can be written as follows:

(10)

$$\Omega^{i} = \frac{1}{2} \Sigma K^{i}{}_{kl} \omega^{k} \wedge \omega^{l},$$

$$\Omega^{i}_{j} = \frac{1}{2} \Sigma K^{i}{}_{jkl} \omega^{k} \wedge \omega^{l},$$

$$\Omega_{j} = \frac{1}{2} \Sigma K_{jkl} \omega^{k} \wedge \omega^{l}$$

where K^{i}_{kl} , K^{i}_{jkl} and K_{jkl} are functions on P.

Proof. Condition (c) implies that the algebra of differential forms on P is generated by ω^i , ω^j_j , ω_j and functions.

To show that the torsion and the curvature forms do not involves ω_j^i and ω_j , it is sufficient to prove the following three statements;

(i) The forms ω^{i} , restricted to each fibre of P, vanish identically;

(ii) The forms ω_j^* and ω_j , restricted to each fibre, remain linearly independent at every point of the fibre;

(iii) The torsion and curvature forms, restricted to each fibre, vanish identically. Condition (a) implies (i) and (ii).

To prove (iii), consider the restriction of the structure equation (I) to a fibre, then by (i), the torsion form, restricted to the fibre, vanishes identically. By condition (a), the restriction of the structure equations (II) and (III) to a fibre must coincide with the Maurer-Cartan equation of H. It follows that the curvature form, restricted to the fibre, vanishes identically. (Q.E.D.)

In order that the form $\omega = (\omega^i, \omega^i_j, \omega_j)$ defines a Cartan connection in *P*, the following conditions must be imposed on ω^i and ω^i_j ;

(a') $\omega^i(A^*)=0$ and $\omega^i_j(A^*)=A^i_j$ for every $A=(A^i_j,A_j)\in \mathfrak{co}(n)+\mathfrak{m}^*=\mathfrak{h}$ where A^* is the fundamental vector field corresponding to A;

(b') $R_a^*(\omega^i, \omega_j^i) = ad(a^{-1})(\omega^i, \omega_j^i)$ for every $a \in H$, where

$$ad(a^{-1}): \mathfrak{m} + \mathfrak{co}(n) \rightarrow \mathfrak{m} + \mathfrak{co}(n)$$

is the mapping

$$\mathfrak{k}(n)/\mathfrak{m}^* \rightarrow \mathfrak{k}(n)/\mathfrak{m}^*$$

induced by

$$ad(a^{-1})$$
: $\mathfrak{k}(n) \rightarrow \mathfrak{k}(n)$,

(c') If X is a tangent vector to P such that $\omega^i(X)=0$, then X is vertical.

PROPOSITION 10. Let P be a principal fibre bundle over M with structure group H. Given ω^{i} , and ω^{i}_{j} satisfying (a'), (b'), (c') and

$$(11) d\omega^i = -\Sigma \omega_k^i \wedge \omega^k$$

then there exists a unique Cartan connection $\omega = (\omega^i, \omega^i_j, \omega_j)$ with the following properties:

(12)
$$\Sigma \Omega_i^i = 0$$
, i.e., $\Sigma K_{ijk}^i = 0$,

(13)
$$\Sigma K^{i}{}_{jil} = 0.$$

Proof. Uniqueness. We shall study first the relationship between two Cartan connections $\omega = (\omega^i, \omega^i_j, \omega_j)$ and $\overline{\omega} = (\omega^i, \omega^i_j, \overline{\omega}_j)$ with the given (ω^i, ω^i_j) . By conditions (a) and (c), we can write

$$\bar{\omega}_j - \omega_j = \Sigma A_{jk} \omega^k$$
,

where the coefficients A_{jk} are functions on P. Let

$$\Omega_{j}^{i} = rac{1}{2} \Sigma K^{i}{}_{jkl} \omega^{k} \wedge \omega^{l}$$

and

$$ar{\Omega}^i_{j} \!=\! rac{1}{2} \varSigma ar{K}^i{}_{jkl} \omega^k \!\wedge\! \omega^l$$

be defined by the structure equations (II) of the Cartan connections ω and $\bar{\omega}$ respectively. Then we have

$$\begin{split} \overline{\Omega}_{j}^{i} - \Omega_{j}^{i} &= \omega^{i} \wedge (\overline{\omega}_{j} - \omega_{j}) + \Sigma \varepsilon^{ik} \varepsilon_{jl} (\overline{\omega}_{k} - \omega_{k}) \wedge \omega^{l} - \delta_{j}^{i} \Sigma (\overline{\omega}_{k} - \omega_{k}) \wedge \omega^{k} \\ &= \Sigma A_{jk} \omega^{i} \wedge \omega^{k} + \Sigma \varepsilon^{ik} \varepsilon_{jl} A_{km} \omega^{m} \wedge \omega^{l} - \delta_{j}^{i} \Sigma A_{kl} \omega^{l} \wedge \omega^{k} \\ &= \Sigma (-\delta_{l}^{i} A_{jk} + \Sigma \varepsilon^{ia} \varepsilon_{jl} A_{ak} + \delta_{j}^{i} A_{kl}) \omega^{k} \wedge \omega^{l} \end{split}$$

that is,

$$\bar{K}^{i}{}_{jkl}-K^{i}{}_{jkl}=-\delta^{i}_{l}A_{jk}+\delta^{i}_{k}A_{jl}+\Sigma\varepsilon^{ia}\varepsilon_{jl}A_{ak}-\Sigma\varepsilon^{ia}\varepsilon_{jk}A_{al}+\delta^{i}_{j}(A_{kl}-A_{lk}).$$

Hence

$$\begin{split} &\Sigma \bar{K}^{i}{}_{ikl} - \Sigma K^{i}{}_{ikl} = n(A_{kl} - A_{lk}), \\ &\Sigma \bar{K}^{i}{}_{jil} - \Sigma K^{i}{}_{jil} = (n-1)A_{jl} - A_{lj} + \varepsilon_{jl}\Sigma \varepsilon^{ka}A_{ak}. \end{split}$$

The conditions (12) and (13) imply

and

(15)
$$(n-1)A_{jl}-A_{lj}+\varepsilon_{jl}\Sigma\varepsilon^{ka}A_{ak}=0.$$

From (14) and (15), we have

$$(n-2)A_{jl}+\varepsilon_{jl}\Sigma\varepsilon^{ka}A_{ak}=0.$$

Multiplying by ε^{jl} and summing with respect to j and l, we obtain

$$(n-1)\Sigma\varepsilon^{ka}A_{ak}=0,$$

hence

$$\Sigma \varepsilon^{ka} A_{ak} = 0$$
 if $n > 1$.

Thus we get $A_{jl}=0$ if n>2, in other words, $\bar{\omega}=\omega$ if n>2.

Existence. Assuming that there is at least one Cartan connection $\bar{\omega} = (\omega^i, \omega_j^i, \bar{\omega}_j)$ with the given (ω^i, ω_j^i) satisfying (11), we shall show the existence of a Cartan connection $\omega = (\omega^i, \omega_j^i, \omega_j)$ satisfying (12) and (13). If we define

(16)
$$A_{jk} = \frac{1}{n-2} \Sigma \bar{K}^{i}_{jik} - \frac{1}{n(n-2)} \Sigma \bar{K}^{i}_{ijk} - \frac{1}{2(n-1)(n-2)} \varepsilon_{jk} \Sigma \varepsilon^{al} \bar{K}^{i}_{ail}$$

and set

$$\omega_j = \bar{\omega}_j - \Sigma A_{jk} \omega^k$$

then $\omega = (\omega^i, \omega^i_j, \omega_j)$ is a Cartan connection with the required properties.

To complete the proof of the proposition, we have now only to prove that there exists at least one Cartan connection ω with the given (ω^i, ω^i_j) . Let $\{U_\alpha\}$ be a locally finite open covering of M with a partition of unity $\{\varphi_\alpha\}$. If ω_α is a Cartan connection in $P|U_\alpha$ with the given (ω^i, ω^i_j) , then $\Sigma(\varphi_\alpha \circ \pi)\omega_\alpha$ is a Cartan connection in P with the given (ω^i, ω^i_j) where $\pi: P \to M$ is the projection. Hence, our problem is reduced to the case where P is a trivial bundle. Fix a cross section $\sigma: M \to P$, and set $\omega_j(X) = 0$ for every vector tangent to $\sigma(M)$. If Y is an arbitrary vector of P, then we can write uniquely

$$Y = R_a X + V$$

where X is a vector tangent to $\sigma(M)$ and $\alpha \in H$ and V is a vector tangent to a fibre of P so that V can be extended to a unique fundamental vector field A^* of P with $A \in \mathfrak{h}$. By condition (a) and (b), a Cartan connection ω must satisfy the following condition:

$$\omega(Y) = ad(a^{-1}) \cdot \omega(X) + A.$$

This determines $\omega_i(Y)$.

PROPOSITION 11. Let P be a principal fibre bundle over M with structure group H. If $\omega = (\omega^i, \omega^i_j, \omega_j)$ is a Cartan connection with the properties (11), (12) and (13) of Proposition 10, then its curvature forms possess the following properties:

(17)
$$\Sigma \Omega_{i}^{i} \wedge \omega^{j} = 0, \quad that \ is, \quad K^{i}_{jkl} + K^{i}_{klj} + K^{i}_{ljk} = 0.$$

(18)
$$\Sigma \Omega_i \wedge \omega^j = 0$$
, that is, $K_{ikl} + K_{klj} + K_{ljk} = 0$,

206

(Q.E.D.)

THEORY OF CONFORMAL CONNECTIONS

(19) If
$$\Omega_j^i = 0$$
 and dim $M > 3$, then $\Omega_j = 0$.

Proof. (17). From the structure equation (II) of a Cartan connection, we have

$$\begin{split} \Sigma\Omega_{j}^{i}\wedge\omega^{j} &= \Sigma d\omega_{j}^{i}\wedge\omega^{j} + \Sigma\omega_{k}^{i}\wedge\omega_{j}^{k}\wedge\omega^{j} + \Sigma\omega^{i}\wedge\omega_{j}\wedge\omega^{j} \\ &+ \Sigma\varepsilon^{ik}\varepsilon_{jl}\omega_{k}\wedge\omega^{l}\wedge\omega^{j} - \Sigma\delta_{j}^{i}\omega_{k}\wedge\omega^{k}\wedge\omega^{j} \\ &= \Sigma d\omega_{j}^{i}\wedge\omega^{j} + \Sigma\omega_{k}^{i}\wedge(-d\omega^{k}) \\ &= d\Sigma(\omega_{j}^{i}\wedge\omega^{j}) \\ &= d(-d\omega^{i}) \\ &= 0. \end{split}$$

(18). From the structure equation (III), we get

$$\Sigma \Omega_{j} \wedge \omega^{j} = \Sigma d\omega_{j} \wedge \omega^{j} + \Sigma \omega_{k} \wedge \omega_{j}^{k} \wedge \omega^{j}$$
$$= \Sigma d\omega_{j} \wedge \omega^{j} + \Sigma \omega_{k} \wedge (-d\omega^{k})$$
$$= d\Sigma (\omega_{j} \wedge \omega^{j}).$$

On the other hand, taking the trace of the structure equation (II) and taking account of (12) we get

$$\Sigma d\omega_i^i = n \Sigma \omega_i \wedge \omega^i$$
,

that is $\Sigma \omega_i \wedge \omega^i$ is a exact form, hence

 $\Sigma \Omega_{I} \wedge \omega^{J} = 0.$

(19). By applying exterior differentiation to the structure equation (II) and setting $\Omega'_{i}=0$, we obtain

$$\omega^i \wedge \Omega_j - \Sigma \varepsilon^{ik} \varepsilon_{jl} \Omega_k \wedge \omega^l + \delta^i_j \Sigma \Omega_k \wedge \omega^k = 0.$$

This, together with (18), implies

$$\omega^{\imath}\wedge\Omega_{j}-\Sigma\varepsilon^{ik}\varepsilon_{jl}\Omega_{k}\wedge\omega^{l}=0,$$

that is,

$$\Sigma \varepsilon^{ik} \Omega_k \wedge \omega^j - \Sigma \varepsilon^{jk} \Omega_k \wedge \omega^i = 0.$$

Then $\Sigma \varepsilon^{ik} \Omega_k \wedge \omega^j \wedge \omega^i = 0$. Hence $\Sigma \varepsilon^{ik} \Omega_k \wedge \omega^i = 0$ provided that dim M > 3. This, together with Proposition 9, implies that there exist 1-forms τ^i such that

$$\Sigma \varepsilon^{ik} \Omega_k = \tau^i \wedge \omega^i.$$

Thus we have

$$0 = \tau^i \wedge \omega^i \wedge \omega^j - \tau^j \wedge \omega^j \wedge \omega^i$$
$$= (\tau^i + \tau^j) \wedge \omega^i \wedge \omega^j.$$

This implies that $\tau^i + \tau^j$ is a linear combination of ω^i and ω^j for any *i* and *j* $(i \neq j)$. Therefore we can easily see that τ^i is proportional to ω^i . Hence we have $\Omega_j = 0$. (Q.E.D.)

§6. Conformal structures and conformal connections.

Let $H^2(n)$ be the subset of $G^2(n)$ consisting of elements (a_j^i, a_j^i, a_j^i) with $\Sigma \varepsilon_{kl} a_k^i a_j^l = \rho \varepsilon_{ij}$ $(\rho > 0)$, that is, $(a_j^i) \in CO(n)$, and $a_{jk}^i = \Sigma \varepsilon^{a_l} \varepsilon_{jk} a_a a_i^i - a_j^i a_k - a_k^i a_j$ for some (a_j)

PROPOSITION 12. $H^2(n)$ forms a subgroup of $G^2(n)$ of dimension n(n+1)/2+1.

Proof. Let (a_j^i, a_{jk}^i) and $(\bar{a}_j^i, \bar{a}_{jk}^i)$ be in $H^2(n)$. By the consideration in §3, we have

$$(\bar{a}_{j}^{i}, \bar{a}_{jk}^{i})(a_{j}^{i}, a_{jk}^{i}) = (\Sigma \bar{a}_{l}^{i} a_{j}^{l}, \Sigma \bar{a}_{l}^{i} a_{jk}^{l} + \Sigma \bar{a}_{lm}^{i} a_{j}^{l} a_{k}^{m}).$$

Since $a_{jk}^i = \Sigma \varepsilon^{a_l} \varepsilon_{jk} a_a a_l^i - a_j^i a_k - a_k^i a_j$ and $\bar{a}_{jk}^i = \Sigma \varepsilon^{a_l} \varepsilon_{jk} \bar{a}_a \bar{a}_l^i - \bar{a}_j^i \bar{a}_k - \bar{a}_k^i \bar{a}_j$, we get

$$\Sigma \bar{a}_{l}^{i} a_{jk}^{l} + \Sigma \bar{a}_{lm}^{i} a_{j}^{l} a_{k}^{m} = \Sigma \varepsilon^{a_{l}} \varepsilon_{jk} b_{a} b_{l}^{i} - b_{j}^{i} b_{k} - b_{k}^{i} b_{j}$$

where $b_j = a_j + \Sigma \bar{a}_k a_j^k$, $b_j^i = \Sigma \bar{a}_l^i a_j^i \in CO(n)$. This implies $(\bar{a}_j^i, \bar{a}_{jk}^i)(a_j^i, a_{jk}^i) \in H^2(n)$. (Q.E.D.)

The Lie algebra $\mathfrak{h}^2(n)$ of $H^2(n)$ is the direct sum:

$$\mathfrak{h}^2(n) = \mathfrak{co}(n) + \mathfrak{co}(n)^{(1)}$$

with the following bracket operation; If (A_j^i) , $(B_j^i) \in \mathfrak{co}(n)$ and (A_{jk}^i) , $(B_{jk}^i) \in \mathfrak{co}(n)^{(1)}$, then

$$\begin{split} & [(A_j^i), (B_j^i)] = (\Sigma A_k^i B_j^k - \Sigma B_k^i A_j^k) \in \mathfrak{co}(n), \\ & [(A_j^i), (B_{jk}^i)] = (\Sigma A_k^i B_{jk}^i - \Sigma B_{lk}^i A_j^i - \Sigma B_{lj}^i A_k^l) \in \mathfrak{co}(n)^{(1)} \end{split}$$

and

$$[(A_{jk}^{i}), (B_{jk}^{i})] = 0.$$

As in §4, let *H* be the isotropy subgroup at $0 \in \Xi^n$ of K(n) acting on the Möbius space Ξ^n .

PROPOSITION 13. For each element $a \in H$, let f be the transformation of Ξ^n induced by a as in §4. Then $a \rightarrow j_0^2(f)$ gives an isomorphism of H onto $H^2(n)$. Moreover if $a \in H$ has coordinate (a^i, a^i_j, a_j) where $a^i = 0$, with respect to the local coordinate system in K(n) induced in §4, then the corresponding element of $H^2(n)$ has coordinate $(a^i_j, \Sigma \varepsilon^{ai} \varepsilon_{jk} a_a a^i_l - a^i_j a_k - a^i_k a_j)$.

Proof. This is evident from the explicit expression (9) of the transformation *f*. (cf. Proposition 2) (Q.E.D.)

The induced isomorphism of \mathfrak{h} onto $\mathfrak{h}^2(n)$ is given by $(A_j^i, A_j) \rightarrow (A_j^i, \Sigma \varepsilon^{ia} \varepsilon_{jk} A_a - \partial_j^i A_k - \partial_k^i A_j)$.

From Proposition 13 and the proof of Proposition 12, we see that the multiplication in H is given by $(\bar{a}_i^i, \bar{a}_j)(a_j^i, a_j) = (\sum \bar{a}_k^i a_j^k, a_j + \sum \bar{a}_k a_j^k)$.

From Propositions 2, 3 and 13, a CO(n)-structure on a manifold M is equivalent to the reduction of the structure group $G^2(n)$ of $P^2(M)$ to the subgroup $H^2(n)$. (cf. [2]).⁴⁾

A conformal structure on a manifold M is, by definition, a sub-bundle P of $P^{2}(M)$ with structure group $H^{2}(n)$.

Let $\theta = (\theta^i, \theta^i_j)$ be the canonical form on $P^2(M)$. Given a conformal structure P on M, let us denote by the same letters the restriction of θ to P.

A conformal connection associated with a conformal structure P is, by definition, a Cartan connection $\omega = (\omega^i, \omega^i_j, \omega_j)$ in P such that $\omega^i = \theta^i$.

THEOREM 14. For each conformal structure P of a manifold M, there is a unique conformal connection $\omega = (\omega^i, \omega^i_j, \omega_j)$ such that

(i)
$$\omega^i = \theta^i \text{ and } \omega^i_j = \theta^i_j \text{ so that } d\omega^i = -\Sigma \omega^i_k \wedge \omega^k,$$

(ii)
$$\Sigma \Omega_i^i = 0$$
,

(iii)
$$\Sigma K^{i}{}_{jil}=0.$$

Proof. This is an immediate consequence of Propositions 4, 6 and 10.

(Q.E.D.)

The unique conformal connection for P given in Theorem 14 is called the *normal conformal connection* associated with the conformal structure P.

The cohomology class determined by the torsion form (Ω^i) is called the *first* order structure tensor of the conformal structure P, and the cohomology classes determined by the curvature forms (Ω_j^i) and (Ω_j) are called the *second* and the *third order structure tensors* of P respectively.

A Möbius space $\Xi^n = K(n)/H$ of dimension *n* has a natural conformal structure. The normal conformal connection $(\omega^i, \omega^i_j, \omega_j)$ associated with it corresponds to the Maurer-Cartan form of the group K(n) and its structure equations are nothing but the equations of Maurer-Cartan for the group K(n) so that $\Omega^i = 0$, $\Omega^i_j = 0$ and $\Omega_j = 0$.

§7. Natural frames and coefficients of conformal connections.

Let P be a conformal structure on a manifold M and U a coordinate neighborhood in M with local coordinate system (x^1, \dots, x^n) . Let $\sigma: U \rightarrow P$ be a local cross section given by $(x^i) \rightarrow (x^i, \sigma_j^i, \sigma_j^i_k)$ and $U \times H^2(n) \cong P | U$ the isomorphism induced by σ . Let $(a_j^i, a_j^i_k)$, with $\Sigma \varepsilon_{kl} a_k^i a_j^l = \rho \varepsilon_{ij} \ (\rho > 0)$ and $a_{jk}^i = \Sigma \varepsilon^{a_l} \varepsilon_{jk} a_a a_l^i - a_j^i a_k - a_k^i a_j$, be the coordinate in $H^2(n)$. Then the natural coordinate system (u^i, u^i_j, u^i_{jk}) in P | U can be written as

⁴⁾ Every CO(n)-structure is 1-flat and hence has a unique prolonged subbundle of $P^2(M)$.

$$u^{i} = x^{i},$$

$$u^{i}_{j} = \Sigma \sigma^{i}_{k} a^{k}_{j},$$

$$u^{i}_{jk} = \Sigma \sigma^{i}_{l} a^{i}_{jk} + \Sigma \sigma^{i}_{lm} a^{i}_{j} a^{m}_{k}$$

Let $\theta = (\theta^i, \theta^i_j)$ be the canonical form on $P^2(M)$ restricted to P and set

$$\psi^{i} = \sigma^{*} \theta^{i},$$
$$\psi^{i}_{j} = \sigma^{*} \theta^{i}_{j}.$$

Then we obtain the following formulae (cf. § 3);

(20)
$$\theta^{i} = \Sigma b^{i}_{k} \psi^{k},$$
$$\theta^{i}_{j} = \Sigma b^{i}_{k} da^{k}_{j} - \Sigma \varepsilon^{il} \varepsilon_{jk} a_{l} \theta^{k} + a_{j} \theta^{i} + \delta^{i}_{j} \Sigma a_{k} \theta^{k} + \Sigma b^{i}_{k} \psi^{k}_{l} a^{l}_{j},$$

.

where (b_j^i) denotes the inverse matrix of (a_j^i) . Let $(\omega^i, \omega_j^i, \omega_j)$ be the normal conformal connection in P and set

$$\begin{split} \psi^{i} &= \sigma^{*} \omega^{i} = \Sigma \Pi^{i}_{k} dx^{k}, \\ \psi^{i}_{j} &= \sigma^{*} \omega^{i}_{j} = \Sigma \Pi^{i}_{kj} dx^{k}, \\ \psi_{j} &= \sigma^{*} \omega_{j} = \Sigma \Pi_{kj} dx^{k}. \end{split}$$

Then we obtain the following formulae:

(21)

$$\omega^{i} = \Sigma b_{k}^{i} \phi^{k},$$

$$\omega_{j}^{i} = \Sigma b_{k}^{i} da_{j}^{k} - \Sigma \varepsilon^{il} \varepsilon_{jk} a_{l} \omega^{k} + a_{j} \omega^{i} + \delta_{j}^{i} \Sigma a_{k} \omega^{k} + \Sigma b_{k}^{i} \phi_{l}^{k} a_{j}^{l},$$

$$\omega_{j} = da_{j} - \Sigma a_{k} \omega_{j}^{k} + a_{j} \Sigma a_{k} \omega^{k} + \Sigma a_{j}^{k} \phi_{k} - \frac{1}{2} \Sigma \varepsilon^{ab} \varepsilon_{jk} a_{a} a_{b} \omega^{k}.$$

We call Π_{k}^{i} , Π_{jk}^{i} and Π_{jk} the coefficients of the normal conformal connection with respect to the local cross section σ .

PROPOSITION 15. Let P be a conformal structure on M and $(\omega^i, \omega^i_j, \omega_j)$ the normal conformal connection in P. Let U be a coordinate neighborhood in M with local coordinate system (x^1, \dots, x^n) . Then there is a unique local cross section $\sigma: U \rightarrow P^2(M)$ such that

$$\sigma^*\omega^i = dx^i$$
 and $\sigma^*\Sigma\omega^i_i = 0.$

If we set for such a σ

 $\sigma^* \omega_j^i = \Sigma \prod_{kj}^i dx^k$ and $\sigma^* \omega_j = \Sigma \prod_{kj}^i dx^k$

then

$$\Pi^i_{jk} = \Pi^i_{kj} \quad and \quad \Pi_{jk} = \Pi_{kj}.$$

Proof. For an arbitrary point u of P, we choose a local coordinate system (x^1, \dots, x^n) with origin $x = \pi(u)$ such that, in terms of the local coordinate system (u^i, u^i_j, u^i_{jk}) in $P^2(M)$ induced by (x^1, \dots, x^n) , u is given by $(0, \delta^i_j, *)$. Let $\bar{\sigma}$: $U \to P^2(M)$ be the cross section given by

$$u^i = x^i, \quad u^i_j = \delta^i_j, \quad u^i_{jk} = -\Gamma^i_{jk},$$

where each Γ_{jk}^{i} is a certain function of x^{1}, \dots, x^{n} . We take σ as the cross section given by

$$u^i = x^i, \quad u^i_j = \delta^i_j, \quad u^i_{jk} = -\Pi^i_{jkj}$$

where

$$\Pi^{i}_{jk} = \Gamma^{i}_{jk} - \frac{1}{n} (\delta^{i}_{j} \Sigma \Gamma^{h}_{hk} + \delta^{i}_{k} \Sigma \Gamma^{h}_{hj} - \Sigma \varepsilon^{ia} \Gamma^{h}_{ha} \varepsilon_{jk}).$$

Then, from the expression for θ_j^i in terms of (u_i, u_j^i, u_{jk}^i) given in §3, we obtain

$$\sigma^* \omega_i^i = \Sigma \prod_{k \neq i}^i dx^k.$$

Clearly, σ is a cross section with the desired properties.

To prove the uniqueness, let $\tilde{\sigma}: U \rightarrow P^2(M)$ be another cross section with the desired properties and set

$$\tilde{\sigma}^* \omega_i^i = \Sigma \widetilde{\Pi}_{k\,i}^i dx^k.$$

From (21)₂ and $\sigma^* \omega^i = \tilde{\sigma}^* \omega^i = dx^i$, we obtain

$$\begin{split} \sigma^* \omega_j^i &= \Sigma \Pi_{kj}^i dx^k = (\sigma^* a_j) dx^i + \delta_j^i \Sigma (\sigma^* a_k) dx^k - \Sigma \varepsilon^{il} \varepsilon_{jk} (\sigma^* a_l) dx^k + \psi_j^i, \\ \tilde{\sigma}^* \omega_j^i &= \Sigma \widetilde{\Pi}_{kj}^i dx^k = (\tilde{\sigma}^* a_j) dx^i + \delta_j^i \Sigma (\tilde{\sigma}^* a_k) dx^k - \Sigma \varepsilon^{il} \varepsilon_{jk} (\tilde{\sigma}^* a_l) dx^k + \psi_j^i. \end{split}$$

Hence we have

$$\tilde{\Pi}^{i}_{kj} - \Pi^{i}_{kj} = \delta^{i}_{k} \varphi_{j} + \delta^{i}_{j} \varphi_{k} - \Sigma \varepsilon^{il} \varepsilon_{jk} \varphi_{l}.$$

where we set $\varphi_j = (\tilde{\sigma}^* a_j) - (\sigma^* a_j)$. From

$$\sigma^* \Sigma \omega_i^i = \tilde{\sigma}^* \Sigma \omega_i^i = 0,$$

we obtain

$$\varphi_1 = \cdots = \varphi_n = 0.$$

The remaining assertions are immediate consequences of the facts that $\Omega^i = 0$ and $\Sigma \Omega_i^i = 0$. (Q.E.D.)

We call σ in Proposition 15 the *natural cross section* or the *natural frame* of P associated with (x^1, \dots, x^n) .

§8. Riemannian connections and conformal connections.

The group $G^1(n) = GL(n, R)$ can be considered as the subgroup of $G^2(n)$ consisting of the elements (a_j^i, a_{jk}^i) with $a_{jk}^i = 0$. Thus $O(n) \subset CO(n) \subset H^2(n) \subset G^2(n)$. Since $G^2(n)$ acts on $P^2(M)$, the subgroups O(n) and $H^2(n)$ act on $P^2(M)$. We consider the associated bundle $P^2(M)/O(n)$ and $P^2(M)/H^2(n)$ with fibres $G^2(n)/O(n)$ and $G^2(n)/H^2(n)$ respectively.

PROPOSITION 16 The cross sections $M \rightarrow P^2(M)/O(n)$ are in one-to-one correspondence with the Riemannian connection of M.

Proof. Let (u^i, u^i_{j}, u^i_{jk}) be the local coordinate system in $P^2(M)$ induced from a local coordinate system (x^i) in M as in §3. We introduce a local coordinate system (z^i, z^i_j, z^i_{jk}) in $P^2(M)/O(n)$ in such a way that the natural mapping $P^2(M)$ $\rightarrow P^2(M)/O(n)$ is given by the equations.

$$\begin{split} z^i &= u^i, \\ z^i_j &= *, \\ z^i_{jk} &= \Sigma u^i_{pq} v^p_j v^q_k \qquad \text{where} \quad (v^i_j) &= (u^i_j)^{-1}. \end{split}$$

Then a cross section $\Gamma: M \to P^2(M)/O(n)$ is given, locally, by a set of functions $\Gamma_{jk}^i = \Gamma_{jk}^i (x^1, \dots, x^n)$ with $\Gamma_{jk}^i = \Gamma_{kj}^i$ as follows:

$$(z^i, z^i_j, z^i_{jk}) = (x^i, *, -\Gamma^i_{jk}).$$

Then we can see without difficulty that the behavior of the functions Γ_{jk}^{i} under the change of coordinate systems of M is the same as that of Christoffel's symbols. (Q.E.D.)

Since the reduction of structure group to $H^2(n)$ and the cross sections $M \rightarrow P^2(M)/H^2(n)$ are in one-to-one correspondence, the conformal structures of M are in one-to-one correspondence with the cross sections $M \rightarrow P^2(M)/H^2(n)$.

Every Riemannian connection $\Gamma: M \to P^2(M)/O(n)$, composed with the natural mapping $\varpi: P^2(M)/O(n) \to P^2(M)/H^2(n)$, gives a conformal structure $M \to P^2(M)/H^2(n)$.

A Riemannian connection is said to belong to a conformal structure P if Γ induces P in the manner described above. We say that two Riemannian connections are *conformally related* if they belong to the same conformal structure.

PROPOSITION 17. Two Riemannian connections whose Christoffel's symbols are given by $\{\frac{i}{jk}\}$ and $\{\frac{j}{jk}\}$ are conformally related if and only if there exists a 1-

form with components φ_i such that

$$\overline{\left[\frac{i}{jk}\right]} = \left\{\frac{i}{jk}\right\} + \delta^{i}_{j}\varphi_{k} + \delta^{i}_{k}\varphi_{j} - g_{jk}\Sigma g^{il}\varphi_{l}.$$

Proof. Let P be a conformal structure on M. An element $(a_j^i, \Sigma \varepsilon^{a_l} \varepsilon_{jk} a_a a_l^i - a_j^i a_k - a_k^i a_j)$ of $H^2(n)$ induces the transformation of $P^2(M)$ given by

$$(u^{i}, u^{i}_{j}, u^{i}_{jk}) \rightarrow (u^{i}, \Sigma u^{i}_{p} a^{p}_{j}, \Sigma u^{i}_{p} (\Sigma \varepsilon^{a_{l}} \varepsilon_{jk} a_{a} a^{p}_{l} - a^{p}_{j} a_{k} - a^{p}_{k} a_{j}) + \Sigma u^{i}_{pq} a^{p}_{j} a^{q}_{k}).$$

It induces the transformation of $P^2(M)/O(n)$ given by

$$(z^{i}, *, z^{i}_{jk}) \rightarrow (z^{i}, *, z^{i}_{jk} + \Sigma \varepsilon^{il} \varepsilon_{jk} a_{p} b^{p}_{q} v^{q}_{l} - \delta^{i}_{j} \Sigma a_{p} b^{p}_{q} v^{q}_{k} - \delta^{i}_{k} \Sigma a_{p} b^{p}_{q} v^{q}_{j})$$

where $(b_j^i) = (a_j^i)^{-1}$ and $(v_j^i) = (u_j^i)^{-1}$. If we put $\varphi_j = \sum a_p b_q^p v_j^q$, then

$$\bar{z}^{i}_{jk} = z^{i}_{jk} + \Sigma \varepsilon^{il} \varepsilon_{jk} \varphi_{l} - \delta^{i}_{j} \varphi_{k} - \delta^{i}_{k} \varphi_{j}.$$

Let CO(M) be the principal fibre boundle over M with structure group CO(n)and we call it the conformal bundle of M. Let M^* be the kernel of the natural homomorphism $H^2(n) \rightarrow CO(n)$ so that $CO(M) = P/M^*$. Let $u' \in CO(M)$ be the image of $u \in P$ under the natural projection $P \rightarrow CO(M)$. Then u' induces a conformal isomorphism $E^n \rightarrow T_x(M)$ where $x = \pi(u)$. Thus our assertion is clear. (Q.E.D.)

Two Riemannian metrics $g=(g_{ij})$ and $\bar{g}=(\bar{g}_{ij})$ on M is said to be conformally related if there exists a function $\rho>0$ on M such that $\bar{g}=\rho^2 g$. If $\bar{g}=(\bar{g}_{ij})$ is conformally related to $g=(g_{ij})$ then there exists a 1-form $\varphi=(\varphi_j)$ such that

$$\boxed{\frac{i}{jk}} = \left\{ \begin{array}{c} i\\ jk \end{array} \right\} + \delta^i_j \varphi_k + \delta^i_k \varphi_j - g_{jk} \Sigma g^{il} \varphi_l$$

where $\{\frac{i}{jk}\}$ and $\{\overline{\frac{i}{jk}}\}$ denote the Christoffel's symbols of g and \overline{g} respectively. Thus conformally related Riemannian metrics define conformally related Riemannian connections. This implies that a conformal struc-

ture is given by a class of conformally related Riemannian metrics.

Let $\Gamma: M \to P^2(M)/O(n)$ be a Riemannian connection. It corresponds naturally to a reduction of the structure group to O(n). In other words, it induces an isomorphism γ of the orthonormal frame bundle O(M) into $P^2(M)$. Thus a Riemannian connection Γ belongs to a conformal structure P if and only if the corresponding subbundle $\gamma(O(M))$ of $P^2(M)$ with structure group O(n) is contained in P.

PROPOSITIONS 18. Let Γ be a Riemannian connection of M belonging to the conformal structure P and γ : $O(M) \rightarrow P \subset P^2(M)$ the corresponding isomorphism. Let (θ^i, θ^i_j) be the canonical form of $P^2(M)$ restricted to P. Then $(\gamma^*\theta^i)$ is the canonical form of $P^1(M)$ restricted to O(M) and $(\gamma^*\theta^i_j)$ is the connection form of Γ .

Proof. Let U be a coordinate neighborhood in M with local coordinate system (x^1, \dots, x^n) . Let (u'^i, u'^i) and (u^i, u^i, u^i) be local coordinate systems in $O(M) \subset P^1(M)$ and in $P \subset P^2(M)$ respectively, induced from (x^1, \dots, x^n) . Let $\{ {}^i_{jk} \}$ be the Christoffel's symbols of the Riemannian connection Γ with respect to the local coordinate system (x^1, \dots, x^n) . Then $\gamma: O(M) \to P$ is given, locally, by

$$u^{v} = u'^{i},$$

$$u^{v}_{j} = u'^{i}_{j},$$

$$u^{v}_{jk} = -\Sigma \left\{ \begin{array}{c} i \\ pq \end{array} \right\} u'^{p}_{j} u'^{q}_{k}.$$

Let $\sigma: U \to P^2(M)$ be the natural cross section of P. Let $\sigma': U \to P^1(M)$ be the natural cross section, that is, the local cross section given by $(x^i) \to (x^i, \delta^i_j)$. Then, from the expression for θ^i_j in terms of (u^i, u^i_j, u^i_{jk}) given in § 3, we obtain

$$\gamma^*\theta^i_j = \Sigma v'^i_k du'^k_j + \Sigma v'^i_k \begin{bmatrix} k \\ pq \end{bmatrix} u'^p_h u'^q_j v'^h_l du'^l.$$

Hence we have

$$\sigma^{\prime*}(\gamma^*\theta^i_j) = \Sigma \begin{cases} i\\ kj \end{cases} dx^k.$$
 (Q.E.D.)

Let P be a conformal structure on M. We shall explain Weyl's conformal curvature tensor of P. Let CO(M) denotes the principal fibre bundle over M with structure group CO(n) and we call it the conformal bundle of M associated with P. Let $(\omega^i, \omega^i_j, \omega_j)$ be the normal conformal connection associated with P. Let M^* be the kernel of the natural homomorphism $H^2(n) \rightarrow CO(n)$ so that $CO(M) = P/M^*$. Let \mathfrak{m}^* be the Lie algebra of M^* , then \mathfrak{m}^* is nothing but $\mathfrak{co}(n)^{(1)}$ and hence isomorphic with $(\mathbb{R}^n)^*$.

PROPOSITION 19.

(i)
$$\iota_{A^*}\Omega_j^i = 0$$
 for every $A \in \mathfrak{m}^*$,

(ii)
$$L_{A^*}\Omega_j^* = 0$$
 for every $A \in \mathfrak{m}^*$

where ι_{A^*} and L_{A^*} denote the interior product and the Lie differentiation with respect to the fundamental vector field A^* corresponding to $A \in \mathfrak{m}^*$.

Proof. The equation (i) follows from Proposition 9. We have

$$L_{A*}\Omega_{j}^{i} = d\iota_{A*}\Omega_{j}^{i} + \iota_{A*}d\Omega_{j}^{i} = \iota_{A*}d\Omega_{j}^{i}$$

by (i). By taking exterior derivative of the structure equation (II) and using the facts that $\Omega^i = 0$, we have

$$d\Omega_{j}^{i} = \Sigma \Omega_{k}^{i} \wedge \omega_{j}^{k} - \Sigma \omega_{k}^{i} \wedge \Omega_{j}^{k} - \omega^{i} \wedge \Omega_{j} + \Sigma \varepsilon^{ik} \varepsilon_{jl} \Omega_{k} \wedge \omega^{l} - \delta_{j}^{i} \Sigma \Omega_{k} \wedge \omega^{k}.$$

The right hand side of this equation vanishes for fundamental vector fields A^* corresponding to $A \in \mathfrak{m}^*$, hence $\iota_{A^*} d\Omega_j^* = 0$. This proves (ii). (Q.E.D)

By the Proposition above, we see that 2-form (Ω_j^i) can be projected down to the bundle $CO(M) = P/M^*$. It follows that (Ω_j^i) defines a tensor field of type (1.3) on M. This tensor field is called the *conformal curvature tensor of Weyl*; it depends only on the conformal structure P.

§ 9. Geodesics and completeness.

Let P be a conformal structure on a manifold M and $(\omega^i, \omega^i_j, \omega_j)$ the normal conformal connection associated with P. With each element $\xi = (\xi^1, \dots, \xi^n)$ of E^n , we can associate a unique vector field ξ^* of P with the following properties:

$$\omega^i(\xi^*) = \xi^i, \qquad \omega^i_j(\xi^*) = 0, \qquad \omega_j(\xi^*) = 0.$$

We call ξ^* the standard horizontal vector field corresponding to ξ .

A curve x_t in M is called a "geodesic" of the given conformal structure if

$$x_t = \pi((\exp t\xi^*)u_0)$$

for some standard horizontal vector field ξ^* and for some point $u_0 \in P$, where $\pi: P \to M$ is the projection. We call t a *canonical parameter* of the geodesic x_t . On the other hand, a curve $x_s = (x^1(s), \dots, x^n(s))$ in M is called a *conformal circle* of the given conformal structure if

$$\frac{d^3x^i}{ds^3} + 3\Sigma \prod_{jk}^i \frac{d^2x^j}{ds^2} \frac{dx^k}{ds} + \Sigma \frac{d\prod_{jk}^i}{ds} \frac{dx^j}{ds} \frac{dx^j}{ds} \frac{dx^k}{ds} + \Sigma \prod_{al}^i \prod_{jk}^a \frac{dx^l}{ds} \frac{dx^j}{ds} \frac{dx^k}{ds} \frac{dx^k}{ds}$$
$$-\Sigma \prod_{jk}^i \frac{dx^j}{ds} \frac{dx^k}{ds} \frac{dx^i}{ds} + \Sigma \varepsilon_{jk} \left(\frac{d^2x^j}{ds^2} + \Sigma \prod_{ab}^j \frac{dx^a}{ds} \frac{dx^b}{ds} \right) \left(\frac{d^2x^k}{ds^2} + \Sigma \prod_{lm}^k \frac{dx^l}{ds} \frac{dx^l}{ds} \right) \frac{dx^i}{ds}$$
$$+\Sigma \varepsilon^{ia} \prod_{ka}^i \frac{dx^k}{ds} = 0$$

for some parameter s, where \prod_{jk}^{i} and \prod_{jk} are the coefficients of the normal conformal connection.

THEOREM 20. Let P be a conformal structure on M. If we disregard parametrizations, then the "geodesics" of P are the same as the conformal circles of P.

Proof. Let U be a coordinate neighborhood in M with local coordinate system (x^1, \dots, x^n) . Let $\sigma: U \to P$ be a cross section such that $\sigma^* \omega^i = dx^i$ and let $U \times H = P|U$ the isomorphism induced by σ . Let (a_i^i, a_j) be the coordinate system in H introduced

in §4. We may take (x^i, a_j^i, a_j) as a coordinate system in P|U.

Let (B^i, B^i_j, B_j) be the components of the standard horizontal vector field ξ^* , $\xi = (\xi^1, \dots, \xi^n) \in \mathbb{E}^n$, with respect to the natural basis $\partial/\partial x^i$, $\partial/\partial a^i_j$, $\partial/\partial a_j$. From (21) and the definition of the standard horizontal vector field we have

$$B^{i} = \Sigma a_{k}^{i} \xi^{k},$$

$$B^{i}_{j} = \Sigma \varepsilon^{a_{l}} \varepsilon_{jk} a_{a}^{i} a_{l} \xi^{k} - a_{j} \frac{dx^{i}}{dt} - a_{j}^{i} \Sigma a_{k} \xi^{k} - \Sigma \Pi_{kl}^{i} a_{j}^{l} \frac{dx^{k}}{dt},$$

$$B_{j} = -a_{j} \Sigma a_{k} \xi^{k} - \Sigma a_{j}^{l} \Pi_{kl} \frac{dx^{k}}{dt} + \frac{1}{2} \Sigma \varepsilon^{a_{b}} \varepsilon_{jk} a_{a} a_{b} \xi^{k}.$$

Set $u_t = (\exp t\xi^*)u_0 = (x^i(t), a_j(t), a_j(t))$, then we get

- ---

-

$$\frac{dx^{i}}{dt} = B^{i},$$

$$\frac{da^{i}_{j}}{dt} = B^{i}_{j},$$

$$\frac{da_{j}}{dt} = B_{j}.$$

Hence we have

$$\begin{aligned} \frac{d^3x^i}{dt^3} + 3\Sigma\Pi^i_{jk}\frac{d^2x^j}{dt^2}\frac{dx^k}{dt} + \Sigma\frac{d\Pi^i_{jk}}{dt}\frac{dx^j}{dt}\frac{dx^k}{dt} + \Sigma\Pi^i_{at}\Pi^a_{jk}\frac{dx^l}{dt}\frac{dx^j}{dt}\frac{dx^j}{dt}\frac{dx^j}{dt}\frac{dx^j}{dt} \\ -2\Sigma\Pi_{jk}\frac{dx^j}{dt}\frac{dx^k}{dt}\frac{dx^i}{dt} + 3\Sigma a_l\xi^l \Big(\frac{d^2x^i}{dt^2} + \Sigma\Pi^i_{jk}\frac{dx^j}{dt}\frac{dx^k}{dt}\Big) + \Sigma\varepsilon^{ia}\Pi_{ka}\frac{dx^k}{dt} \\ + \frac{3}{2}\Sigma\varepsilon^{ab}a_aa_b\frac{dx^i}{dt} = 0. \end{aligned}$$

If we make a change of parameter t=t(s) satisfying the differential equation

$$\{t,s\} = \frac{1}{2} \Sigma \varepsilon_{jk} \left(\frac{d^2 x^j}{ds^2} + \Sigma \Pi^i_{ab} \frac{dx^a}{ds} \frac{dx^b}{ds} \right) \left(\frac{d^2 x^k}{ds^2} + \Sigma \Pi^k_{lm} \frac{dx^l}{ds} \frac{dx^m}{ds} \right) - \Sigma \Pi_{jk} \frac{dx^j}{ds} \frac{dx^j}{ds},$$

where

$$\{t,s\} = \frac{d^3t}{ds^3} / \frac{dt}{ds} - \frac{3}{2} \left(\frac{d^2t}{ds^2} / \frac{dt}{ds}\right)^2,$$

then the given geodesic of P is a conformal circle of P and vice versa. (Q.E.D.)

The conformal structure P is called *complete* if every standard horizontal vector field is complete, that is, generates a 1-parameter group of global transformations.

§ 10. Conformal transformations and flat conformal structures.

Let P and P' be conformal structures on manifolds M and M' of the same dimension n respectively. A diffeomorphism $f: M \to M'$ is called conformal (with respect to P and P') if f, prolonged to a mapping of $P^2(M)$ onto $P^2(M')$, maps Ponto P'. In particular, a transformation f of M is called conformal (with respect to P) if it maps P onto itself.

A conformal structure P on a manifold M is called *flat* if, for each point of M, there exists a neighborhood U and a conformal diffeomorphism of U onto an open subset of a Möbius space. Every vector field X on M generates a 1-parameter local group of local transformations. This local group, prolonged to $P^2(M)$, induces a vector field on $P^2(M)$, which will be denoted by \tilde{X} . We call X an *infinitesimal conformal transformation* (with respect to P) if the local 1-parameter group of local transformations.

PROPOSITION 21. Let $\omega = (\omega^i, \omega^i_j, \omega_j)$ be the normal conformal connection associated with P. For a vector field X on M, the following conditions are mutually equivalent:

- (i) X is an infinitesimal conformal transformation of M;
- (ii) \tilde{X} is tangent to P at every point of P;
- (iii) $L_{\tilde{X}}\omega=0$;

(iv) $L_{\tilde{X}}\xi^*=0$ for every $\xi \in \mathbb{E}^n$, where ξ^* is the standard horizontal vector field corresponding to ξ .

Proof. (i) \Rightarrow (ii). Let φ_t and $\tilde{\varphi}_t$ be the local 1-parameter groups of local transformations generated by X and \tilde{X} respectively. If X is an infinitesimal conformal transformation, then φ_t is a local conformal transformation and hence $\tilde{\varphi}_t$ maps P into itself. Thus \tilde{X} is tangent to P at every point of P.

(ii) \Rightarrow (i). If \tilde{X} is tangent to P at every point of P, the integral curve of \tilde{X} through each point of P is contained in P and hence each $\tilde{\varphi}_t$ maps P into itself. This means that each φ_t is a local conformal transformation and hence X is an infinitesimal conform transformation.

(i) \Rightarrow (iii). Since the normal conformal connection $\omega = (\omega^i, \omega^i_j, \omega_j)$ is canonically associated with *P*, every conformal transformation, prolonged to *P*, leaves ω invariant. Hence we have (iii).

(iii) \Rightarrow (iv). If $L_{\tilde{X}}\omega=0$, then

$$0 = \tilde{X} \cdot (\omega^{i}(\xi^{*})) = (L_{\tilde{X}}\omega^{i})(\xi^{*}) + \omega^{i}(L_{\tilde{X}}\xi^{*}) = \omega^{i}(L_{\tilde{X}}\xi^{*}),$$

$$0 = \tilde{X} \cdot (\omega^{i}_{j}(\xi^{*})) = (L_{\tilde{X}}\omega^{i}_{j})(\xi^{*}) + \omega^{i}_{j}(L_{\tilde{X}}\xi^{*}) = \omega^{i}_{j}(L_{X}\xi^{*})$$

and

$$0 = \widetilde{X} \cdot (\omega_j(\xi^*)) = (L_{\widetilde{X}} \omega_j)(\xi^*) + \omega_j(L_{\widetilde{X}} \xi^*) = \omega_j(L_{\widetilde{X}} \xi^*).$$

On the other hand, the (n+1)(n+2)/2 1-forms $(\omega^i, \omega^i_j, \omega_j)$ are linearly independent

everywhere on P and define an absolute parallelism on P. Hence we have $L_{\tilde{x}}\xi^*=0$.

(iv) \Rightarrow (i). Let $P(u_0)$ be the set of points in P which can be joined to u_0 by an integral curve of a standard horizontal vector field. Then $\bigcup_{u_0 \in P} P(u_0) = P$. From $L_{\tilde{X}} \xi^* = 0$, $\tilde{\varphi}_t$ leaves each $P(u_0)$ invariant and hence leaves P invariant, that is, φ_t is a local conformal transformation. Hence X is an infinitesimal conformal transformation. (Q.E.D.)

THEOREM 22. Let P be a conformal structure on a manifold M of dimension n. Then

(i) The set of all infinitesimal conformal transformations of M, denoted by $\overline{c}(M)$, is a Lie algebra of dimension at most $(n+1)(n+2)/2 = \dim P$;

(ii) The subset of $\bar{c}(M)$ consisting of complete vector fields, denoted by c(M), is a subalgebra of $\bar{c}(M)$;

(iii) The group of conformal transformations of M, denoted by $\mathfrak{C}(M)$, is a Lie transformation group with Lie algebra $\mathfrak{c}(M)$;

(iv) If the conformal structure P is complete, every infinitesimal conformal transformation is complete, i.e., $c(M) = \overline{c}(M)$.

Proof. (i). Since the normal conformal connection $(\omega^i, \omega^i_j, \omega_j)$ is canonically associated with a conformal structure P, every conformal transformation, prolonged to P, leaves $(\omega^i, \omega^j_j, \omega_j)$ invariant. Let $\bar{\mathfrak{c}}(P)$ be the set of vector fields X on P prolonged from $X \in \bar{\mathfrak{c}}(M)$. Then $\bar{\mathfrak{c}}(M)$ is isomorphic with $\bar{\mathfrak{c}}(P)$ under the correspondence $X \to \tilde{X}$. Let u be an arbitrary point of P. The following lemma implies that the linear mapping $\varphi: \bar{\mathfrak{c}}(P) \to T_u(P)$ defined by $\varphi(\tilde{X}) = \tilde{X}_u$ is injective so that $\dim \bar{\mathfrak{c}}(P)$ $\leq \dim T_u(P) = (n+1)(n+2)/2$.

LEMMA. If an element \tilde{X} of $\bar{\mathfrak{c}}(P)$ vanishes at some point of P, then it vanishes identically on P.

Proof of Lemma. If $\tilde{X}_u=0$, then $\tilde{X}_{ua}=0$ for every $a \in H^2(n)$. Let U be the set of points $x=\pi(u)\in M$ such that $\tilde{X}_u=0$. Then U is closed in M. Since M is connected, it suffices to show that U is open. Assume $\tilde{X}_u=0$. Let b_t be a local 1-parameter group of local transformations generated by a standard horizontal vector field ξ^* in a neighborhood of u. Since $[\tilde{X}, \xi^*]=0$ by Proposition 21, \tilde{X} is invariant by b_t and hence $\tilde{X}_{b_t u}=0$. On the other hand, the points of the form $\pi(b_t u)$ cover a neighborhood of $x=\pi(u)$ when ξ and t vary. This proves that U is open.

(ii) is clear.

(iii) Every 1-parameter subgroup of $\mathfrak{C}(M)$ induces an infinitesimal conformal transformation which is complete on M and, conversely, every complete infinitesimal conformal transformation generates a 1-parameter subgroup of $\mathfrak{C}(M)$.

(iv) It suffices to show that every element \tilde{X} of $\bar{\mathfrak{c}}(P)$ is complete. Let u_0 be an arbitrary point of P and let $\tilde{\varphi}_t$ $(|t| < \delta)$ be a local 1-parameter group of local transformations generated by \tilde{X} . We shall prove that $\tilde{\varphi}_t(u)$ is defined for every $u \in P$ and $|t| < \delta$. Then it follows that \tilde{X} is complete. For any point u of P, there are a finite number of standard horizontal vector fields ξ_1^*, \dots, ξ_k^* and an element

 $a \in H^2(n)$ such that

$$u = (b_{t_1}^1 \circ b_{t_2}^2 \circ \cdots \circ b_{t_k}^k u_0) a,$$

where each b_t^i is the 1-parameter group of transformations of P generated by ξ_i^* . Then we define $\tilde{\varphi}_t(u)$ by

$$\tilde{\varphi}_t(u) = (b_{t_1}^1 \circ b_{t_2}^2 \circ \cdots \circ b_{t_k}^k(\tilde{\varphi}_t(u_0)))a \quad \text{for} \quad |t| < \delta.$$

From (iv) of Proposition 21, it follows that the above definition is independent of the choice of ξ_1^*, \dots, ξ_k^* . (Q.E.D.)

THEOREM 23. If the Lie algebra $\overline{\mathfrak{c}}(M)$ of infinitesimal conformal transformations of M is of dimension (n+1)(n+2)/2, then the normal conformal connection of P has vanishing curvature.

Proof. Let E be the identity matrix in co(n) and E^* the fundamental vector field on P corresponding to E. Let ξ^* and ξ'^* be the standard horizontal vector fields on P. Then we have

$$[E^*, \xi^*] = \xi^*$$
 and $[E^*, \xi'^*] = \xi'^*$.

The exterior differentiation applied to the structure equations (II) and (III) yields

$$0 = -\Sigma \Omega_k^i \wedge \omega_j^k + \Sigma \omega_k^i \wedge \Omega_j^k + \omega^i \wedge \Omega_j - \Sigma \varepsilon^{ik} \varepsilon_{jl} \Omega_k \wedge \omega^l + d\Omega_j^i,$$

$$0 = -\Sigma \Omega_k \wedge \omega_j^k + \Sigma \omega_k \wedge \Omega_j^k + d\Omega_j.$$

Hence we have

$$L_{E*}\Omega_j^{\imath} = (d \circ \iota_{E*} + \iota_{E*} \circ d)\Omega_j^{\imath} = \iota_{E*} d\Omega_j^{\imath} = 0$$

and

$$L_{E*}\Omega_{j} = (d \circ \epsilon_{E*} + \epsilon_{E*} \circ d)\Omega_{j} = \epsilon_{E*}d\Omega_{j} = \Omega_{j},$$

where L_{E^*} and ι_{E^*} denote the Lie differentiation and the interior product with respect to E^* respectively. Therefore,

$$E^* \cdot \Omega_j^i(\xi^*, \xi'^*) = (L_{E^*}\Omega_j^i)(\xi^*, \xi'^*) + \Omega_j^i([E^*, \xi^*], \xi'^*) + \Omega_j^i(\xi^*, [E^*, \xi'^*])$$

= $2\Omega_j^i(\xi^*, \xi'^*)$

and

$$E^* \cdot \Omega_j(\xi^*, \xi'^*) = (L_{E^*}\Omega_j)(\xi^*, \xi'^*) + \Omega_j([E^*, \xi^*], \xi'^*) + \Omega_j(\xi^*, [E^*, \xi'^*])$$

= $3\Omega_j(\xi^*, \xi'^*).$

On the other hand, if \tilde{X} is the infinitesimal transformation of P induced by an infinitesimal conformal transformation $X \in \bar{\mathfrak{c}}(M)$, then from

$$\begin{split} &L_{\tilde{X}}\Omega_{j}^{*} = L_{\tilde{X}}(d\omega_{j}^{*} + \Sigma\omega_{k}^{*} \wedge \omega_{j}^{*} + \omega^{*} \wedge \omega_{j} + \Sigma\varepsilon^{ik}\varepsilon_{jl}\omega_{k} \wedge \omega^{l} - \delta_{j}^{*}\Sigma\omega_{k} \wedge \omega^{k}) = 0, \\ &L_{\tilde{X}}\Omega_{j} = L_{\tilde{X}}(d\omega_{j} + \Sigma\omega_{k} \wedge \omega_{j}^{k}) = 0 \end{split}$$

and from (iv) of Proposition 21, we obtain

$$\widetilde{X} \cdot \Omega^{\imath}_{j}(\widehat{\xi}^{*}, \widehat{\xi}'^{*}) = (L_{\widetilde{X}}\Omega^{i}_{j})(\widehat{\xi}^{*}, \widehat{\xi}'^{*}) + \Omega^{\imath}_{j}([\widetilde{X}, \widehat{\xi}^{*}], \widehat{\xi}'^{*}) + \Omega^{\imath}_{j}(\widehat{\xi}^{*}, [\widetilde{X}, \widehat{\xi}'^{*}]) = 0$$

and

$$\widetilde{X} \cdot \Omega_j(\xi^*, \xi'^*) = (L_{\widetilde{X}}\Omega_j)(\xi^*, \xi'^*) + \Omega_j([\widetilde{X}, \xi^*], \xi'^*) + \Omega_j(\xi^*, [\widetilde{X}, \xi'^*]) = 0.$$

Since dim $\bar{\mathfrak{c}}(M)$ =dim P, for every point u of P, there exists an element X of $\bar{\mathfrak{c}}(M)$ such that $\tilde{X}_u = E_u^*$. We have therefore

$$2(\Omega_j^{\iota}(\xi^*,\xi'^*))_u = (E^* \cdot \Omega_j^{\iota}(\xi^*,\xi'^*))_u = (\widetilde{X} \cdot \Omega_j^{\iota}(\xi^*,\xi'^*))_u = 0$$

and

$$3(\Omega_j(\xi^*,\xi'^*))_u = (E^* \cdot \Omega_j(\xi^*,\xi'^*))_u = (\widetilde{X} \cdot \Omega_j(\xi^*,\xi'^*))_u = 0.$$

Since *u* is an arbitrary point of *P*, we have $\Omega_j^i = 0$ and $\Omega_j = 0$. (Q.E.D.)

THEOREM 24. A conformal structure P on a manifold M is flat if and only if the normal conformal connection has vanishing curvature.

Proof. Since the normal conformal connection of the conformal structure on a Möbius space has vanishing curvature, the normal conformal connection of a flat conformal structure has also vanishing curvature.

To prove the converse, let P be a conformal structure on M whose normal conformal connection $(\omega^i, \omega^i_j, \omega_j)$ has vanishing curvature. The structure equations on P reduce to the equations of Maurer-Cartan for the group K(n). It follows that, given a point u of P, there exists a diffeomorphism h of a neighborhood N' of the identity of K(n) onto a neighborhood N of u which sends $(\omega^i, \omega^i_j, \omega_j)$ into the Maurer-Cartan forms of K(n). In an obvious manner, we extend h to a diffeomorphism h: $N' \cdot H \rightarrow N \cdot H^2(n)$. Let $U' = \pi'(N')$ and $U = \pi(N)$, where π' : $K(n) \rightarrow K(n)/H$ and π : $P \rightarrow M$. Then $\pi'^{-1}(U') = N' \cdot H$ and $\pi^{-1}(U) = N \cdot H^2(n)$. By construction, h: $\pi'^{-1}(U') \rightarrow \pi^{-1}(U)$ is a bundle isomorphism. If we consider K(n) as the natural conformal connection of P into that of K(n). In a unique manner, we can extend h to a bundle isomorphism h: $P^2(U') \rightarrow P^2(U)$. We see that h^* sends the canonical form of $P^2(U)$ into that of $P^2(U')$. By Proposition 5, h is induced by a diffeomorphism of U' onto U.

COROLLARY. A conformal structure P on a manifold of dimension >3 is flat if and only if the conformal curvature tensor of Weyl vanishes.

Proof. This follows from Proposition 11 and the definition of the conformal curvature tensor of Weyl (cf. § 8). (Q.E.D.)

THEOREM 25. Let P be a complete flat conformal structure on a simply connected manifold M of dimension n. Then there is a conformal diffeomorphism of M onto a Möbius space of dimension n.

Proof. This follows from the definition of flatness and the standard continuation argument. (Q.E.D.)

§11. Conformal connections on Riemannian manifolds.

In this section M will denote always a Riemannian manifold with metric g. Let O(M) be the orthonormal frame bundle over M determined by the metric gand Γ the Riemannian connection on O(M). Let P be the conformal structure on M naturally associated with O(M) as in §8. Let U be a coordinate neighborhood in M with local coordinate system (x^1, \dots, x^n) . Let (θ^i, θ^i_j) be the canonical from on $P^2(M)$ restricted to P and σ : $U \rightarrow P^2(M)$ a local cross section and set

$$\begin{split} \psi^{i} &= \sigma^{*} \theta^{i} = \Sigma \prod_{k=0}^{i} dx^{k}, \\ \psi^{i}_{j} &= \sigma^{*} \theta^{i}_{j} = \Sigma \prod_{k=0}^{i} dx^{k}. \end{split}$$

PROPOSITION 26. There exists a cross section σ : $U \rightarrow P^2(M)$ such that

$$\Pi_{j}^{i} = \delta_{j}^{i},$$
$$\Pi_{jk}^{i} = \left\{ \begin{array}{c} i \\ j k \end{array} \right\},$$

where $\{{}^{i}_{jk}\}$ denote the Christoffel's symbols of the Riemannian connection Γ .

Proof. This is an immediate consequence of Proposition 18. (Q.E.D.)

PROPOSITION 27. Let $(\omega^i, \omega^i_j, \omega_j)$ be the normal conformal connection associated with P and σ : $U \rightarrow P^2(M)$ the cross section given in Proposition 26. If we set for such a σ

$$\phi_{j} = \sigma^{*} \omega_{j} = \Sigma \prod_{k \neq j} dx^{k},$$

then

(22)
$$\Pi_{jk} = -\frac{1}{n-2} R_{jk} + \frac{R}{2(n-1)(n-2)} g_{jk},$$

where R_{jk} and R denote the components of the Ricci tensor and the scalar curvature of g respectively.

Proof. From Proposition 26 and the equation (21) we have

$$\omega^{i} = \Sigma b_{k}^{i} dx^{k}$$
$$\omega_{j}^{i} = \Sigma b_{k}^{i} da_{j}^{k} - \Sigma g^{il} g_{jk} a_{l} \omega^{k} + a_{j} \omega^{i} + \delta_{j}^{i} \Sigma a_{k} \omega^{k} + \Sigma b_{k}^{i} \begin{bmatrix} k \\ a l \end{bmatrix} a_{j}^{i} dx^{a}.$$

Set

$$\begin{split} \bar{\omega}_{j} = da_{j} - \Sigma a_{k} \omega_{j}^{k} + a_{j} \Sigma a_{k} \omega^{k} + \Sigma a_{j}^{k} \left(-\frac{1}{n-2} R_{kl} + \frac{R}{2(n-1)(n-2)} g_{kl} \right) dx^{l} \\ - \frac{1}{2} \Sigma g^{ab} g_{jk} a_{a} a_{b} \omega^{k}. \end{split}$$

Then

$$\begin{split} \psi^{i} &= \sigma^{*} \omega^{i} = dx^{i}, \\ \psi^{i}_{j} &= \sigma^{*} \omega^{i}_{j} = \Sigma \begin{bmatrix} i \\ kj \end{bmatrix} dx^{k}, \\ \psi_{j} &= \sigma^{*} \overline{\omega}_{j} = \Sigma \left(-\frac{1}{n-2} R_{kj} + \frac{R}{2(n-1)(n-2)} g_{kj} \right) dx^{k}. \end{split}$$

Since the normal conformal connection is uniquely associated with P, it suffices to prove that $(\omega^i, \omega^i_j, \bar{\omega}_j)$ is the normal conformal connection. Let Ω^i_j be the curvature form of the connection $(\omega^i, \omega^i_j, \bar{\omega}_j)$. From the structure equation (II) we have

$$\sigma^*\Omega^i_j = \frac{1}{2} \sum \left(R^i_{jkl} - \frac{1}{n-2} (\delta^i_k R_{jl} - \delta^i_l R_{jk} + \sum g^{ia} g_{jl} R_{ak} - \sum g^{ia} g_{jk} R_{al}) \right. \\ \left. + \frac{R}{(n-1)(n-2)} (\delta^i_k g_{jl} - \delta^i_l g_{jk}) \right) dx^k \wedge dx^l,$$

where R_{jkl}^{i} denote the components of the curvature tensor of the Riemannian connection Γ . If we set

$$\Omega_{j}^{i} = \frac{1}{2} \Sigma K_{jkl}^{i} \omega^{k} \wedge \omega^{l}$$

and

(23)
$$C_{jkl}^{i} = R_{jkl}^{i} - \frac{1}{n-2} (\delta_{k}^{i} R_{jl} - \delta_{l}^{i} R_{jk} + \Sigma g^{ia} g_{jl} R_{ak} - \Sigma g^{ia} g_{jk} R_{al}) - \frac{R}{(n-1)(n-2)} (\delta_{k}^{i} g_{jl} - \delta_{l}^{i} g_{jk}),$$

then

$$\sigma K^{i}_{jkl} = C^{i}_{jkl}$$

We can easily see that $\Sigma C_{ikl}^{i}=0$ and $\Sigma C_{jil}^{i}=0$. Hence $\Sigma K_{ikl}^{i}=0$ and $\Sigma K_{jil}^{i}=0$. This proves that $(\omega^{i}, \omega_{j}^{i}, \overline{\omega}_{j})$ is the normal conformal connection. (Q.E.D.)

The C_{jkl}^{i} are the components of the conformal curvature tensor of Weyl of the Riemannian manifold M.

223

PROPOSITION 28. If dim M=3, then $\Omega_j^i=0$, that is, the conformal curvature tensor of Weyl vanishes identically.

Proof. Let C_{ijkl}^{i} be the components of the conformal curvature tensor of Weyl and set $C_{ijkl} = \Sigma g_{ia} C^{a}{}_{jkl}$. Then

$$C_{ijkl} = -C_{jikl} = -C_{ijlk}$$
 and $C_{ijkl} = C_{klij}$.

Let 0 be an arbitrary point of M. By choosing a coordinate system such that $g_{ij} = \delta_{ij}$ at 0, together with (13), we have $\Sigma C_{ijil} = 0$ at 0. Hence

$$C_{2121}+C_{3131}=0,$$
 $C_{1212}+C_{3232}=0,$ $C_{1313}+C_{2323}=0,$
 $C_{3132}=0,$ $C_{2123}=0$ and $C_{1213}=0$ at 0.

This implies $C_{ijkl}=0$ at 0. Since C_{ijkl} are components of a tensor field and 0 is an arbitrary point of M, $C_{ijkl}=0$ at every point of M. (Q.E.D.)

THEOREM 29. The conformal structure P on a Riemannian manifold of dimension 3 is flat if and only if $\Omega_j=0$.

Proof. This is an immediate consequence of Theorem 24 and Proposition 28. (Q.E.D.)

Let $(\omega^i, \omega^i_j, \omega_j)$ be the normal conformal connection associated with *P*. Let σ be the local cross section given in Proposition 26 and set $\sigma^*\Omega_j = (1/2)\Sigma C_{jkl}dx^k \wedge dx^l$. From the structure equation (III) and Proposition 27 we have

(24)
$$C_{jkl} = \frac{1}{n-2} \left(R_{jk;l} - R_{jl;k} \right) - \frac{1}{2(n-1)(n-2)} \left(g_{jk} \frac{\partial R}{\partial x^l} - g_{jl} \frac{\partial R}{\partial x^k} \right),$$

where $R_{jk;l}$ denote the components of the covariant derivative of the Ricci tensor with respect to the Riemannian connection Γ .

BIBLIOGRAPHY

- [1] CARTAN, E., Les espaces à connexion conforme. Ann. Soc. Polon. Math. 2 (1923), 171-221.
- [2] GUILLEMIN, V., The integrability problem for G-structures. Trans. A.M.S. 116 (1965), 544-560.
- [3] GUILLEMIN, V., AND S. STERNBERG, An algebraic model of transitive differential geometry. Bull. A.M.S. 70 (1964), 16-47.
- [4] KOBAYASHI, S., Canonical forms on frame bundles of higher order contact. Proc. Symposia in Pure Math., vol. 3, Differential geometry. A. M. S. (1961), 186-193.
- [5] KOBAYASHI, S., AND K. NOMIZU, Foundations of differential geometry, vol. I. Interscience Tracts, No. 15 (1963).

- [6] STERNBERG, S., Lectures on Differential geometry. Prentice-Hall (1964).
- [7] TANAKA, N., Conformal connections and conformal transformations. Trans. A.M.S. 92 (1959), 168-190.
- [8] YANO, K., Sur la théorie des espaces à connexion conforme. J. Fac. Sci. Imp. Univ. Tokyo, Sect. 1, 4 (1939), 1–59.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.