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RELATIVE EFFICIENCY OF THE WALD SPRT AND
THE CHERNOFF INFORMATION NUMBER

BY MINORU SAKAGUCHI

SUMMARY: Relative efficiencies measured in terms of ratio of ASN to fixed
sample size of the Wald SPRT to the best competing fixed sample procedure with
fixed error probabilities are given for the exponential family of densities /*(#). The
limiting relative efficiency when the error probabilities approach zero in a particular
manner is computed, and it is shown that this value is + ° ° at Θ=Θ01, some parame-
ter value determined by the two hypothetical densities (Section 1). In Section 2
we show that the parameter value #01 is closely connected with the Chernoff infor-
mation number discriminating between the two densities.

§ 1. Relative efficiency of the Wald SPRT for the exponential family of
densities.

Let us consider the classical problem of testing Ho: f(x)=fo(%) versus Hi. f(x)
=/iO) when X is distributed with the generalized pdf /(#). The test is to have
the specified probabilities of error, a0 (the probability of rejecting ff0 when Ho is
true) and aλ (the probability of accepting Ho when Hλ is true).

Writing the logarithm of likelihood ratio as

the likelihood-ratio test accepts #i(#o), if Σ f - i ^ / X ^ ) * . K N is not very small
Σf=i %3 will be approximately normally distributed with mean NE(z) and variance
Nσ2(z), under any distribution with density f(x). Thus if a sample of fixed size
is to be used to discriminate between two simple hypotheses HQ and Hu then the
condition that the test is to have the specified error probabilities requires

where

lit: l-i) = J/^) log ^ dv(x) (i=0,1)

is the Kullback-Leibler information number [4] and
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With Φ(λa)=a and eliminating k we find

(1.1) J V = ( V

where / Ξ / ( 0 :1)+/(1:0) and

Now, if we use the Wald sequential probability ratio test (SPRT) with the
strength (α0, a{), (i.e., Pr. {Accept H^Hi} ̂ aίf i=0,1), the Wald approximations
" of neglecting excess " yields the operating characteristic (OC) function and average
sample number (ASN) as follows:

(1. 3) L{H)=Yv {Accept H0\H] =

(1.4) E(n\H) =

Ah-Bh'

L(H)\ogB+q-L(H))\og A

E(Z\H)

under any hypothesis H, where A=(l—a1)/a0, B=a1l(l—a0) and h is the unique
non-zero value satisfying

Let us compute the relative efficiency of the Wald SPRT for the exponential
family of pdfs (relative to the dominating measure v)

eΘXdv(x) =

Existence of the* moment generating function implies existence of all moments. In
particular we have Eθ(X) = ω'(θ), Ya.rΘ(X) = ω"(θ). For any parameter values θ0, 0L

with #o<#i and θ in the domain of definition, we find

Wi: βi-i)=Eθί[\og

)=Yaru [log (Λ1

and

LW=Pr {Accept tf0: ^=^o|^} -

where h(θ) is, for each θ, the unique non-zero value satisfying

(l. 5) ωφ+φ1-θo)hφ))-ω(θ)=(ωφ1)-ωφo))hφ).
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Substituting these expressions into (1. 1)~(1. 4), the relative efficiency (measured in
terms of ratio of ASN to fixed sample size) of the Wald SPRT to the best competing
fixed sample procedure with fixed error probabilities α0, «Ί is given by

(1.6)
. LOT log £+(!-£(<?)) log ,4

Next we shall obtain the limit of (1. 6) when ax^aa\ (a,b>0) and αo-^O. Since

τm± (l-"o)* >\1> i f ^>0,
W * l-0Λα<1 +»Λ ^ ^ [0, if h<0

and since the well-known approximation

gives

log α=log (2π)-1/2— — % - log λa=-—j

we find that

( L 7 ) — — ifA(0)>O,

if A(0)<O.

This shows that the limiting relative efficiency depends on the .particular choice
of θ and the relative rate at which a0 and aλ approach zero in a particular manner.
Define as a function of y, for each fixed θ,

ttω(θ+y) — ω(θ))ly, if y*rθ,
(1.8) i%/) = i

M # ) , if 2/=0.

By the strict convexity of ω(θ), this is strictly increasing both in θ and y and
continuous at y=0. From (1. 5) h(β) is explicitly given by

(1.9)

where Kj\y) is the inverse function of Kθ(y), for each fixed θ. Since Kϊ1(ω'(θ))=0

we have h(θ)=0, if and only if

. 10) ω/(^)= — .
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Let us denote this value of θ by 0Oi. This value exists uniquely between 0O and
0i, and by the increasing property of Kθ{y) both in 0 and y we have

(1.11) λ(0)| = 0, according as 0 - iθ01.

Thus if ^ = 1 (that is if a^acto and tfo->O) we have from (1. 7) and (1.11)

(1. 12) lim RE («„, «α0; (?) = 2\(θ1-θoW(ff)-(ω(βi)-ωφo))\

which is oo if 0=0Oi, and > 1 in the intervals of θ in which

ω(θ1)-ω(θ0)
< •

2{Θ1-ΘO)

ω'iθj-ω'jθo) Y

Another limiting value of the relative efficiency is obtained if we ήx a0 and aλ and
let 0—>0oi. By applying lΉospitaΓs rule we can find

dLh _ d_ d I Ah-1 \ , (

" 9Λ \ Ah-Bh ) ( ^ 0 ) 22(log A-log J5) '

and from (1. 8) and (1. 9) we have

- 2

Since the first factor in the right hand side of (1. 6) approaches to

h\θ01)(\og B-\og A) Γ d

I
as 0—»0oi, we thus have

(1.13) R E ( α β > α i , β β l ) _

1)(\og B-\og A) Γ d Ί

1-θ0)ω"(θ01) Idh ^ l = o

(-logB)(logA)

where A=(l—a1)/a0 and S=αx/(1—α0).
If θ1=θ0+J and J—0, then, from (1.10), 0Λ1 also tends to θa. Therefore from

(1.13)

(1.14)

independently of both ω(θ) and 0O.
Equations (6), (7) and (13) all for normal densities, were derived by Bechhofer

[1]. Paulson [5] showed that, for any densities fi(x) (ί=0,1), and 0O,

at log - — h (1—αt) log —
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independently of fi(x)ys and θOf provided that conditions are assumed under which
the central limit theorm for

is applicable. These limits will not exceed 1, as are suggested by the optimality
of the Wald SPRT (Wald and Wolfowitz [7]). This is proved as follows: let

1 1 2
/ ( 0 = - 7 ^ = ^ ~ ( ί ~ W ) 2 / 2 and g(t)=—7^=e-a+V)2/2.

Then

/(/:^f
which combined with the convex property

s /(/ ) Λ) log jb= + / ( 0 Λ log A
U - " 7 (t)dt V J o 7

j + / ( 0 Λ log

J-oo JO

gives

Replacing u and ί> with λa() and ̂ αi, respectively, we get the inequality

a0 log-^- +(l-α0) logi=^- ^ i-^+Λ.,)8.

EXAMPLES:

In the following examples

(a)=0oi,

(b)=limiting relative efficiency (1.12), and

(c)=RE (α0, «i; 0oi) divided by (-log fi)(log A).

( i ) Normal distribution with known σ2:

(2π^)— exp [- ^
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(ii) Bernoulli distribution:

, ω(θ)=\og (1+e

(a)=the unique root of the equation

eΘ 1

l+eθ log

or equivalently,

A 1-P O \ /A Pi , , 1-Po\
x= (log ^ Z (log-pΓ +log τ z ^ j ,

where

(f=0,l,01).

( c ) =

(iii) Poisson distribution:

fe(x)=m*e-λl(x\), β=\ogm, ω(θ)=eβ,

(a)=log(-^—~y

(b) = -7r(*/m — \/nhf \m\og —- — (mι—m0)

( C ) =

ΎYl\ — T

log

(iv) Geometrical distribution:

ω W = - l o g ( 1 - e

( a ) = t h e unique root of the equation

eθ 1
log-

or equivalently,
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where

(1=0,1,01)

Γ v f t α + r i + ̂ α + t t ) / r l o g ^ - ( 1 + / f ) l o g
μo

/ \ 2

(c)= !7μ°μ!\7 l+μ
log -ί— log——ί—

(v) Exponential distribution:

(a) = 1(0,-00) log- |-

2 \ /ί+» /1 \\ μ μ! μ

f i"i(c) = (μ1 — μ0) log

§ 2. Relative efficiencies and the Chernoff information number.

Equations (1. 7) and (1.11) show that

lim RE (ao,aab

o;θ)

is greater than 1 in an interval of θ around θOi and tends to oo as θ—*θ01. The
Wald SPRT for discriminating between fβo(χ) and fθl(x), both in the exponential
family of densities with the same ω(θ), is extremely inefficient, in the above
sense, if the unknown true parameter-value is θ=θ01. This value θ01 is closely
connected with the information numbers of Kullback-Leibler (Kullback [4]), and of
Chernoff [2]. The Chernoff information number for descriminating between two
densities fo(x) and fi(x) (relative to the dominating measure v) is defined by

(2. 1) - log( inf \lf1(x)Y[f0(x)]1-τdv),

and measures how difficult it is to decide between f0 and /i with the Bayes test
(Chernoff [2], Joshi [3]). Now Theorem 2. 1 in Kullback's book [4] gives, as its
restatement,
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THEOREM. Let /<,(%) and fi(x) be given generalized probability densities. Let

G=\g(x) (χ)dv=l, and I(g:f1) = I(g:fo)\.

Then we have

(2.2) min/(<7:/,)=-logF(r*),
g€G

where

and T* is determined by the equation

F'(τ*)=[f?fΓτ* log 4 - d»=0.

The minimizing g(x) is given by

(2.3) Q(χ)=gHχ)=[f1(χ)YΊMχ)]1-τΊF(τ^

We see that the minimum pseudo-distance —logF(τ*) is the Chernoff information
number (2. 1).

If fi(x)=fei(x)=eθix~ωcθ^ (7=0,1), i.e., belong to the exponential family of densi-
ties, then straight-forward calculation gives

(2.4) <7*(tf)=Λ01(*)=^01*-"('M)

where θ01 is uniquely determined by the equation (1.10). Moreover, for the τ* in
(2. 3), we have

0OI=Γ*0I+(1-Γ*)0O, 0 < τ * < l .

Thus for the densities of exponential family, (2. 2), together with (2. 4), gives the
Chernoff inforfRation number equal to

This number measures how convex the ω(0) is at 0=θ01) just like the factor
(^(tfoi))-1 in the relative efficiency (1. 13).
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