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APPLICATION OF THE THEORY OF MARKOV

PROCESSES TO COMMINUTION

I. THE CASE OF DISCRETE TIME PARAMETER

BY MOTOO HORI AND MINORU UCHIDΛ

1. Introduction.

The purpose of the present work is to study the size distribution of solid
particles obtained on grinding from the standpoint of the theory of stochastic
processes. The term comminution or grinding applies to any industrial operation
for the production of fine powders by mechanical breaking. Most comminuting
machines such as ball, tube, and rod mills, however, subject charged masses to a
continued repetition of breakage mechanisms. For this reason, we are concerned
only with the process of repeated fracture.

The problem of the distribution function for the dimensions of ground materials
has been discussed in several mathematical papers. Kolmogorov [12], Halmos [11],
Epstein [8], and Renyi [15] showed, by application of the central limit theorem to
a probabilistic model, that the distribution function approaches the logarithmic-
normal form asymptotically. Unfortunately, their fundamental postulate that the
probability of fracture does not depend on particle size is too restrictive to serve as
a realistic representation of actual grinding.

Under more general conditions, Filippov [10] deduced a limit distribution different
from that of logarithmic-normal type, regarding the comminution process as a kind
of purely discontinuous Markov process with a continuous time parameter. Although
his treatment is relatively inaccessible and based on the introduction of not a few
complicated functions, it appears to be essentially the stochastic analogue of the
deterministic formulation developed by Bass [2].

We shall construct a new stochastic-process model for comminution, which
includes previous theories as special cases and yields a simpler interpretation of the
phenomenon. Qur approach leads to fragment size distributions that are asymptot-
ically logarithmic-normal, even when breaking probabilities of solid pieces vary
considerably with their volumes. It is mathematically interesting that this result
gives an example in which the central limit theorem holds for the sum of mutually
dependent random variables.

In the present paper (I), we deal mainly with the case of a discrete time
parameter, after providing a brief explanation of the stochastic model proposed.

Received October 24, 1966.

174



APPLICATION OF THEORY OF MARKOV PROCESSES TO COMMINUTION 175

The detailed investigation of a continuous parameter process will be presented in
the subsequent paper of this series (II).

2. The proposed model.

Consider a collection of particles exposed to repetitive fracture. Each particle
breaks with some fracture probability and then splits into a number of fragments.
This event is repeated at random intervals. In order to describe the sequence of
these events, we introduce the following random variables: At the initial time
mark one point in a certain particle. Let the random variable Xt denote the fineness
of the fragment that contains the marked point at an arbitrary time /.

The fineness of a granular material means the logarithm of the inverse ratio
of its size to a standard dimension. Here the particle size can be reasonably defined
by the volume rather than by the diameter, since the total volume of particles
remains unchanged during breakage. For an ensemble starting with solids originally
of the same dimension, it is convenient to adopt this initial size as a reference
standard. If one replaces the size of broken pieces by their fineness, logarithmic-
normal distributions are transformed into normal distributions.

The stochastic process {Xt, t^O} thus obtained is obviously a purely discontinuous
process, in the sense that the sample functions jump discontinuously at the moment
of fracture. The time parameter may be taken to be the set of nonnegative integers
or the set of nonnegative real numbers, according as the applied forces are discrete
or continuous in time. Hereafter we shall confine ourselves to the discrete param-
eter process, which can be thought of as composed of discrete steps.

We further assume the process {Xt, t=0,1, •••} to possess the Markov property.
Intuitively, this hypothesis implies that the probability law governing the future
development of the process is completely determined by a knowledge about the
present value of particle fineness, regardless of the manner in which the present
state has emerged from the past. In fact, experimental evidence indicates that the
probability that a brittle solid will break at a particular instant depends solely on
the stress at that instant and is independent of the previous loading history [6].

A discrete parameter Markov process may be described in terms of the (one-
step) transition probability function F(x, ξ, f), representing the conditional probability
of Xt^kx under the assumption that Xt-i=ξ. Especially λx(t)=l—F(xy xf t) expresses
the fracture probability of the marked particle of fineness x at time t For an
integer-valued Markov chain, it is usual to define the transition probability f%j(f) as
the conditional probability that Xt=j, given that Xt-ι—i. The so-called breakage
matrix [5] corresponds to the matrix of transition probabilities (Λ/O).

We now proceed to show what relation exists between the probability distribu-
tion of the random variable Xt and the observed distribution of the fragment
fineness. The distribution function of the random variable Xt

cz) associated with a
fixed point Z will be designated by PiZ\xy t); namely, Pcz\x, f)=P{Xt™^x}. Let
us introduce a new random variable Yt

cz)(x) which assumes the value 1 or 0 ac-
cording to whether Xt

(zx^x or Xt

cz^>x. Then the mathematical expectation of
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Ytiz\x) becomes E{Yt'
z\x)}=P^z\x}t).

Needless to say, real particle fineness distributions are in general subject to
to random fluctuations. The volume fraction of fragments up to fineness x after
time / may be represented by the random variable

(2.1) M(x,t)=

the integration extending over the volume of all particles V. Hence we get

(2. 2) E{M(x, t)} = ~ψ\ P<z\x, t)dv(Z)=P(x, t).

In words, the expectation of M(x, t) is identical with the volume average of Pcz\x, f),
which we shall rewrite simply as P(x, t).

In many practical applications it is of primary importance to examine the ideal
case where there are N uniform particles at £=0. Let Mk(x, t) be the random
variable Mix, t) defined with respect to the initial particle labeled k, and suppose
that Mi(x, t), M2(x, t), , MN(X, t) have a common distribution with finite expectation
P(x, t). Their arithmetic mean

(2. 3) MN*(x, t)= - L Σ Mk(x, t)

stands for the proportion by volume of fragments not finer than x to the whole
assembly of particles.

If the random variables Mk(x, t\ k=l, 2, •••, N, are mutually independent, the
strong law of large numbers holds, so that

(2. 4) P{lim MN*(x, t)=P(x, t)}=l.
iV->oo

The law of large numbers in the sense of convergence with probability one is not
necessarily valid for identically distributed but dependent random variables. If the
common expectation P(x, t) exists, however, the dependent sequence {MN(X, t)} obeys
the weak law of large numbers, such that for every ε>0

(2. 5) lim P{\MN*(x, t)-P(x,
iV-»cx

3. Markov processes with independent increments.

The stochastic process introduced above is a discrete parameter Markov process
{Xt} with distribution function P(x, t). In addition to the random variables Xti we
define a sequence of random variables {Zt} in such a way that

(3.1) ZO=XQ'7 Zt~Xt—Xt-iy t—L, 2, ••*.

The random variable Zt refers to the fineness change during the tth step of the
process. Therefore,

(3.2) Xt^
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is the sum of t+1 jointly distributed random variables.
We first consider the simplest case that has been treated by Kolmogorov, Halmos,

Epstein, and Renyi. According to Epstein [8], their basic assumptions may be stated
as follows: the probability of fracture of any piece is independent of the size of the
piece and of the presence of other particles; and the fraction by volume of material
having dimension less than ky(0^k^l) arising from the breakage of a unit volume
of size y is independent of y itself.

With our notation the above two postulates reduce to

(3. 3) F(x, ξ, t)=G(x~ξ, f),

which asserts that the transition probability function F(x, f, t) depends on x and ζ
only through the difference x—ζ. A Markov process satisfying (3. 3) is said to be
spatially homogeneous or to have independent increments. In this case, the incre-
ments Zt are mutually independent random variables with distribution functions

(3. 4) P{Zt^x}=G(x, t\ G(x, 0)=P(x, 0).

The process {Xt} is thus a sequence of the consecutive sums of independent random
variables.

Now one can apply the central limit theorem to prove that the random variable
Xt is asymptotically normally distributed. Suppose that the independent random
variables Zs, 5=0,1, •••,/, with distribution functions G(x, s) have finite means μs

and variances σs

2, and put

(3. 5) Mt=E{Xt} = £μs, S^Varf-Xi} = Σ > Λ
s=0 s-0

The central limit theorem gives conditions under which the distribution function
for the reduced variable (Xt—Mt)ISt converges as t-*oo to the standardized normal
distribution function

(3.6) φ ( α . ) = - ^ y * e-*'*dz.

In order that

(3. 7) lim p\

and that

(3. 8) lim m a x - ^ = 0 ,
ί-»oo O^S^ί St

it is necessary and sufficient that Lindeberg's condition

(3.9) l i m4τΣί x2dG(x,s)=0

be satisfied for every ε>0. In particular, the sequence {Zt} obeys the normal con-
vergence law (3. 7), provided that
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(3.10) lira ̂ ^ Σ E{ \Z.-μ.\»»} =0

for some fixed <5>0. (Ljapunov's sufficient condition)
Moreover, for a sequence of identically distributed independent random variables,

the central limit theorem holds without additional requirements. When the process
{Xt} with Zo=O is homogeneous in both space and time, that is, when F(x, f, t) is
a function of x—ξ alone, the random variables Zt have a common distribution with
mean μ and variance <τ2, so that

It should be noted that this result corresponds to the special case where the prob-
ability of fracture is constant irrespective of the number of steps that have occurred
prior to the given step.

4. Time-homogeneous Markov chains in which direct transitions are possible
only to neighhoring states.

In the following we shall investigate the limiting behavior of discrete parameter
Markov processes that are not spatially homogeneous. For these processes Lindeberg's
condition (3. 9) is neither necessary nor sufficient, because the random variable Xt

can no longer be conceived of as the sum of mutually independent random variables.
Nevertheless, it will be verified that under appropriate conditions the Markov process
{Xt} with dependent increments actually satisfies the central limit theorem (3. 7).

For simplicity we shall restrict our attention to the Markov chain with stationary
transition probabilities, whose state space is the set of nonnegative integers 0,1, 2,
•••. The one-step transition probability f%3 from state i to state j may be written
in the form

(4.1)

0 for

1-λi for

λψii for

where O ^ ^ ^ l , O ^ μ ^ l , ΣΓ-<+iiuίj=l As physical quantities h and μtj represent
the fracture probability of a particle of fineness i and the fineness distribution of
its fragments, respectively.

Kolmogorov's hypothesis discussed in the preceding section states that λt is a
constant independent of i and μi3 depends only on j—i; in symbols,

(4. 2) λi=λ, μtj = vj-t.

On the other hand, Filippov [10] assumed that λt decreases exponentially with increas-
ing i; more precisely,

(4.3) λt=te-at, fk,=vj-i.
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Here λ and a are positive constants. It was already mentioned that his model does
not generate asymptotically normal distributions.

We are concerned with the limiting behavior of Xt under the condition that λt

varies as a power function of i

(4.4) ί

where λ, h> and b are positive constants. In this section it is further supposed that

1 if j=i+l,
(4.5) μ i j j ι \

0 otherwise.

In other words, the system is permitted to change only through transitions from
states to their immediate neighbors.

Such a process {Xt} is constructed with reference to the following experimental
setup: At t==0 let there be merely particles of the same dimension y0 and put
X 0 =0. Assume that each particle produces K identical fragments upon splitting.
Define the fineness of a broken piece of size y as \ogκ(yύjy). Then the sample
function of Xt is increased by one through a single breakage. As the process con-
tinues, we get a succession of transitions 0—>1—>2—»•••. Consequently, all the particles
that have undergone exactly i splittings are in the f th state.

It is convenient to introduce a new sequence {71}, whose random variable T%

indicates the number of steps required for the process to visit state i. Denoting by
Sjyj=O} 1, •••, i—1, the sojourn times in state j , we have

(4.6) Γ ^ S o + S i + - +St-i.

In contrast to the original variable Xt, T% is the sum of mutually independent
random variables. The probability distributions of Xt and T% are related by the
obvious identity

(4.7)

LEMMA 1. Suppose that

(4.8)

where A, a, B, β are nonnegative constants such that B±FO, a>β, and F(x) is a
proper and continuous distribution function. Then it follows from (4. 7) that

(4.9) lim

with

(4.10)
β, δ=(l-α+j8)/α.
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Proof. Let £^oo and i—>oo in such a way that

(4.11) — g p - ->*.

Since iβlt=o(ialty+0, we find

(4.12)

=Cf-Dtδ{x+o(l)}.

Therefore the probability functions on both sides of (4. 7) lead to

(4.13)

P{ T%m

which complete the proof. This argument is due to Feller [9], who studied the
case of a=2β=l.

Next we shall show that T% possesses a nearly normal distribution given by

From the definition of Sj it is evident that

(4.15)

Accordingly we obtain

ι-i 1 _ χ

(4.16) Var{Γi}= Σ - 1 / -

as ί—>oo. This means that 71 satisfies Ljapunov's sufficient condition

(4.17) lim 1

It can be easily seen that X% is also asymptotically normally distributed. Com-
bination of Lemma 1 and (4.14) yields

<4 18) 2 222
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Taking account of Φ(x)=l—Φ(~x), we have the following theorem.

THEOREM 1. Under the assumptions (4. 4) and (4. 5),

holds for any real number x.

Notice that in (4. 19) we have the central limit theorem applied to the sum of
mutually dependent random variables Zs.

5. General time-homogeneous Markov chains.

In this section we consider more general time-homogeneous Markov chains in
which direct transitions from a state i are possible to all succeeding states j>L
Instead of the condition (4. 5), we shall assume

j % whenever
(5.1) μtj \

[ 0 otherwise,
where the mean v and the variance p2 of the distribution {vk} exist and

(5.2) Σ # 4 δ ] ^ < o o ,
fc = l

the symbol [r] referring to the smallest integer not less than r. The restriction
(4. 4) on λ%y together with the initial condition X0=0, will be imposed as in §4.

Let the random variables N(t), Um and Xn* represent the number of breakages
up to time t, the fineness change during the mth fracture, and the fineness after
the nth fracture, respectively. Then we have the relations

(5.3) Xt=

(5.4)

Since Um are mutually independent and have the same distribution as {vk}, Xt is
the sum of independent identically distributed random variables, but their number
N(t) is a random variable depending on Um.

For the present case the random variable T% must be interpreted as the time
taken to reach or pass the zth state, so that

(5.5)

may hold. If we define a random variable M(ϊ) by the number of breakages
required for attaining to or jumping over state i, furthermore, a similar identity
can be derived as follows:

(5.6)

Denoting by Rm the time difference between the (m—l)st and mth fracture,
we obtain
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(5.7) ϊ ; = 2

(5.8) Tn* =

where Tw* stands for the time elapsed until the nth breakage takes place. In the
particular case when the condition (4. 5) is satisfied, (5. 7) reduces to (4. 6), because
the sojourn time Sm_i equals Rm for every positive integer m.

It is worth while noting that the nonnegative integer-valued random variable
Λf(ι) is independent of all the components Ru R2, •••. The random variables Rm, m
= 1,2, •••, although not identically distributed, are mutually independent. Hence 71
is the sum of independent random variables Rm, whose number is itself a random
variable independent of the Rm. We shall verify that the probability distribution
associated with such a sequence {71} is nearly normal, employing a useful theorem
due to Dobrusin [7].

THEOREM 2. Let ξ{ή) be a random variable such that

where F(x) is a proper distribution function, A^O, B^O, and a>β, and let r/t be a
random variable independent of ξ(n) such that

(5.10) l i m P Vi~Cir

Diδ -

where G(x) is a proper distribution function, C^O, D^O, and γ>δ>0. Suppose that

(5. 11) {cc—\)γ-\-δ=βγ,

and set

(5. 12) H(x)=P{BOξ+aACa~ιDη^x},

in which ξ and η are mutually independent random variables with distribution
functions F{x) and G(x), respectively. Then

(5.13) ^rl^if"*
It is now necessary to investigate the limiting behavior of Tw* and M(i). First

we shall show that Tn* satisfies the condition (5. 9) of Theorem 2. If the sequence
of independent random variables {Rm} obey the central limit theorem, their con-
secutive sum Tn* would be asymptotically normally distributed. Therefore, we prove
that Rm really satisfy Ljapunov's sufficient condition

(5.14) l i m Σ E{[Rm-E{Rm}Y/[Var{Tn*}]2=0.
n-*oo m = 1

The moments of Rm may be calculated from those of Sj. As stated in the
foregoing section, the sojourn time in the j th state S3 is characterized by the prob-
ability (4.15). Under the hypothesis (4. 4), the first four moments of Sj become
for y—>oo
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(5.15)

The rth moment of Rm is clearly given by

(5.16) E{Rm

r}= Σ P{X»-i*=j}E{Sjr}.
j=m—ϊ

Considering that the assumption (5. 2) ensures the existence of E{(Xn*)b}, E{(Xn*)2b},
E{(Xn*γη, and E{(Xn*)4»}, substitution of (5.15) into (5.16) yields

E{Rm}=

(5.17)

as m—>oo.
To estimate E{(Xn*)rh\ for r = l , 2, 3, 4, we recall that Xn* is the sum of a

constant number of mutually independent random variables with the common distribu-
tion {vie}. In view of the strong law of large numbers, Xn*/(vή) or (Xn*γb/(vn)rb

should converge to unity with probability one as n tends to infinity. Making use of
the following lemma, we can readily observe that for large n

(5.18) E{(Xn*)rb} = W r H Φ r 6 )

LEMMΛ 2. Let {ζn} be an infinite sequence of random variables and {wn} a
sequence of real numbers tending to infinity. It is assumed that

( 5 . 1 9 ) - ^ - - > 1 in probability
Wn

as n-^oo. Then

(5.20) l i
n*o



184 MOTOO HORI AND MINORU UCHIDA

provided that ζn has a finite expectation E{ζn}.

Proof. One can expand the characteristic function φn(θ) of ζn as

φnφ)=l+iθE{ζn}+iθψnΨ),
(5. 21)

\ιmψnφ)=Q

for any θ. Since the characteristic function φ'n{θ) of ζnlwn is equal to φn(θlu)n),

(5. 22) φ m

On the other hand, (5.19) implies

(5. 23) Hm φ&θ)=ei' ζ

whence (5. 20) follows immediately. This lemma does not mean that (5. 20) is true
for sequences {ζn} without expectations [9].

From (5.17) and (5.18), it turns out that as ra->cx>

(5. 24)

E{Rm*}=

The variance and the fourth central moment of Rm are

(5. 25)

E{[Rm-E{Rm)Y} =

Consequently, we get as n—>co

n

(5. 26) Var{ Tn*}=Σ Var{Rm} =

Σ E{[Rm-E{Rm}Y}=
m = l
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which confirm the validity of (5.14). We have thus proved

THEOREM 3. If (4. 4), (5.1), and (5. 2) hold, Γw* is asymptotically normally
distributed; that is,

(5. 27) lim P
n-* oo

for every fixed x.

Next we shall consider the limiting distribution of M(i). The ordinary central
limit theorem for equi-distributed components Um asserts that

(5. 28) lim P

Then it follows from (5. 6) that the conditions of Lemma 1 are satisfied by M(i).
Hence we find

THEOREM 4. Under the hypothesis (5. 1), M(i) has an approximately normal
distribution as indicated in (5. 29).

The above two theorems concerning the asymptotic normality of Tw* and M(ϊ)
permit us to apply Dobrusin's theorem to 7\. In this case we have

(5.30)

/2, β=b+lβ;

=v~\ r = l ;

D=v-*'2p, 5=1/2;

F(x)=G(x)=Φ(x),

so that (5.11) becomes identically

(5.31) (α-l)r+<5=/3 r=6+l/2.

According to Theorem 2, substitution of (5. 30) into (5.13) gives

l i m

(5. 32)

- P
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Since ξ and η are mutually independent random variables with the standardized
normal distribution function Φ(x), the following theorem may be easily obtained.

THEOREM 5. The assumptions (4. 4), (5.1), and (5. 2) lead to an asymptotically
normal distribution such that

ί
Combining (5. 5) and (5. 33) with Lemma 1, we have finally

THEOREM 6. Under the conditions of Theorem 5, Xt is asymptotically normally
distributed in the sense that

for every fixed x.

The conclusion of this theorem points out that the process {Xt} obeys the
central limit theorem, despite the fact that Xt is the sum of the dependent random
variables Zs.

6. Concluding remarks.

In Theorem 5 we have presented an illustrative example of the central limit
theorem for a random number of mutually independent but not necessarily iden-
tically distributed random variables. The asymptotic distribution of the sum of a
random number of independent random variables with a common distribution was
first determined by Robins [18]. It should be mentioned that our result (5. 33) for
b=0 is substantially equivalent to the theorem of Robins.

The central limit theorem of this type has recently been extended by Anscombe
[1], Renyi [16, 17], Mogyorόdi [13, 14], Billingsley [3], and Blum, Hanson, and
Rosenblatt [4] to cover more general cases. Their papers were devoted to the study
of sequences of random variables whose expectations are zero, while they made no
assumption about the dependence of the number of the random variables on each
component.

We refer to the following theorem due to Mogyorόdi [13].

THEOREM 7. Suppose that {ζj (z'=l, 2, •••) is a sequence of independent random
variables and there exists a sequence of positive numbers {Bi} tending to infinity
such that ζj/Bi (j=l, 2, •••, ϊ) aye infinitesimal and

(6.1) lim P
I —>oo

for any real number x. Let {M(ϊ)} be a sequence of random variables taking positive
integer values and {w(ϊ)} a sequence of positive integers tending to infinity such that
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( 6 . 2 ) — — >1 in probability
W[t)

as i—>oo. In order that

(6. 3) lim P J Σ tM«)IBwci>^x\ =Φ(x),

it is necessary and sufficient that

(6. 4) lim lim s u p — — ^ — = 1 .

If we put in (5. 7)

(6.5)

then 7}—E{T%], τι{M(ϊ)}, and τ2{M(z)} are random variables with zero mean. Mo-
gyorόdi's central limit theorem gives a necessary and sufficient condition for the
asymptotic normality of τi{M(z)}. Moreover, we have proved that in the present
case τ2{M(i)} and T% are also asymptotically normally distributed.

In conclusion the authors should like to thank Prof. K. Kunisawa and Dr. H.
Hatori for their continued interest and helpful suggestions throughout the progress
of this work.

REFERENCES

[ 1 ] ΛNSCOMBE, F. J., Large-sample theory of sequential estimation. Proc. Cambridge
Philos. Soc. 48 (1952), 600-607.

[ 2 ] BASS, L., Zur Theoπe der Mahlvorgange. Z. Angew. Math. Phys. 5 (1954), 283-
292.

[ 3 ] BILLINGSLEY, P., Limit theorems for randomly selected partial sums. Ann. Math.
Statist. 33 (1962), 85-92.

[ 4 ] BLUM, J. R., D. L. HANSON, AND J. I. ROSENBLATT, On the central limit theorem

for the sum of a random number of independent random variables. Z. Wahr-
scheinlichkeitstheorie und Verw. Gebiete 1 (1963), 389-393.

[ 5 ] BROADBENT, S. R., AND T. G. CALLCOTT, A matrix analysis of processes involving

particle assemblies. Phil. Trans. Roy. Soc. London Ser. A 249 (1956), 99-123.
[ 6 ] COLEMAN, B. D., Statistics and time dependence of mechanical breakdown in

fibers. J. Appl. Phys. 29 (1958), 968-983.
[ 7 ] DOBRUSIN, R. L., Lemma o predele sloznoϊ slucaϊnoϊ funkcii. Uspehi Mat. Nauk

10 (1955), 157-159.
[ 8 ] EPSTEIN, B., The mathematical description of certain breakage mechanisms lead-

ing to the logarithmico-normal distribution. J. Franklin Inst. 244 (1947), 471-
477.

[ 9 ] FELLER, W., Fluctuation theory of recurrent events. Trans. Amer. Math. Soc.
67 (1949), 98-119.



188 MOTOO HORI AND MINORU UCHIDA

[10] FILIPPOV, A. F., On the distribution of the sizes of particles which undergo
splitting. Teor. Verojatnost. i Primenen. 6 (1961), 299-318. (In Russian);
translated as Theor. Prob. Appl. 6 (1961), 275-294.

[11] HALMOS, P. R., Random alms. Ann. Math. Statist. 15 (1944), 182-189.
[12] KOLMOGOROFF, A. N., Uber das logarithmisch normale Verteilungsgesetz der Dίmen-

sionen der Teilchen bei Zerstϋckelung. Dokl. Akad. Nauk SSSR 31 (1941), 99-
101.

[13] MOGYORODI, J., On limiting distributions for sums of a random number of in-
dependent random variables. Magyar Tud. Akad. Mat. Kutatό Int. Kozl. 6
(1961), 365-371.

[14] MOGYORODI, J., A central limit theorem for the sum of a random number of
independent random variables. Magyar Tud. Akad. Mat. Kutatό Int. Kozl. 7
(1962), 409-424.

[15] RENYI, A., On the mathematical theory of comminution. Epίtoanyag 2 (1950),
177-183. (In Hungarian)

[16] RENYI, A., On the asymptotic distribution of the sum of a random number of
independent random variables. Acta Math. Acad. Sci. Hungar. 8 (1957), 193-
199.

[17] RENYI, A., On the central limit theorem for the sum of a random number of
independent random variables. Acta Math. Acad. Sci. Hungar. 11 (1960), 97-
102.

[18] ROBINS, H., The asymptotic distribution of the sum of a random number of
random variables. Bull. Amer. Math. Soc. 54 (1948), 1151-1161.

Note added in proof. Needless to say, Theorem 5 holds only for b>0, but

applies to the case of &=0 with minor modification. Letting b=Q in (5. 33), we

obtain

On the other hand, Robins' theorem shows that the correct result is

l i ~ λ V l(
In this case the factor 1—λ appears in variance terms, because

. ί (1-Λ)/Λ2^-2 if λj=χ9

Var{S, } =
V ( j*ψ*+oU**) if λj=λ(h+j)-K

OSAKA UNIVERSITY AND

ONODA CEMENT CO., LTD.




