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ON A MATCHING METHOD FOR A LINEAR ORDINARY
DIFFERENTIAL EQUATION CONTAINING

A PARAMETER, III

BY TOSHIHIKO NISHIMOTO

§ 1. Introduction.

In the previous papers [2] and [3], the author considered the asymptotic nature
of the solution of a vectorial linear differential equation of the form

(1.1) e*^=A(x,e)y

in the neighborhood of a turning point which was assumed to be at the origin,
proved the existence of two types of asymptotic solutions: the one is a socalled
outer solution in some neighborhood of the origin which does not contain the origin
itself, say in the outer domain, and the other is an inner solution in the inner
domain containing the origin, and the most important result was that the outer
and the inner domains are overlapped with each other for an arbitrarily small
parameter ε. Because of this fact, the outer solution and the inner solution can be
matched together at some suitable point which belongs to both of the domains, and
once the connection matrix between them is known, we can understand the behavior
of one outer solution in the direct neighborhood of the origin, and at the same
time the continuation problem, or the Stokes phenomenon can be solved. A detailed
description of this procedure about a second order equation is given in the lecture
notes of Friedrichs [1], and the method of computing a connection matrix about a
second order system of differential equation of the form

dy Γ —ixf εiγ(x)Ί , . t—
- r ~ = / x \y (%' real, * = * / —dx \_ειγ(x), ιx J v

was given by Wasow [5], and these are basic ideas in our subsequent study.
The purpose of this paper is to calculate the connection matrix C(ε) between

the outer and the inner solution of (1.1) and also to study an asymptotic nature of
it by using the results of [3]. The notations and the assumptions on the differential
equation under consideration are identified with those of [3] throughout this paper,
and when theorems or formulas are quoted from [3] we put the symbol "II" in
front of their numbers.

Here we summarize the results of [3].
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MATCHING METHOD FOR LINEAR DIFFERENTIAL EQUATION 81

1. Outer solution. Let T be any sector of τ-plane with vertex at the origin
and central angle less than π\(m-\-q)h, then there exists an actual solution of (1.1)
of the form

yi(x,ε)=Ω(x)u(τ,ε), τ=x^m\
(1. 2)

«(r, e)=ί(τ, ε) exp

Here ύ(τ, ε) is a matrix function which can he asymptotically developable in powers
of τ~cm+q)ε such that for every positive integer r we have

(1. 3) ύ(τ, ε ) - Σ evu<v\τ)=Er(τ, ε)[τ-^^ε]r+1

in the outer domain Da

where Er(τ, ε) is a hounded function in A and εlf δlt d and c2 are certain constants
independent of ε but may depend on r. The matrix functions Fcι°(τ) can be
written

F \ ) Ϊ ( τ ) ,
(1. 4)

)=f™ log+F ( f t )(r),

where Pcv\τ) (v^h) are holomorphic in | τ | ^ τ 0 and / C Λ ) is a constant matrix, and
U(V\T) are of the form

(1.5) u™(τ)=τ-<m+nvύ™(τ),

where ύCΌ(τ) are bounded in | τ | ^ τ 0 and polynomials of logr of degree at most v
whose coefficients are holomorphic in | τ | ^ τ 0 .

2. Inner solution. We denote by S any sector in the s-plane with sufficiently
small central angle. Then the equation (1.1) has an actual solution of the form

y2(s, p)=Ώ(εa)v(s, p), s=xε~\ p=ε^m+«\ a= ^

(1.6)
v(s, p)=Ω(sk^)v(s, p)sk^Π exp

The matrix function ϋ(s, p) is asymptotically developable in powers of sus:>ep such
that for every positive integer r we have

(1. 7) Σ
v=o

r+\ ίe=l+ -^- + -±
\ m mh

in the inner domain D2 defined by
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where Er(s, p) is bounded in D2 and p2, δ2 and cs are constants independent of p.
The matrix functions wcv\s) are bounded in the domain D2.

Now we take this opportunity to mention two remarks about the solution of
the equation

(II. 3. 20) ^=H<°Xs)v,

where i7C0)(s) is a matrix function whose elements are polynomials of s.
Firstly it was remarked in the previous paper [3] that the connection matrix

between the solution v^ defined in the neighborhood of the origin s=Q and the
asymptotic solution v£> defined in a certain sectorial domain containing 5=00 is
calculated by the asymptotic matching. But by this method we can find only a
few of the elements in the connection matrix with reasonable accuracy, and the
other elements remain essentialy undetermined, and consequently the successive
determinations of the solutions in the neighborhood of the 5=0 of the nonhomo-
geneous equations (II. 3. 21) is impossible. Therefore we must use the convergent
matching, instead of the asymptotic matching, that will provide satisfactory accuracy
for all elements in the connection matrix. This is accomplished by expressing v^
as a convergent generalized factorial series, and in fact from a theorem of Turrittin
[4], this is possible in our equation (II. 3. 20) under the assumption (II. 2.10).

Secondly it is concenred with the definition of the sector S. In [3], the central
angle of S was taken as the one which contains at least one singular direction:
Re(Λ y -4)s c m + e v m =0 (j,k=l,2, ~,ή), but from a rather simple character of the
coefficient matrix /7(0)(s), we can take the central angle of S as at least mπ\{m^q)
(its proof is given, for example, in Friedrichs [1]). Accordingly we give some im-
provements about the proofs of Lemma II. 3.3 and Theorem II. 5.1 in later.

In Section 2, some more detailed analyses than [3] which are necessary for our
subsequent study are given and in Section 3 we obtain the desired asymptotic re-
presentation of the connection matrix.

§ 2. Lemmas.

LEMMA 2. 1. About the exponential factors in the formulas (1. 2) and (1. 6),
we have a following relation,

(2. 1) *Σ lr-<m+qh]v-hP<v\0)=Q(s)

and the constant matrices / α ) in (1. 4) and Π in (1. 6) are related by

(2.2) f™=mhΠ

Proof. The constant matrices C(υ)(0) in the expression of coefficient matrix
C(τ, ε) of the equation (II. 2.11) are of the form
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0

0
0 δv0

0
0

. . . aM

δ,0

0

0 0

0 0

0
Ό 0

0

where δv0=l for v=0 and δv0=0 for v = l , 2, ••«, h—1, and a$ί,μ are some constant
numbers introduced in (II. 1. 7) and for nonzero such number a$,μ, we must have

l=m9ni-l, ~,2\
1 ~

(2.3)

On the other hand, the matrix Hco\s) in (II. 3. 20) can be written

p7ί?(s) 0 Ί ΓO 1 . . 0 Ί

L 0 H^(s)J lhX(s) ... A8>(5

and ^^(5) are polynomials of 5 of the form

l ( i=i, 2,-.,/>).
Oj

where nonzero terms aflιμs
μ come from the indices of (υ, μ) such that

rtln

(2.4)

which are just the same pairs of (v, /̂ ) as that of (2. 3). By the transformation
vw=Ω(s)wC0\ the equation (II. 3.20) becomes dww/ds = K(s)wm with ϋΓ(s)=
Ω(s)-Ήw(s)Ω(s)—Ω(s)dΩ(s)/ds, and if we rearrange it by descending powers of
s1/mh, we have

ϋΓ(s)= Σ K?>sCQ/m>-«m+«>v/mh> (N some positive integer),

where 7^(v) are constant matrices such that
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Suppose that after successive diagonalizations of K(s) of Λ-times we get

ds
h

then the constant matrices DCP)(0) in the formula (II. 2.15) and L ( v ) satisfy

mhL™=D<v\0) (*-0,1, ••-, h\
hence we have

= y DC

h
(m+q){h-v)

and
=mhΠ.

This proves the lemma.
Next we consider the nonhomogeneous equation

(II. 3. 39) 4r- =HC0\s)t+F(s).
as

The homogeneous equation (II. 3. 20) has, as staded in the introduction, a funda-
mental solution which is asymptotically developable in powers of s~1/m of the form:

(II. 3. 37) v«»(s)~Ω(s)\ Σ v™s-v/m\sπ exp [Q(s)] (5—00)
U=o J

in every sector S of central angle at least mπ/(m+q). A solution of (II. 3. 39) is
given by the integral

(II. 3. 40) t(s) = [ v\s)vw(σ)-1F(σ)dσ.
JΓ(β)

As in [2], if we define t(s), vw(s) and P(s) by

(II. 3. 41) vw(s)=Ω(s)v^(s)sΠ exp [0(5)],

then (II. 3. 37) becomes

(II. 3. 42)

) " ! )exp [ Q ( s ) - Q ( < 0 ] ( — ) ^ ( σ r Ψ i σ ) ! — ) exp {Q(σ)-Q(s)}dσ.
\ σ J \ S /
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Suppose that fi(s)s~b is bounded for some constant b and has the asymptotic ex-
pansion in powers of s~1/mh in the sence that for every integer r^O

/ m h (5—00),

where R(s)-+0 as s-+oo in a domain S(sO, and F c υ ) are polynomials of logs. Here
S(si) denotes a domain such that

5€S, \s\>Sχ

for sufficiently large positive number Si. In this case we can prove a following
lemma.

LEMMA 2. 2. Let S be any sector in s-plane of central angle mπ\(jn-\-q) whose
boundary lines don't coincide with any singular direction, then by choosing the inte-
gral path fjk(s) appropriately for each element of the integral (II. 3. 40), we have

where t*(s) is bounded in S(so)f and asymptotically developable in powers of s~1/mh

as s—>oo such that for every positive integer r,

Σ

where tin(s) are polynomials of log s.

Proof, We can assume that every element of the matrix in the integrand of
(II. 3. 42) is of the form

(II. 3. 45) PAσ)σb(~JJ "exp [qAs)-qjk(σ)l

where pjk{s) is bounded and asymptotically developable in powers of s~1/mh in S(sO,
π3 is the diagonal element of the matrix /7, and qjk(s)=qj(s)—qk(s). qj(s) denotes
the diagonal element of Q(s) of the form

(2. 5) qj(s)= - i ^ s c m + e ) / m + / y i s c m + ? ) ^ ^

Here we introduce the variables ζ and ζ by

(2 6) ζ
' f m+q

then the function (II. 3.45) must be changed into

(2. 7) fe(ζ)(-|~)^ζ(m6-«/(m+« exp

where ^y*(ζ) is bounded and has the asymptotic expansion in powers of ζ-1/<m+«"» and

(2. 8) qjk($) = (*j-h)ξ+ Σ(ϊj»-Ϊ
v—l
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If we denote by Σ a sector in ζ-plane corresponding to S under the transformation
(2. 6), the central angle of Σ is π and every line

does not coincide with the boundary lines of Σ from the assumption on S. From
this, we can draw a line ajk through the origin into the interior of Σ on which
Re(λj~λk)ζ>0 for every (j,k) j*k. Let λjjc(ξ) be a line which is parallel to ajk

and extends from ξ to infinity, then the integral path γjk(s) {j^k) is to be taken
as the invrse image of λjk(ξ) under the transformation (2. 6). Now we prove the
first part of the lemma. Let Σ(ζ0) be the domain of f-plane such that

, 1, 2, - , H)

where ξ0 is a positive number, then we have

and then for some positive constant C independent of ζ and ζ

Hence we have

Re {qjjc(ξ)-qAO+(πj-πk) log ί/ζ} =Re {(^-^)(f

and from this it follows that if we choose f0 sufficiently large, the integral of (2. 7)
is of the order 0( | ( w δ - g ) / ( W + ? ) ) in J(£o) which implies that the integral of (II. 3. 45)
is of the order O(sb~q/m) in S(s0). For j=k, we take some indefinite integral specified
in later and we can see that the estimate of it is O(sb+1). Next we examine the
asymptotic property of t*(s).

Let j^k. Let us write for simplifications

Qjk(s)-qjk(σ)+(πj-πk)(ίog s—log σ) = q(s)—q(σ),

and for every integer r(^n), we assume

(2.9) σ%k(σ)= Σ Aflog σ)σ'v/mh+o(σ-r/mh) ((7->oo),
υ=ro

where r0 may be a negative integer, and p£z) are polynomials of z. Since

σ)1 {exp fe(s)-

m

log s)ι+/(log sy-1 {exp [q(s)-q(σ)]}dσ,
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where k and / are some integers, Qι(s) is a convergent power series of s~
1/mfι, and

g2(s) is also a convergent power series of s~1/mfι whose coefficients are polynomials
of log 5, we have by repeated integration by parts that

\ <?bPA<7){exp [q(s)-q(σ)]}dσ

= Σ A(logs)s-"»*+0(s-r/»*)+( Rr(s){exp[q(s)-q(σ)]}dσ,

where pv(z) and p{z) are polynomials of z, and

From the first part of the proof of this lemma, we have

Rr(s){exp [q(s)-q(σ)]}dσ=s-<r+»/

=o(s-r/mh) (s->oo).

Let j=k. Assume that σύpjΊ(σ) possesses the asymptotic representation of the
form (2. 9), and we can easily show by integration by parts that every term of the
series (2. 9) has an indefinite integral of the form

U_mΛ,(lθg σ)σ-1dσ=P0{\og o),

where Pr+mh(z) is a polynomial of z which is determined uniquely and its degree is
the same as that of pr(z), P0(z) is also a polynomial of z which may be added an
arbitrary constant. We fix the definition of P0(z) by requiring that its constant
term be zero. The degree of Po(z) is one more than p-mκ(z).

Now let

where
/ 0, if n>mhy

Σ Adog σ)σ-"'m\ if
v=ro

then the function
0, if ro>mhf

Σ P,(log 5)5-υ/m/i if n^mh.

is an indefinite integral of p^σ). Define P2(s) by

Then, for every r^
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o r+mhS oo r+mh
Σ pv(lθg σ)σ~v/mhdσ =\ Rr(σ)dσ,

s v=n Js

where fi=max(r
0
, mA+1), and

and hence we have

rv—r\—mh

Therefore the particular indefinite integral Pi(s)+P2(s) of σbpjΊ(σ) defined above has
the asymptotic expansion of the form

\σ%j(σ)dσ ~ f Λ(lθg s)s" υ / ^ (s-oo),
J v=ro—mh

this proves our lemma,
From the above lemma, we can give an improvement for Theorem II. 5.1.

THEOREM II. 5.1'. Let S be a sector in the s-plane of central angle mπ/(m+q)
whose boundary lines do not coincide with any singular direction, and let

(II. 3. 53) v~Ω(sk

be a formal solution of (II. 3.10) where wCΌ(s) are asymptotically developable in
powers of s~1/mh as s—>oo. Then the differential equation

(II. 3.10) ~7 =H(s, p)υ

has an actual solution v{sy p) of the form

v{s, P)=Ω(skW)ϋ(s, p)skWIexp [Q(s)].

and for every r^O, there exists a domain D2 defined by

in which it holds that

r

v=0

where Er(s, p) is bounded in D2.

Proof This is proved by the same method as in the proof of Theorem 5.1 in
[2] and the same argument as in the proof of Theorem II. 5.1.

§ 3. Matching matrices.

We have found that the differential equation (1.1) has a fundamental system
2/i(#, ε) that can be effectively calculated from its asymptotic representation (1. 2)



MATCHING METHOD FOR LINEAR DIFFERENTIAL EQUATION 89

for all pairs of values of x and ε in A and also has a fundamental system y2(sy p)
that can be similarly calculated from (1. 6) for s and p in D2. Since the domain
Dx does not contain the origin x—0, if we want to know the behavior of yi(x,έ) at
the origin, it can not be read off from the formulas (1. 2) and (1. 3). But the
domain D2 contains the origin s=0 which corresponds to #=0, then if we can find
the connection matrix C(e) between y^x, ε) and y2(s, p), this problem can be solved.
Since the two domains overlap, we can give the asymptotic representation of C(ε)
which satisfies

(3.1) 7/1feε)=2/2(5,^)C(ε).

Now

(3.2) C(e)=y2(s,/o)-1yi(^β),

and since this is independent of x, we can take for the calculation of C(ε) any
convenient point which belongs to both of the domains A and D2.

The most symmetrically located such point is

and then

(3. 3) τη = ηp<δ-»/δ, Γ 9-cm+g) e = = 3y-(m+»^(T O+g )/ ί )

(3. 4) sη

1/mh = Vp~1/δ, sη

ep=η*
mγw9

where δ=2emh. Here η is any constant such that mhargηGTnSf and \η\ might
be taken equal to 1. However, for the study of the structure of the matrix C(ε)
we consider η as an additional parameter in the calculation, and in fact this procedure
simplifies a practical calculation of it very much.

In order to study the matrix

(3. 5) C(e)=y2(sη, pY^iiPη, e)

in detail, we begin by remembering the structure of the function

(3. 6) =Ω(xv)ύ(τv, ε) exp Σ W
v=0

=Ω{x,)ύ{τψ ε) exp IΣ [τ^m+^Y^P^(τ,)+fM log r l
l»=o J

where ύ{τ, ε) has the asymptotic expansion of the form

(3. 7) ύ(τ, β)~ Σ ύm(τ)[τ-<m+vSγ.

The functions P^{τ) are holomorphic in τ and ύ^iτ) are developable in powers of
τ such that for every positive integer r

(3. 8) ύ^(τ)= Σ &™μτ
μ+o(τr),

μ=0
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where u?^ μ are polynomials of logr.
Now define the matrix function U(η, e) by

[ fΛ,-l

exp Σ [Vcm+β)e]y~ f tί ι c ι°(θ) + / c w log τ,

=«(τ9, ε)exp

Combining (3. 7) and (3. 8), and replace τ by τη, we have formally the iterated
series

If we rearrange formally this series by collecting all terms for which r=(m+q)v
5—1)9 h a s the same value, we have

(3. 10)

where

(3.

in

(3.

11)

particular

12)

LEMMA

we have

3.1

Σ

, p) = U<-"\0).

v Σ V P
r=0

Proof. From the asymptotic representations (3. 7) and (3. 8),

- Σ
»>r/(rn+q)

=o{pr/ί)

in the same way we have

(3.13) Σ lτ-ίm+nε\"-

where

(3.14) Fcr>(y,p)=

with ί1^^ constant matrices.
Here we must notice that for every power r of p, the power of η in the ex-

pressions (3.11) and (3.14) satisfy

—(m+q)v+μ=δμ—r, —(m+q)(v—h)+μ=δμ—rf
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which mean that the functions uσ\η, p) and F σ ) 0?, p) contain only a finite number

of terms (log ηp^-Ό/δ)vημ with μ=—r(moάδ). If we expand the exponential function

exp Σ [τΓc w + β )e]v-Λ Φ'v\τη) - tfw(0)) ~ £j F^(V)pv/*
v=0 r=0

where Fiv\η) are polynomials of η each of whose terms has a power μ=—v (mod<5),
in particular FC(0 is a unit matrix.

Hence we can write

(3:15)

where the summation with respect to μ consists of a finite number of terms for
which μ=— y(modd), and Ucv\(z) are polynomials of z.

Next we consider the function y2(sv, p). Since the value of sη becomes infinite
as p—>0 for any fixed y, we use the asymptotic expansion (1. 6) and (1. 7) for y2(s, p)
with k(s)=l, and then from (1. 6)

(3.16) V2{s» p)=Ω(εαsη)v(sη, p)sη

π exp [Q(s,)].

Let V(η, p) be

(3.17) V{η, p)=v(sη, p)~Σ ™cv\sη)[sr

epY,

and from Lemma 2. 2 wcv\s) has an asymptotic expansion of the form

(3.18) wV\s)^Σ w^μ (log s)s~v/mh,

where wiV\(z) are polynomials of z. Insert (3.18) into (3.17) and substitute (3. 4)
for s~ι/mh and sep, then we have

V(η, p)^Σ Σ W^

r=0 [emhv+μ=r J

Here it is easily verified that if r=0(mod<5) then emhv—μ—0 (mod δ) and if
r=l (mod δ) then ernhv—μ=— l(modδ). Therefore we have

where V^iη, p) are polynomials of η and T?"1, the power of each term of which
equals to — y(mod<5), and in particular Vw(j]f p)=wC0:>(0) which is nonsingular and
we can suppose that ^(0)(0)=z2(0)(0). From this it follows that
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v=0

(3.19)

where VCΌ

μ(z) are polynomials of z and the summation with respect to μ is taken
over a finite number of integers μ such that μ=—v(moάδ).

Since Ω(xη)=Ω(εa)Ω(sη\ we have from (3. 5) (3. 6) (3. 9) (3.16) and (3.17)

(3. 20) s/exp [Q(5,)]C(e)[exp j Σ 1 h- ( m + ( Z ) ^] υ - Λ ί 1 ( υ ) (0)+/^ ) log τηΠ"^ V(V, pYWiη, p).

On the basis of (3.15) and (3.19), the right hand term has the asymptotic expansion
of the form

(3. 21) Λ^\ηt p)=E (unit matrix),

where A^μ(^, p) are polynomials of log (y]pCδ~i:>/δ) and log iyjp~1/δ). The summation
with respect to μ is over a finite number of integers for which μ~— y(mod<S).

If we denote by cjΊc(έ) the j—k element of the matrix C(e), each element of the
left member of (3. 20) can be written from Lemma 2.1 that

(3. 22) <V*(β){exp [qj(sη)-qk(sη)]}vwj-**>p-**v<j+«-»**}/»9

where π3 and #/(s) are the diagonal elements of the matrix Π and Q(s) respectively.
Now we prove the main theorem.

THEOREM 3.1. Let the outer solution yi(xy ε) and the inner solution y2(s, p) be
defined in the domain D\ and D2 respectively, and let the sector T in the τ-plane
and S in the s-plane correspond to the^ sector T and S in the x-plane for which we
assume that the axes of symmetry of T and S coincide for positive ε and that the
sectors T and S contain in their insides every singular directions: Re (λj—λk)s( m+q:>/m

= 0 U^ky jk=l)2i '- ,ή) for all ε in D1ΓiD2 by taking di and δ2 sufficiently small.
Then the connection matrix C(ε) defined in (3.1) has the asymptotic expansion of
the form

Σ

in the domain

for sufficiently small ε0 and δ0, where Cv are constant diagonal matrices. In
particular C0=E.
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Λ A

Proof. Under the above situations of the sectors T and S, we prove first that
C(ε) is asymptotically diagonal. For j^k, from (3. 20), (3. 21) and (3. 22) we have

CJk(ε)~ {exp fe(5f)- ^5?)]}^w*C**-«i)i9«*{'/fCJ-i)«w/i g Λ%(η, p)pv/s.
v=0

From the assumptions on T and S, we can choose η for every j^k such that

Refe fc(s9)-0/s7)]->-oo as ^—0,

and then we have c/fc(e)~0 (p—>0) for such 27. Since ^ ( e ) does not depend on 37,
we have

this implies that C(ε) is asymptotically diagonal.
For / = * , (3. 20), (3. 21) and (3. 22) give

The left term of the above equation is independent of ηy and hence all of the terms
Λ$(y, p) must be independent of η. For, otherwise, we can suppose that there is a
first term which depend on η, say Λfjbη, p).

As p-*0,

\ AΛ<8{η, P)+oQ).

Since the left term in the above equation is independent of 27, this is impossible.
Because of the structure of the function Λffyy p), it is independent of η if and only
if Λ$(τq,p) is a constant, and this is possible if and only if y=0(mod(5). Above all
we can conclude that

A<v\η,p)ΞΞθ v*0 (mod δ),

Λ^(Vf p)=Λ^ v=0 (mod 8),

where Λ^ are diagonal constant matrices, and in particular CC(0=ACO')('Q, ρ)=E.
This proves our theorem.
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