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RELATIVE EFFICIENCY OF THE WALD SPRT AND
THE CHERNOFF INFORMATION NUMBER

By MINORU SAKAGUCHI

SuMMARY: Relative efficiencies measured in terms of ratio of ASN to fixed
sample size of the Wald SPRT to the best competing fixed sample procedure with
fixed error probabilities are given for the exponential family of densities fy(x). The
limiting relative efficiency when the error probabilities approach zero in a particular
manner is computed, and it is shown that this value is +oo at §=0,,, some parame-
ter value determined by the two hypothetical densities (Section 1). In Section 2
we show that the parameter value 6, is closely connected with the Chernoff infor-
mation number discriminating between the two densities.

§1. Relative efficiency of the Wald SPRT for the exponential family of
densities.

Let us consider the classical problem of testing H,: f(x)=f,(x) versus H;: f(x)
=fi(x) when X is distributed with the generalized pdf f(x). The test is to have
the specified probabilities of error, a, (the probability of rejecting H, when H, is
true) and a; (the probability of accepting H, when H; is true).

Writing the logarithm of likelihood ratio as

X fi(xy) y fl(-%'J) _
logJUI fO(xJ) ng fﬂ(xj) - ;

the likelihood-ratio test accepts Hi(Hy), if 271 Z,>(=)k. If N is not very small

2.1 Z, will be approximately normally distributed with mean NE(2) and variance

No*(z), under any distribution with density f(x). Thus if a sample of fixed size

is to be used to discriminate between two simple hypotheses H, and H;, then the

condition that the test is to have the specified error probabilities requires

(Yo 1o o

where

IG:1—-0)= Sf,(x) log ff’(()) dv(xr) (@=0,1)

is the Kullback-Leibler information number [4] and
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o

O(u)= S j% e 12y,

With @(4,)=a and eliminating & we find
a. D N (Rag0(2| Ho) 420y 0 (2| HL) P T2 = (g + A0 )26 T2
where J=1(0:1)4+7(1:0) and

Aay0(2| Ho)+Aay0 (2| H1)
/2&0 —'— /2:1'1 )

Now, if we use the Wald sequential probability ratio test (SPRT) with the
strength (ao, 1), (i.e., Pr. {Accept H, 4|H,} =a;, i=0,1), the Wald approximations
‘“of neglecting excess” yields the operating characteristic (OC) function and average
sample number (ASN) as follows:

1.2) G=

(1. 3) L(H)=Pr {Accept Hy|H}= %,
: . L(H)log B+(1—L(H))log A
(1. 4) Em|H)= B

under any hypothesis H, where A=(1—a)/ay, B=a;/(1—ay) and £ is the unique
non-zero value satisfying

F(X)\"
2| (F0)
So(X)
Let us compute the relative efficiency of the Wald SPRT for the exponential
family of pdf’s (relative to the dominating measure v)

H]=1 (Wald [6]).

So(x)=e""~"® <Se"”dv(w) = e“’“”).

Existence of the-moment generating function implies existence of all moments. In
particular we have Eo(X)=w’'(f), Var, (X)=w'’(f). For any parameter values 6,0,
with 6,<6; and 6 in the domain of definition, we find

I1(0::0,-9)=Ey,[log (fo,(X)/ fo,_y(XN]=(i—01-)@"(0:) — (@(0:) — @(01-0)),
JOo, 0:)=1(0y: 0:)+1(0:: 60)=(01—00) (@' (1) — ' (0o)),
o*(Z | H;)=Varo, [1og (f0,(X)/ fa,(X)]=(01—00)*0"' (05),
E(Z|H)=Esllog (fo,(X)/F3,(X))]=(01—00)0’ (0) — («(01) — & (0u)),

and

Ah(ﬂ)_l
L(ﬁ)EPr {ACCCpt H,: 0=00|0} = —W

where #4(0) is, for each 6, the unique non-zero value satisfying
1.5 (04 (01— 00)(0)) — w(8) = (@(61) — @ (00)) 1(0).
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Substituting these expressions into (1. 1)~(1. 4), the relative efficiency (measured in
terms of ratio of ASN to fixed sample size) of the Wald SPRT to the best competing
fixed sample procedure with fixed error probabilities ay, a; is given by

Ey(n)
N

. L(0)log B+(1—L(#)) log A (0'(01) — ' (60))°

T (01—00)0" () — (w(01) — (b)) .(xuo\/w,/(eo)+2n1\/w,/(61))2'
Next we shall obtain the limit of (1. 6) when a;=«a? (¢, b>0) and a,—0. Since

) (1—01 )h 1, lf }l>0’
L@O)= TW S io, if 2<0

RE (ay, a3; 0)=
(1. 6)

and since the well-known approximation

a=00,)= (j% e—ﬁ”> / A

gives
log a=log (2r)~12— % A2 —log A,=— -;— 2
we find that
OO i, i
o e 2(~/w"<00>f Ve @y OO
L if 2(0)<O0.

A" @)+ /BB

This shows that the limiting relative efficiency depends on the .particular choice
of @ and the relative rate at which a, and a; approach zero in a particular manner.
Define as a function of y, for each fixed 4,

(0(@+y)—0@))y,  if y=0,
w'(0), if y=0.

By the strict convexity of w(f), this is strictly increasing both in ¢ and vy and
continuous at y=0. From (1.5) 4(¢) is explicitly given by
1 _1( a)(ﬁl)—-w(b’o) )

(1.9) W)=5—5 Ki'(=3 =4

1.3 Kp(y)E{

where K7'(y) is the inverse function of Ky(y), for each fixed 6. Since K;'(w’(f))=0
we have 4(0)=0, if and only if
o(f)—o(l,)

(1. 10) W' O)="4p
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Let us denote this value of ¢ by 6,. This value exists uniquely between ¢, and
0:, and by the increasing property of Kj(y) both in # and y we have

> >
1.1 h(ﬂ){:}o, according as 0{ =}BOI.
< <
Thus if =1 (that is if &y=aa, and a,—0) we have from (1.7) and (1. 11)
. 1 ' (01)— o’ (0,) ?
L12) 1  qa ) = . ( )
(L 12 mRE (o i ) = S T B — @By =)\ (B0) /0 ()

which is oo if #=80,;, and >1 in the intervals of # in which

1 ( w'(0)—o'(00) )2
200:—00) \N/@"(00)+~/0"(0)

Another limiting value of the relative efficiency is obtained if we fix «, and «; and
let 6—0,,. By applying I'Hospital’s rule we can find

_ag,i_ d <A" ) , (—log B)(log A)
ok Ar—Ppr | @0 90og A—log B) ’

@(01)— ()
6,—0,

o’(6) —

and from (1. 8) and (1.9) we have

_=2
0:—00)"

Since the first factor in the right hand side of (1. 6) approaches to

7' (0o;)(log B—log A) [ K2
(01— 00)®"" (Bo1)

R (001)=

as 0—0,, we thus have

(@) =0\ (—log By(log A)
(.13)  RE(a a0= () »\/w”(ﬂm)) e

where A=(1—a1)/ao and Bzal/(l*ao).
If 6,=6,+4 and 4—0, then, from (1.10), 8o also tends to #,. Therefore from
(1.13)

(—log B)(log A)
(1. 14) }11_1:1’1 RE (ay, as; 001) = W:

independently of both w(6) and &,.
Equations (6), (7) and (13) all for normal densities, were derived by Bechhofer
[1]. Paulson [5] showed that, for any densities fi(x) (i=0,1), and 6,,

a; log + (1—a;) log 1=

1— 25T} s
o{Lm RE (@, e ) = (1/2)(2«(,4-&1)2 =01
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independently of fi(x)’s and #,, provided that conditions are assumed under which
the central limit theorm for

f 1(1/‘])
Z log

is applicable. These limits will not exceed 1, as are suggested by the optimality
of the Wald SPRT (Wald and Wolfowitz [7]). This is proved as follows: let

f(t): ,\/]‘Z_Ee—(t—-uﬂ/z and g(t)= ,\/12_718_(“_1))2/2.

Then

J®

1 2
) dt:T(u—{—v) .

1r:0=\" rotog
which combined with the convex property

® 4
(L‘)

=(\"_raar)1og S% +({roa) 1og%%§

If:9)= (S S )f(t) log =%

—o0

gives
D(u)

1—0(u)
P08 g0y 70

Replacing # and v with 4., and 4., respectively, we get the inequality

+A—0(w)) log ——— =—( +o)

a, log 1 +(1 —ay) log —% <——(2a0+ia,)2
ExAMPLES:
In the following examples
(@)=01,

(b)=Ilimiting relative efficiency (1. 12), and
(©)=RE (ay, as; 8,1) divided by (—log B)(log A).

(i) Normal distribution with known ¢2%

PRy 202
fm=@ary e[ - S 0L, w0)-

(@=(0+01)/2,

(0:—00)/8

O= =Gt o
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(C) = ('zao + ’2«1)_20

(ii) Bernoulli distribution:

flay=p* A=y, o=logiEo  w@)=log (e,
(a)=the unique root of the equation
e’ _ 1 o 14-eft

T+e?  0,—0, S 1qen’

or equivalently,

(o 1=P, P 1-P,
P ‘““(log i—P, )/ (log p, tlog T—_Pf>’

where
P, .
0;=log 1P #=0,1,01).
1 P,—P, )7' P 1-7,
- log—— (1—P) log ——|,
b= <«/Po<1—Po>+«/P1(1—PI> Plog - —1=P)logy—5
Pi—Pp)? s

©= e (VPP -/ PP

=,

P, 1—-P;

(iii) Poisson distribution:

folx)=m"e?/(x}), f0=log m, w(f)=¢e’,
eh __e00
(a) =log< 01—00—)’

0=~ (/=) | 1o 2 — =),

mi—my — —2
(C)= W '(/\/”'—202«04_/\/”1]2«1) ¢

(iv) Geometrical distribution:

e\ 1 v
=) = 0=1log - _pt
ro=(g=) g 0lei )= —loga—e,
(a)=the unique root of the equation
e 1 Io 1—et0
1o~ 6,—0, 8 1o

or equivalently,
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e 2 o2 ),

1+ 1+/10
where
6;,=log 1+ t- #=0,1,01)
1 (#1—#0)2 >2 J25 1+#1 |
b)=— — -1
O = o i m) + @) [ 4108 7y ~AFmlog 7 )
(1 — o)’ _
©= <l A >l< ° 1_|_/11> (/\//Jo(l‘i‘ﬂo)Xao‘l—'\/#l(l—l-m)xal) ’.
og— | log ——
1+/J0

(v) Exponential distribution:

fl@)=ple™",  O=—pt,  wo(0)=—log(—0),

01 -1
@ ={(0,—00> 1°ga—o} ,

(b) = <ﬂo+#1 )/l __—1—> —log—fj—l—

-2
©= l(ﬂl—#o) log %} (tt0uy + p1120) .

§ 2. Relative efficiencies and the Chernoff information number.
Equations (1. 7) and (1. 11) show that
lim RE (a,, aal; 6)

ag—0

is greater than 1 in an interval of ¢ around 6, and tends to co as #—f,. The
Wald SPRT for discriminating between f,(x) and f, (), both in the exponential
family of densities with the same w(f), is extremely inefficient, in the above
sense, if the unknown true parameter-value is #=0,. This value 6, is closely
connected with the information numbers of Kullback-Leibler (Kullback [4]), and of
Chernoff [2]. The Chernoff information number for descriminating between two
densities fo(x) and fi(x) (relative to the dominating measure v) is defined by

@1 —tog( inf \[A@I L1 as ),

and measures how difficult it is to decide between f, and fi with the Bayes test
(Chernoff [2], Joshi [3]). Now Theorem 2.1 in Kullback’s book [4] gives, as its
restatement,
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THEOREM. Let fo(x) and fi(x) be given generalized probability densities. Let

6= 1@ o=z 0p, fo@i=1. and 16:19=1:10].
Then we have
2.2) min 1y £)=—log F(e"),
where

F)= S[fx(x)]’[fo(x)ll"dv

and t* is determined by the equation

=\ roree log% dv=0.
0

The minimizing g(x) is given by
2.3) 9(x) =g*(x) = [f1(@)]"[fo(x)] ="/ F (z*).

We see that the minimum pseudo-distance —log F(z*) is the Chernoff information
number (2. 1).

If fulx)=fo,(x)=e% "> (7=0,1), i.e., belong to the exponential family of densi-
ties, then straight-forward calculation gives

(2. 4) g*(x) =f601(x)=eﬂolx—“'(001)

where 6,, is uniquely determined by the equation (1.10). Moreover, for the z* in
(2. 3), we have

Ooy=1%0,+1A—17*)0,, 0< <1,

Thus for the densities of exponential family, (2. 2), together with (2. 4), gives the
Chernoff inforffiation number equal to

001—00 01_001
01—00 w(ﬂl) + 01""00

@(00) — a(o1).

This number measures how convex the w(f) is at 0=6,, just like the factor
(@’’(0,))7* in the relative efficiency (1. 13).
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