ASYMPTOTICALLY MOST INFORMATIVE PROCEDURE IN THE CASE OF EXPONENTIAL FAMILIES

By Kazutomo Kawamura

§ 1. Introduction.

Recently we showed the following fact in our paper [2]. We considered in [2] two binomial trials E_{1}, E_{2} having unknown means p_{1}, p_{2} respectively. And we have introduced the notion of costs such that we must pay $\operatorname{costs} c_{1}, c_{2}$ to the observation of a result given by the trials E_{1}, E_{2} respectively. In each step we are admitted to select one of the two trials E_{1}, E_{2}. Be continued the selections by some way we denoted the sequence of trials till n-th step as $E^{(1)}, \cdots, E^{(n)}$ and the sequence of costs till n-th step as $C^{(1)}, \cdots, C^{(n)}$. Of course we may select at i-th step $E^{(i)}$ from the two trials E_{1}, E_{2} depending previous $i-1$ data $X_{1}, \cdots, X_{\imath-1}$ given by $E^{(1)}, \cdots, E^{(i-1)}$. A procedure \mathscr{L} was given in [2] such that the sum of information given by two dimensional likelihood ratio relative to the sum of costs till n-th step to discriminate $p_{1}>p_{2}$ or $p_{1}<p_{2}$ is asymptotically maximized. In [2] we assumed the unknown true two dimensional parameter (p_{1}, p_{2}) did not exist on the boundary $p_{1}=p_{2}$. In our another paper [3] we considered analogous model having two kinds of trials E_{1}, E_{2} which are obeyed normal distributions with unknown means m_{1}, m_{2} and known same variance σ^{2} and $\operatorname{costs} c_{1}, c_{2}$ respectively. Then analogous procedure \mathscr{L} is asymptotically optimal in the same sense described above. In [3] we noted that our procedure \mathscr{L} reduced to a policy which does not depending on previous n data X_{1}, \cdots, X_{n} but only on sample sizes n_{1} of E_{1}, n_{2} of E_{2} till n-th step. We have omitted the proof of the problem in [3] because we can easily get analogous proof.

In this paper we generalize these problems to k trials E_{1}, \cdots, E_{k} having exponential distributions with one dimensional unknown parameter $\theta_{1}, \cdots, \theta_{k}$ respectively. That is, an observation X of E_{\jmath} has a probability density function of exponential type in Kullback's sense [4] with one dimensional unknown parameter $\theta_{j}(j=1, \cdots, k)$ respectively. And we introduced the boundary $\pi: \mu \cdot \theta=p\left(\theta=\left(\theta_{1}, \cdots, \theta_{k}\right)\right)$ as a hyperplane in k dimensional euclidean space where $\mu=\left(\mu_{1}, \cdots, \mu_{k}\right)$ is any fixed k dimensional unit vector having all non-zero components and p is any fixed nonnegative number and $\mu \cdot \theta$ is the inner product of two vectors μ and θ. Moreover we use the notion of costs introduced by Kunisawa [6], as we used the notion in [2], [3], then we can get some information of θ_{j} by paying of cost $c_{j}(j=1, \cdots, k)$ respectively. Then we shall show analogously that under the generalized procedure \mathscr{L}^{*} given in the following Section 3 the sum of information relative to the sum of costs payed till n-th step to discriminate $\mu \cdot \theta$ larger than p or not is asymptotically

[^0]maximized. Additionally we show in this paper that under the original procedure \mathscr{L} given in [2], [3] the ratio is also asymptotically maximized in the sense of the generalized procedure \mathscr{L}^{*}. Moreover the problem given in [3] will be shown in special example of case $k=2$ in Section 5. Finally note that in this paper we need not to assume that our unknown true parameter θ is not an element of our hyperplane π.

§ 2. Notations, definitions and some lemmas.

Definition of the exponential family introduced by S. Kullback. Suppose that $f\left(x, \theta_{0}\right)$ and $f\left(x, \theta_{1}\right)$ are generalized densities of a dominated set of probability measures on the measurable space (\mathfrak{X}, Φ) so that

$$
\begin{equation*}
\nu_{i}(E)=\int_{E} f\left(x, \theta_{i}\right) d x \quad E \in \Phi,(i=0,1) \tag{2.1}
\end{equation*}
$$

For a given $f\left(x, \theta_{0}\right)$ we seek the member of the dominated set of probability measures that is "nearest" to or most closely resembles the probability measure ν_{0} in the sense of smallest directed divergence

$$
\begin{equation*}
I\left(\theta_{1}, \theta_{0}\right)=\int_{R} f\left(x, \theta_{1}\right) \log \frac{f\left(x, \theta_{1}\right)}{f\left(x, \theta_{0}\right)} d x . \tag{2.2}
\end{equation*}
$$

as a restriction of $f\left(x, \theta_{1}\right)$ we shall require $f\left(x, \theta_{1}\right)$ minimizing $I\left(\theta_{1}, \theta_{0}\right)$ subject to

$$
\int_{R} T(x) f\left(x, \theta_{1}\right) d x=\theta_{1}
$$

where θ_{1} is any fixed constant and $Y=T(x)$ a measurable statistic. Then the minimum value of $I\left(\theta_{1}, \theta_{0}\right)$ is given if and only if

$$
\begin{equation*}
f\left(x, \theta_{1}\right)=e^{\tau\left(\theta_{1}\right) T(x)} f\left(x, \theta_{0}\right) / M\left(\tau\left(\theta_{1}\right)\right) \tag{2.3}
\end{equation*}
$$

where

$$
M\left(\tau\left(\theta_{1}\right)\right)=\int_{R} f\left(x, \theta_{0}\right) e^{\tau\left(\theta_{1}\right) T(x)} d x
$$

We remark that

$$
f(x, \theta)=f\left(x, \theta_{0}\right) e^{\tau(\theta) T(x)} / M(\tau(\theta))
$$

is said to generate an exponential family of distributions, the family of exponential type determined by $f(x, \theta)$, as θ ranges over its values satisfying $M(\tau(\theta))<\infty$.

$$
\theta=\frac{d}{d \tau} \log M(\tau(\theta)) \quad \text { and } \quad \nu_{0}(x: T(x)=\theta) \neq 1,
$$

then $\tau(\theta)$ is a strictly increasing function of θ. Using this fact if $f\left(x, \theta_{1}\right)$ and $f\left(x, \theta_{2}\right)$ are the members of common exponential family generated by $f\left(x, \theta_{0}\right)$ then for any fixed θ in the interval $\left[\theta_{1}, \theta_{2}\right]\left(\theta_{1}<\theta_{2}\right)$

$$
\begin{aligned}
M(\tau(\theta)) & =\int_{R} f\left(x, \theta_{0}\right) e^{\tau(\theta) T(x)} d x \\
& \leqq \int_{T(x) \geqq 0} f\left(x, \theta_{0}\right) e^{\tau\left(\theta_{2}\right) T(x)} d x \\
& +\int_{T(x)<0} f\left(x, \theta_{0}\right) e^{\tau\left(\theta_{1}\right) T(x)} d x<\infty
\end{aligned}
$$

so that the exponential family is defined on connected interval or full line $R=(-\infty, \infty)$. Next we consider n independent observations x_{1}, \cdots, x_{n} from true density function $f(x, \theta)$ in the exponential family generated by $f\left(x, \boldsymbol{\theta}_{0}\right)$. Then logarithm of the likelihood function $\Pi_{\imath=1}^{n} f\left(x_{i}, \theta\right)$ is expressed as follows.

$$
\log \prod_{\imath=1}^{n} f\left(x_{i}, \theta\right)=\log \prod_{i=1}^{n} f\left(x_{i}, \theta_{0}\right)+\tau(\theta) \sum_{i=1}^{n} T\left(x_{i}\right)-n \log M(\tau(\theta))
$$

The maximum value of $\prod_{i=1}^{n} f\left(x_{i}, \theta\right)$ is given if and only if $\theta=\hat{\theta}_{n}$ as follows

$$
\begin{gathered}
\frac{d}{d \theta} \log \prod_{\imath=1}^{n} f\left(x_{i}, \theta\right)=0 \\
\frac{d \tau}{d \theta} \cdot\left\{\sum_{\imath=1}^{n} T\left(x_{i}\right)-n \frac{d}{d \tau} \log M(\tau(\theta))\right\}=0
\end{gathered}
$$

where $d \tau / d \theta>0$ is satisfied.

$$
\begin{equation*}
\hat{\theta}_{n}=\frac{d}{d \tau} \log M(\tau(\theta))=\frac{\sum_{i=1}^{n} T\left(x_{\imath}\right)}{n} . \tag{2.4}
\end{equation*}
$$

In the following line we suppose that the true parameter θ is finite, then by the strong law of large numbers $\hat{\theta}_{n} \rightarrow \theta$ as $n \rightarrow \infty$ is satisfied with probability 1 .

Definition of parameter space Θ. Our k exponential families with one dimensional parameter $\boldsymbol{\theta}_{j}(j=1, \cdots, k)$ are defined on one dimensional open intervals Θ_{j} of θ_{j} respectively. Then our unknown parameter $\theta=\left(\theta_{1}, \cdots, \theta_{k}\right)$ is an element of k dimensional parameter space

$$
\Theta=\Theta_{1} \otimes \cdots \otimes \Theta_{k}
$$

which is a product space of k open intervals $\Theta_{1}, \cdots, \Theta_{k}$. Next we divide the space Θ by our hyperplane $\mu \cdot \theta=p$ as follows. Of course we assume the hyperplane acrosses our parameter space Θ.

$$
\begin{gathered}
H_{1}=\{\theta: \mu \cdot \theta>p, \theta \in \Theta\}, \quad H_{2}=\{\theta: \mu \cdot \theta<p, \theta \in \Theta\}, \\
\pi=\{\theta: \mu \cdot \theta=p, \theta \in \Theta\} .
\end{gathered}
$$

Then $\Theta=H_{1}+H_{2}+\pi$ is satisfied. Next let $E^{(i)}$ be i-th trial which is one of k elements E_{1}, \cdots, E_{k} and define X_{\imath} to be i-th random variable which is given by trial $E^{(i)}$ randomizedly.

Calculation of likelihood function of θ. Given the first n trials in some way, we define the number of E_{j} in $E^{(1)}, \cdots, E^{(n)}$ as n_{\jmath}. In the following line we
suppose $n_{j} \geqq 1(j=1, \cdots, k)$ then all n_{\jmath} observations X_{\imath} from the trial E_{j} in the first n trials $E^{(1)}, \cdots, E^{(n)}$ is considered as n_{\jmath} independent observations from the trial E_{J}. Therefore the likelihood function of the parameter θ_{\jmath} is expressed by

$$
\prod_{\left\{i: E(i)=E_{j}\right\}} f\left(x_{i}, \theta, E_{j}\right)
$$

where $\left\{i: E^{(i)}=E_{\jmath}\right\}$ is a set of n_{\jmath} elements of i in $1, \cdots, n$ satisfying $E^{(i)}=E_{\jmath}$ for any fixed $j(j=1, \cdots, k)$. Then for given $E^{(1)}, \cdots, E^{(n)}$ the likelihood function of θ is expressed by the product as following

$$
\begin{equation*}
\prod_{i=1}^{n} f\left(x_{i}, \theta, E^{(i)}\right)=\prod_{\left\{i: E(i)=E_{1}\right\}} f\left(x_{i}, \theta, E_{1}\right) \cdots \prod_{\left\{i: E(i)=E_{k}\right\}} f\left(x_{i}, \theta, E_{k}\right) \tag{2.5}
\end{equation*}
$$

Of course, for any fixed E_{j}, the probability density function $f\left(x, \theta, E_{j}\right)$ of the trial E_{\jmath} for every $\theta=\left(\theta_{1}, \cdots, \theta_{k}\right)$ in Θ is considered as a function of θ_{ρ} only and independent of $\theta_{i}(i \neq j)$.

Definition of $\hat{\theta}_{n}$ and unique existence of the value. We denote as $\hat{\theta}_{n}$ the maximum likelihood estimate of θ. The j-th component of $\hat{\theta}_{n}$ will maximize the j-th likelihood function

$$
\prod_{\left\{i: E(i)=E_{j}\right\}} f\left(x_{i}, \theta, E_{j}\right)
$$

with respect to θ_{j}. We denote the value of θ_{j} which maximizes the j-th likelihood function as $\hat{\theta}_{n j}$. Then $\hat{\theta}_{n j}$ given by the n_{\jmath} trials of E_{j} is uniquely expressed as followings from the discussion of exponential family

$$
\begin{equation*}
\hat{\theta}_{n \jmath}=\frac{\sum_{\left\{i: E(i)=E_{j}\right\}} T_{j}\left(x_{i}\right)}{n_{J}} \tag{2.6}
\end{equation*}
$$

where $T_{j}(x)$ is a statistic of trial E_{\jmath} satisfying

$$
\int_{R} T_{j}(x) f\left(x, \theta, E_{j}\right) d x=\theta_{j} \quad(j=1, \cdots, k)
$$

as in (2.4). Hence our $\hat{\theta}_{n}$ is expressed as following, if $n_{j} \geqq 1(j=1, \cdots, k)$ is satisfied,

$$
\begin{equation*}
\hat{\theta}_{n}=\left\{\hat{\theta}_{n 1}, \cdots, \hat{\theta}_{n k}\right\} . \tag{2.7}
\end{equation*}
$$

And the uniqueness of $\hat{\theta}_{n}$ is reduced to that of $\hat{\theta}_{n j}$. So that we get the following lemma as to be proved.

Lemma 1. Under any sequence $E^{(1)}, \cdots, E^{(n)}$ if $n_{j} \geqq 1(j=1, \cdots, k)$ is satisfied then there exists $\hat{\theta}_{n}$ uniquely on our parameter space Θ.

Definition of $\tilde{\theta}_{n}$. Next we shall denote by $\tilde{\theta}_{n}$ the maximum likelihood estimate of θ on the subspace $a\left(\hat{\theta}_{n}\right)$ over the first n trials where $a(\theta)$ is defined as follows:

$$
\begin{array}{rlrlr}
a(\theta) & =\Theta-H_{i} & & \text { if } & \theta \in H_{2} \quad(i=1,2), \tag{2.8}\\
& =\Theta & & \text { if } & \theta \in \pi .
\end{array}
$$

Definition of sum of information. Now we define the sum of information to discriminate $\mu \cdot \theta>p$ or not using our $\hat{\theta}_{n}$ and $\tilde{\theta}_{n}$ as follows

$$
\begin{align*}
S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right) & =\sum_{i=1}^{n} \log \frac{f\left(x_{i}, \hat{\theta}_{n}, E^{(i)}\right)}{f\left(x_{i}, \tilde{\theta}_{n}, E^{(i)}\right)} \\
& =\log \frac{\max _{\theta \epsilon \Theta} \Pi_{i=1}^{n} f\left(x_{i}, \theta, E^{(i)}\right)}{\max _{\varphi \in a\left(\hat{\theta}_{n}\right)} \Pi_{\imath=1}^{n} f\left(x_{i}, \varphi, E^{(i)}\right)} \tag{2.9}
\end{align*}
$$

Definition of mean discrimination. As a measure of discrimination between two probability density functions $f\left(x, \theta, E_{j}\right), f\left(x, \varphi, E_{j}\right)$ we can use by Kullback [4]

$$
\begin{equation*}
I\left(\theta, \varphi, E_{j}\right)=\int_{R}\left[\log \frac{f\left(x, \theta, E_{j}\right)}{f\left(x, \varphi, E_{j}\right)}\right] f\left(x, \theta, E_{j}\right) d x \tag{2.10}
\end{equation*}
$$

where $\theta=\left(\theta_{1}, \cdots, \theta_{k}\right), \varphi=\left(\varphi_{1}, \cdots, \varphi_{k}\right)$ and $j=1, \cdots, k .{ }^{1)}$
Existence and uniqueness of $\tilde{\theta}_{n}$. To find $\tilde{\theta}_{n}$, we must minimize $S_{n}\left(\hat{\theta}_{n}, \varphi\right)$ with respect to φ in $a\left(\hat{\theta}_{n}\right)$ from the definition of $\tilde{\theta}_{n}$. Since $f\left(x, \theta, E_{j}\right)$ belongs to the exponential family defined in E_{\jmath} we have
so that

$$
\log \frac{\left.\Pi_{\{i: E}(i)=E_{j}\right]}{} f\left(x_{i}, \hat{\theta}_{n}, E_{j}\right)=n_{j} I\left(\hat{\theta}_{n}, \varphi, E_{j}\right)
$$

$$
S_{n}\left(\hat{\theta}_{n}, \varphi\right)=\sum_{j=1}^{k} n_{j} I\left(\hat{\theta}_{n}, \varphi, E_{j}\right) .
$$

Then we must find $\tilde{\theta}_{n}$ on $a\left(\hat{\theta}_{n}\right)$ which minimizes $\sum_{j=1}^{k} n_{j} I\left(\hat{\theta}_{n}, \varphi, E_{j}\right)$ with respect to φ. First we shall show the fact that $\tilde{\theta}_{n} \in \pi$ for all n. But this fact will be given evidently from the property of $\tilde{\theta}_{n}$ minimizing

$$
\sum_{j=1}^{k} n_{j} I\left(\hat{\theta}_{n}, \varphi, E_{j}\right)
$$

on $a\left(\hat{\theta}_{n}\right)$ with respect to φ, and the convexity of $I\left(\hat{\theta}_{n}, \varphi, E_{j}\right)$ with respect to $\varphi_{J}(j=1, \cdots, k)$ where $\varphi=\left(\varphi_{1}, \cdots, \varphi_{k}\right)$. Therefore we can search $\tilde{\theta}_{n}$ on π as to minimizing $S_{n}\left(\hat{\theta}_{n}, \varphi\right)$ with respect to φ. Put

$$
d S_{n}\left(\hat{\theta}_{n}, \varphi\right)=0
$$

then

$$
\begin{equation*}
\sum_{j=1}^{k} \frac{\partial S_{n}\left(\hat{\boldsymbol{\theta}}_{n}, \varphi\right)}{\partial \varphi_{J}} d \varphi_{j}=\frac{\partial S_{n}\left(\hat{\theta}_{n}, \varphi\right)}{\partial \varphi} \cdot d \varphi=0^{2)} \tag{2.11}
\end{equation*}
$$

and we have from $\varphi \in \pi: \mu \cdot \varphi=p$

$$
\begin{equation*}
\mu \cdot d \varphi=0 . .^{3)} \tag{2.12}
\end{equation*}
$$

[^1]Therefore we get from (2.11), (2.12)

$$
\begin{equation*}
\frac{\partial S_{n}\left(\hat{\boldsymbol{\theta}}_{n}, \varphi\right)}{\partial \varphi}=\text { Constant } \cdot \mu \text {. } \tag{2.13}
\end{equation*}
$$

Or equivalently

$$
\begin{equation*}
\frac{n_{1}}{\mu_{1}} \frac{d I\left(\hat{\theta}_{n}, \varphi, E_{1}\right)}{d \varphi_{1}}=\cdots=\frac{n_{k}}{\mu_{k}} \frac{d I\left(\hat{\boldsymbol{\theta}}_{n}, \varphi, E_{k}\right)}{d \varphi_{k}} . \tag{2.14}
\end{equation*}
$$

Hence from the relation (2.14) and the convexity of $I\left(\hat{\theta}_{n}, \varphi, E_{j}\right)$ with respect to φ_{j}, that is, $d I\left(\hat{\theta}_{n}, \varphi, E_{j}\right) / d \varphi_{j}$ is strictly increasing function of $\varphi_{J}(j=1, \cdots, k)$, we can find $\tilde{\theta}_{n}$ on π uniquely for any fixed n. Therefore if $\hat{\theta}_{n}$ is uniquely given for any fixed n then from (2.14) and $\mu \cdot \varphi=p$ we can find $\tilde{\theta}_{n}$ uniquely on π as to be proved.

Lemma 2. Under any sequence $E^{(1)}, \cdots, E^{(n)}$, if $n_{j} \geqq 1(j=1, \cdots, k)$ is satisfied then there exists $\tilde{\theta}_{n}$ uniquely on our hyperplane π.

Behavior of $\hat{\theta}_{n}$ under any sequence $E^{(1)}, E^{(2)}, \cdots$. Now we shall show the probability equals to zero that $\hat{\theta}_{n}$ does not converge for any sequence $E^{(1)}, E^{(2)}, \cdots$. The event that $\hat{\theta}_{n}$ does not converge is included in the event $\hat{\theta}_{n j}$ does not converge for some j. But this event would not occur from the strong law of large numbers. Hence $\hat{\theta}_{n}$ converges with probability 1 for any sequence $E^{(1)}, E^{(2)}, \cdots$.

Lemma 3. Under any sequence $E^{(1)}, E^{(2)}, \cdots$, our $\hat{\theta}_{n}$ converges with probability 1.
In the following line we put the limit point as θ_{0} tentatively. Next under any sequence $E^{(1)}, E^{(2)}, \cdots$, we shall prove the probability equals to zero that there exists some integer N such that $\hat{\theta}_{n} \in \pi$ is satisfied for all $n \geqq N$. For any sequence $E^{(1)}, E^{(2)}, \cdots$, there exists some integer j in $1, \cdots, k$ satisfying $n_{j} \rightarrow \infty$ as $n \rightarrow \infty$. And evidently the event that $\hat{\theta}_{n} \in \pi$ for all $n \geqq N$ reduced to the event $\hat{\theta}_{N}=\hat{\theta}_{N+1}=\cdots$, that is, the event that $\hat{\theta}_{N j}=\hat{\theta}_{N+1 j}=\cdots$ for all $j=1, \cdots, k$. But for some j satisfying $n_{j} \rightarrow \infty$ as $n \rightarrow \infty$ the event that the maximum likelihood estimate $\hat{\theta}_{n}$ gives an identical value for sufficiently large n occurs with probability zero by the zero one law. Hence the event that there exists some integer N such that $\hat{\theta}_{n} \in \pi$ is satisfied for all $n \geqq N$ would not occur at all. So that $\hat{\theta}_{n}$ does not exist on π frequentrly n for any sequence $E^{(1)}, E^{(2)}, \ldots$ with probability 1 as to be proved. This property of $\hat{\theta}_{n}$ will play an important part in following section.

§ 3. The optimal procedure \mathscr{L}^{*}.

Definition of sequence $\left\{\boldsymbol{\lambda}_{n}\right\}$. In this section, at first we shall define k dimensional ratio vector λ_{n} in each step n. For fixed $\hat{\theta}_{n}$, we define $\theta_{n}{ }^{*}$ on π in subspace of Θ

$$
R_{1}^{\operatorname{sign} \mu_{1}}\left(\hat{\theta}_{n}\right) \otimes \cdots \otimes R_{k}{ }^{\text {sign } \mu_{k}}\left(\hat{\theta}_{n}\right)
$$

where $R_{J}{ }^{-}\left(\hat{\theta}_{n}\right)=\left(-\infty, \hat{\theta}_{n j}\right]$ and $R_{J}{ }^{+}\left(\hat{\theta}_{n}\right)=\left[\hat{\theta}_{n \jmath},+\infty\right)$ such that following equality is satisfied

$$
\begin{equation*}
\frac{I\left(\hat{\theta}_{n}, \theta_{n}^{*}, E_{1}\right)}{c_{1}}=\cdots=\frac{I\left(\hat{\theta}_{n}, \theta_{n}^{*}, E_{k}\right)}{c_{k}} \tag{3.1}
\end{equation*}
$$

Unique existence of $\theta_{n} *$ for fixed $\hat{\theta}_{n}$ is given by the convexity of $I\left(\hat{\theta}_{n}, \varphi, E_{j}\right)$ with respect to φ_{j} for all j. If $\hat{\theta}_{n-1} \notin \pi$ then $\hat{\theta}_{n-1} \neq \theta_{n-1} *$. Using this $\hat{\theta}_{n-1}$ and $\theta_{n-1} *$ we shall define k dimensional vector $\lambda_{n}=\left(\lambda_{n 1}, \cdots, \lambda_{n k}\right)$ having k positive components uniquely by the two conditions $\lambda_{n 1}+\cdots+\lambda_{n k}=1$ and

$$
\begin{equation*}
\frac{\lambda_{n 1}}{\mu_{1}}\left[\frac{d I\left(\hat{\theta}_{n-1}, \varphi, E_{1}\right)}{d \varphi_{1}}\right]_{\varphi=\theta_{n-1}^{*}}=\cdots=\frac{\lambda_{n k}}{\mu_{k}}\left[\frac{d I\left(\hat{\theta}_{n-1}, \varphi, E_{k}\right)}{d \varphi_{k}}\right]_{\varphi=\theta_{n-1} *^{4}} \tag{3.2}
\end{equation*}
$$

And if $\hat{\theta}_{n-1} \in \pi$ then $\hat{\theta}_{n-1}=\theta_{n-1} *$ so we can not find λ_{n} uniquely. In this case, we put $\lambda_{n}=\lambda_{n-1}$, moreover we put $\lambda_{1}=(1,0, \cdots, 0), \cdots, \lambda_{k}=(0, \cdots, 0,1)$. In this way we can get λ_{n} uniquely for all n. Hence $\lambda_{1}, \lambda_{2}, \cdots$ is uniquely defined for any sequence $E^{(1)}, E^{(2)}, \cdots$. In the following line we shall call a vector having all positive components positive vector and denote a positive vector V as $V>0$.

Behavior of λ_{n} under any sequence $E^{(1)}, E^{(2)}, \cdots$. Next we shall investigate the behavior of the sequence λ_{n}. If the limit point $\boldsymbol{\theta}_{0}$ of $\hat{\theta}_{n}$ did not exist on our plane π then λ_{n} converges to a positive vector $\lambda_{0}=\left(\lambda_{01}, \cdots, \lambda_{0 k}\right)^{5)}$ satisfying $\sum_{\jmath=1}^{k} \lambda_{0 \jmath}=1$ and the next equality analogously as we defined λ_{n} uniquely by $\hat{\theta}_{n}$

$$
\begin{equation*}
\frac{\lambda_{01}}{\mu_{1}}\left[\frac{d I\left(\theta_{0}, \varphi, E_{1}\right)}{d \varphi_{1}}\right]_{\varphi=\theta_{0}{ }^{*}}=\cdots=\frac{\lambda_{0 k}}{\mu_{k}}\left[\frac{d I\left(\theta_{0}, \varphi, E_{k}\right)}{d \varphi_{k}}\right]_{\varphi=\theta_{0}{ }^{*}} \tag{3.3}
\end{equation*}
$$

where $\theta_{0} *$ is uniquely defined by θ_{0} on π in subspace

$$
R_{1} \operatorname{sign} \mu_{1}\left(\theta_{0}\right) \otimes \cdots \otimes R_{k} \operatorname{sign} \mu_{k}\left(\theta_{0}\right)
$$

satisfying that

$$
\begin{equation*}
\frac{I\left(\theta_{0}, \theta_{0}^{*}, E_{1}\right)}{c_{1}}=\cdots=\frac{I\left(\theta_{0}, \theta_{0} *, E_{k}\right)}{c_{k}} \tag{3.4}
\end{equation*}
$$

So then, under any sequence $E^{(1)}, E^{(2)}, \cdots$, if $\theta_{0}=\lim _{n \rightarrow \infty} \hat{\theta}_{n}$ does not exist on π, then $\lim _{n \rightarrow \infty} \lambda_{n}=\lambda_{0}>0$ with probability 1 .

Otherwise, if $\theta_{0}=\lim _{n \rightarrow \infty} \hat{\theta}_{n}$ exists on π, we shall show λ_{n} has a positive limit vector with probability 1 , as follows. From the assumption $\lim _{n \rightarrow \infty} \hat{\theta}_{n}=\theta_{0} \in \pi$ we get $\lim _{n \rightarrow \infty} \theta_{n} *=\theta_{0}$ with probability 1 so we have $\lim _{n \rightarrow \infty} \hat{\theta}_{n}=\lim _{n \rightarrow \infty} \theta_{n} *$ and $\lim _{n \rightarrow \infty} \tilde{\theta}_{n}=\theta_{0}$ with probability 1. By Taylor's expansion

$$
\begin{gather*}
I\left(\hat{\theta}_{n}, \theta_{n}{ }^{*}, E_{j}\right)=\frac{p_{j}\left(\hat{\theta}_{n}-\theta_{n}{ }^{*}\right)^{2}}{2!}\left[\frac{d^{2} I\left(\hat{\theta}_{n}, \varphi, E_{j}\right)}{d \varphi_{j}{ }^{2}}\right]_{\varphi=\bar{\theta}_{n}} \tag{3.5}\\
{\left[\frac{d I\left(\hat{\theta}_{n}, \varphi, E_{j}\right)}{d \varphi_{j}}\right]_{\varphi=\theta_{n}{ }^{*}}=p_{j}\left(\hat{\theta}_{n}-\theta_{n}{ }^{*}\right)\left[\frac{d^{2} I\left(\hat{\theta}_{n}, \varphi, E_{j}\right)}{d \varphi_{j}{ }^{2}}\right]_{\varphi=\overline{\bar{\theta}}_{n}}} \tag{3.6}
\end{gather*}
$$

[^2]where $p_{j}()$ is a projection of the vector in () to j-th coordinate, and $\bar{\theta}_{n}, \overline{\bar{\theta}}_{n}$ exists on the intervals
$$
0<p_{j}\left(\hat{\theta}_{n}-\bar{\theta}_{n}\right)<p_{j}\left(\hat{\theta}_{n}-\theta_{n} *\right), \quad 0<p_{j}\left(\hat{\theta}_{n}-\overline{\bar{\theta}}_{n}\right)<p_{j}\left(\hat{\theta}_{n}-\theta_{n} *\right),
$$
respectively, for any fixed j. Then $\bar{\theta}_{n}$ and $\overline{\bar{\theta}}_{n}$ converge to θ_{0} with probability 1. Therefore
\[

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\frac{d^{2} I I\left(\hat{\theta}_{n}, \varphi, E_{j}\right)}{d \varphi_{j}{ }^{2}}\right]_{\varphi=\bar{\theta}_{n}}=\lim _{n \rightarrow \infty}\left[\frac{d^{2} I\left(\hat{\theta}_{n}, \varphi, E_{j}\right)}{d \varphi_{j}{ }^{2}}\right]_{\varphi=\vec{\theta}_{n}}>0 . \tag{3.7}
\end{equation*}
$$

\]

So by the definition of λ_{n+1} (3.2)

$$
\begin{align*}
& {\left[\frac{\lambda_{n+12}}{\lambda_{n+1}}\right]^{2}=\left[\frac{\mu_{i}}{\mu_{j}}\right]^{2}\left[\frac{d I\left(\hat{\theta}_{n}, \varphi, E_{j}\right)}{d \varphi_{j}}\right]_{\varphi=\theta_{n} *}^{2} /\left[\frac{d I\left(\hat{\theta}_{n}, \varphi, E_{2}\right)}{d \varphi_{i}}\right]_{\varphi=\theta_{n}{ }^{*}}^{2}} \tag{3.8}\\
& \quad=\left[\frac{\mu_{i}}{\mu_{j}}\right]^{2} \frac{p_{j}\left(\hat{\theta}_{n}-\theta_{n}{ }^{*}\right)^{2}}{p_{i}\left(\hat{\theta}_{n}-\theta_{n}{ }^{*}\right)^{2}}\left[\frac{d^{2} I\left(\hat{\theta}_{n}, \varphi, E_{j}\right)}{d \varphi_{j}{ }^{2}}\right]_{\varphi=\overline{\bar{\theta}}_{n}}^{2} /\left[\frac{d^{2} I\left(\hat{\theta}_{n}, \varphi, E_{i}\right)}{d \varphi_{i}{ }^{2}}\right]_{\varphi=\bar{\theta}_{n}}^{2}
\end{align*}
$$

And by the definition of $\theta_{n}{ }^{*}$ (3.1)

$$
\frac{I\left(\hat{\theta}_{n}, \theta_{n}^{*}, E_{2}\right)}{c_{\imath}}=\frac{I\left(\hat{\theta}_{n}, \theta_{n}^{*}, E_{j}\right)}{c_{j}}
$$

Then we have

$$
\begin{equation*}
\frac{p_{j}\left(\hat{\theta}_{n}-\theta_{n}{ }^{*}\right)^{2}}{p_{i}\left(\hat{\theta}_{n}-\theta_{n}{ }^{*}\right)^{2}}=\frac{c_{j}}{c_{\imath}}\left[\frac{d^{2} I\left(\hat{\theta}_{n}, \varphi, E_{2}\right)}{d \varphi_{i}{ }^{2}}\right]_{\varphi=\bar{\theta}_{n}} /\left[\frac{d^{2} I\left(\hat{\theta}_{n}, \varphi, E_{j}\right)}{d \varphi_{j}{ }^{2}}\right]_{\varphi=\bar{\theta}_{n}} \tag{3.9}
\end{equation*}
$$

Therefore from (3.8)

$$
\begin{align*}
{\left[\frac{\lambda_{n+12}}{\lambda_{n+1 \jmath}}\right]^{2}=} & {\left[\frac{\mu_{i}}{\mu_{j}}\right]^{2} \frac{c_{j}}{c_{2}}\left[\frac{d^{2} I\left(\hat{\theta}_{n}, \varphi, E_{i}\right)}{d \varphi_{i}{ }^{2}}\right]_{\varphi=\bar{\theta}_{n}} /\left[\frac{d^{2} I\left(\hat{\theta}_{n}, \varphi, E_{j}\right)}{d \varphi_{j}{ }^{2}}\right]_{\varphi=\bar{\theta}_{n}} } \tag{3.10}\\
& \cdot\left[\frac{d^{2} I\left(\hat{\theta}_{n}, \varphi, E_{j}\right)}{d \varphi_{j}{ }^{2}}\right]_{\varphi=\overline{\bar{\theta}}_{n}}^{2} /\left[\frac{d^{2} I\left(\hat{\theta}_{n}, \varphi, E_{i}\right)}{d \varphi_{i}{ }^{2}}\right]_{\varphi=\overline{\bar{\theta}}_{n}}^{2}
\end{align*}
$$

So that
(3.11) $\lim _{n \rightarrow \infty}\left[\frac{\lambda_{n 2}}{\lambda_{n \jmath}}\right]^{2}=\left[\frac{\mu_{i}}{\mu_{j}}\right]^{2} \frac{c_{j}}{c_{2}}\left[\frac{d^{2} I\left(\theta_{0}, \varphi, E_{j}\right)}{d \varphi_{j}{ }^{2}}\right]_{\varphi=\theta_{0}} /\left[\frac{d^{2} I\left(\theta_{0}, \varphi, E_{2}\right)}{d \varphi_{i}{ }^{2}}\right]_{\varphi=\theta_{0}}$.

Since the right hand limit value is positive, our sequence λ_{n} has a positive limit vector with probability 1 , we put the vector as λ_{0} tentatively. As a conclusion we get in any sequence $E^{(1)}, E^{(2)}, \cdots$ there exists a positive vector λ_{0} such that $\lim _{n \rightarrow \infty} \lambda_{n}=\lambda_{0}>0$ is satisfied with probability 1 .

Lemma 4. Under any sequence $E^{(1)}, E^{(2)}, \cdots, \lambda_{n}$ converges to a positive vector as $n \rightarrow \infty$ with probability 1 .

The optimal procedure \mathscr{L}^{*}. Using the sequence $\lambda_{n}(n \geqq 1)$ defined above, we
consider $E^{(n)}(n \geqq 1)$ as a sequence of random variables which take values E_{1}, \cdots, E_{k} in each step n and have probabilities as follows, for each $n \geqq 1$

$$
\begin{equation*}
\text { Prob }\left\{E^{(n)}=E_{\jmath}\right\}=\lambda_{n \jmath} . \tag{3.12}
\end{equation*}
$$

In the following line we call this randomized policy procedure \mathscr{L}^{*}.
Proprety of our procedure \mathscr{L}^{*}. By Lemma 4 we observed the fact that in any sequence $E^{(1)}, E^{(2)}, \cdots$ there exists a positive vector λ_{0} such that λ_{n} converges to $\boldsymbol{\lambda}_{0}$. Using this fact we get under our procedure $\mathscr{L}^{*} n_{j} / n$ converges to j-th component $\lambda_{0 j}(>0)$ of the limit vector λ_{0} by the strong law of large numbers. Hence under our procedure $\mathscr{L}^{*} n_{j} \rightarrow \infty$ as $n \rightarrow \infty$ for any $j=1, \cdots, k$ is satisfied so that $\hat{\theta}_{n}$ converges to the unknown true parameter θ as to be proved.

Theorem 1. Under our procedure \mathscr{L}^{*}, $\hat{\theta}_{n}$ converges to the unknown true parameter θ as $n \rightarrow \infty$ with probability 1.

Next we suppose the unknown true parameter θ is not an element of π. Then there exists a positive vector λ uniquely given by θ, as we defined λ_{n} uniquely by $\hat{\theta}_{n-1}$ and λ_{0} uniquely by θ_{0}, such that $\lim _{n \rightarrow \infty} \lambda_{n}=\lambda$ is satisfied with probability 1 . This fact is shown as discussion of Lemma 4. Where the vector $\lambda=\left(\lambda_{1}, \cdots, \lambda_{k}\right)$ is defined satisfying $\sum_{\rho=1}^{k} \lambda_{\jmath}=1$ and analogousely as (3.3)

$$
\begin{equation*}
\frac{\lambda_{1}}{\mu_{1}}\left[\frac{d I\left(\theta, \varphi, E_{1}\right)}{d \varphi_{1}}\right]_{\varphi=\theta^{*}}=\cdots=\frac{\lambda_{k}}{\mu_{k}}\left[\frac{d I\left(\theta, \varphi, E_{k}\right)}{d \varphi_{k}}\right]_{\varphi=\theta^{*}} \tag{3.13}
\end{equation*}
$$

where θ^{*} is uniquely defined by θ on π in subspace

$$
R_{1} \operatorname{sign} \mu_{1}(\theta) \otimes \cdots \otimes R_{k} \operatorname{sign} \mu_{k}(\theta)
$$

satisfying that analogously as (3.4)

$$
\begin{equation*}
\frac{I\left(\theta, \theta^{*}, E_{1}\right)}{c_{1}}=\cdots=\frac{I\left(\theta, \theta^{*}, E_{k}\right)}{c_{k}} . \tag{3.14}
\end{equation*}
$$

Otherwise if the unknown true parameter θ is an element of π, then under our procedure \mathscr{L}^{*}, from the result of Lemma $4, \lambda_{n}$ converges to a positive vector with probability 1. Hence under our procedure \mathscr{L}^{*} if $\theta \notin \pi$ then n_{j} / n converges to $\lambda_{j}(j=1, \cdots, k)$ with probability 1 , and if $\theta \in \pi$ then n_{j} / n converges to a positive value with probability 1 as to be proved.

Corollary 1. Under our procedure \mathscr{L}^{*}, if the true unknown parameter θ is not an element of π then ($n_{1} / n, \cdots, n_{k} / n$) converges to our vector $\lambda(>0)$, defined in (3.13), is satisfied with probability 1, and otherwise if the true unknown parameter θ is an element of π then $\left(n_{1} / n, \cdots, n_{k} / n\right)$ converges to a positive vector is satisfied with probability 1.

Optimal condition and optimal ratio vector. As a conclusion of Corollary 1, we have shown under our procedure \mathscr{L}^{*} that if $\theta \not \ddagger \pi$, then $n_{j} / n \rightarrow \lambda_{j}$ with probability 1 ,
and otherwise if $\theta \in \pi$, then n_{j} / n converges to a positive value ($j=1, \cdots, k$) with probability 1. In the following line we call this proposition as optimal condition and the vector λ defined in (3.13) as optimal ratio vector. The meaning of optimality will be given in following main theorems of next section.

§ 4. Main theorems and the proofs.

Under the optimal condition given in the preceding section, if the true unknown parameter θ is not an element of π, then we get $\lim _{n \rightarrow \infty} \tilde{\theta}_{n}=\theta^{*}$ with probability 1 , from the two equalities (2.14), (3.13)

$$
\begin{align*}
& \frac{n_{1}}{\mu_{1}}\left[\frac{d I\left(\hat{\theta}_{n}, \varphi, E_{1}\right)}{d \varphi_{1}}\right]_{\varphi=\tilde{\theta}_{n}}=\cdots=\frac{n_{k}}{\mu_{k}}\left[\frac{d I\left(\hat{\theta}_{n}, \varphi, E_{k}\right)}{d \varphi_{k}}\right]_{\varphi=\tilde{\theta}_{n}}, \tag{2.14}\\
& \frac{\lambda_{1}}{\mu_{1}}\left[\frac{d I\left(\theta, \varphi, E_{1}\right)}{d \varphi_{1}}\right]_{\varphi=\theta^{*}}=\cdots=\frac{\lambda_{k}}{\mu_{k}}\left[\frac{d I\left(\theta, \varphi, E_{k}\right)}{d \varphi_{k}}\right]_{\varphi=\theta^{*}} . \tag{3.13}
\end{align*}
$$

So we get

$$
\lim _{n \rightarrow \infty} \frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{j}\right)}{c_{j}}=I^{*}(\theta)
$$

with probability 1 , where $I^{*}(\theta)$ is the value of (3.14)

$$
\begin{equation*}
I^{*}(\theta)=\frac{I\left(\theta, \theta^{*}, E_{1}\right)}{c_{1}}=\cdots=\frac{I\left(\theta, \theta^{*}, E_{k}\right)}{c_{k}} \tag{3.14}
\end{equation*}
$$

And from the definitions of $S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)$ and $\sum_{\imath=1}^{n} C^{(i)}$

$$
\begin{equation*}
\frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{i=1}^{n} C^{(i)}}=\frac{n_{1} I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{1}\right)+\cdots+n_{k} I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{k}\right)}{n_{1} c_{1}+\cdots+n_{k} c_{k}} \tag{4.1}
\end{equation*}
$$

Hence the sum of information relative to the sum of costs for the first n trials to discriminate $\mu \cdot \theta>p$ or not

$$
\frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{\imath=1}^{n} C^{(i)}}
$$

converges to the value $I^{*}(\theta)$ with probability 1 as to be proved. And otherwise if the true unknown parameter θ is an element of π, then we get $\lim _{n \rightarrow \infty} \tilde{\theta}_{n}=\theta$ with probability 1 . So we get

$$
\lim _{n \rightarrow \infty} \frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{j}\right)}{c_{J}}=0
$$

with probability 1. Hence our

$$
\frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{\imath=1}^{n} C^{(i)}}
$$

converges to zero with probability 1 as to be proved.
Theorem 2. Under our optimal condition if the true unknown parameter θ is not an element of π then we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{i=1}^{n} C^{(i)}}=I^{*}(\theta) \tag{4.2}
\end{equation*}
$$

with probability 1, and otherwise if the true unknown parameter θ is an element of π then we get

$$
\frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{i=1}^{n} C^{(i)}}
$$

converges to zero with probability 1.
By Corollary 1 we have shown that our procedure \mathscr{L}^{*} has a property of optimal condition. Therefore we have next corollary.

Corollary 2. Under our procedure \mathbb{L}^{*} we get the same result as given in Theorem 2.

Meaning of optimality. In the following line we consider a class of procedure satisfying $\min _{j}\left(n_{j}\right) \rightarrow \infty$ as $n \rightarrow \infty$, and ($n_{1} / n, \cdots, n_{k} / n$) converges to vector $\lambda^{\prime}=\left(\lambda_{1}{ }^{\prime}, \cdots, \lambda_{k}{ }^{\prime}\right)$ where $\sum_{j=1}^{k} \lambda_{j}{ }^{\prime}=1$. In this class of procedure we shall show that our procedure \mathscr{L}^{*} is asymptotically most informative one relative to the sum of costs to discriminate $\mu \cdot \theta<p$ or not. That is, under another procedure $\mathscr{L}^{* *}$ having the limit ratio λ^{\prime} different from our ratio λ we can get asymptotically less information relative to the sum of costs to discriminate $\mu \cdot \theta>p$ or not than we get using our procedure \mathscr{L}^{*}. Under the procedure $\mathscr{L}^{* *}$, fixed by the limit ratio λ^{\prime} different from our ratio λ, how much information to discriminate $\mu \cdot \theta>p$ or not we can get asymptotically relative to the sum of costs? From the first condition that $\min _{j}\left(n_{j}\right) \rightarrow \infty$ as $n \rightarrow \infty$ we get $\lim _{n \rightarrow \infty} \hat{\theta}_{n}=\theta$ with probability 1 . If we assume the true parameter θ does not exist on π then for a given ratio in the second condition: $\left(n_{1} / n, \cdots, n_{k} / n\right)$ converges to ratio $\lambda^{\prime}=\left(\lambda_{1}{ }^{\prime}, \cdots, \lambda_{k}{ }^{\prime}\right)$ as $n \rightarrow \infty\left(\lambda^{\prime} \neq \lambda\right)$, we can define $\theta^{* *}$ uniquely as an element of π and satisfying

$$
\begin{equation*}
\frac{\lambda_{1}^{\prime}}{\mu_{1}}\left[\frac{d I\left(\theta, \varphi, E_{1}\right)}{d \varphi_{1}}\right]_{\varphi=0^{* *}}=\cdots=\frac{\lambda_{k}^{\prime}}{\mu_{k}}\left[\frac{d I\left(\theta, \varphi, E_{k}\right)}{d \varphi_{k}}\right]_{\varphi=\theta^{* *}} . \tag{4.3}
\end{equation*}
$$

From the equality (2.14)' defining $\tilde{\theta}_{n}$ uniquely on our hyperplane π we can verify $\lim _{n \rightarrow \infty} \tilde{\theta}_{n}=\theta^{* *}$ with probability 1. Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{\imath=1}^{n} C^{(i)}}=\frac{\lambda_{1}^{\prime} I\left(\theta, \theta^{* *}, E_{1}\right)+\cdots+\lambda_{k}^{\prime} I\left(\theta, \theta^{* *}, E_{k}\right)}{\lambda_{1}^{\prime} c_{1}+\cdots+\lambda_{k}^{\prime} c_{k}} \tag{4.4}
\end{equation*}
$$

is satisfied with probability 1 . So we denote the limit value under the procedure
$\mathscr{L}^{* *}$ as $I^{* *}(\theta)$ in the following line. From the inequality $\boldsymbol{\lambda}^{\prime} \neq \boldsymbol{\lambda}$ in the second condition we have $\theta^{* *} \neq \theta^{*}$ so we get the next inequality

$$
\begin{equation*}
\lambda_{1}^{\prime}\left(\theta, \theta^{* *}, E_{1}\right)+\cdots+\lambda_{k}^{\prime} I\left(\theta, \theta^{* *}, E_{k}\right)<\lambda_{1}^{\prime} I\left(\theta, \theta^{*}, E_{1}\right)+\cdots+\lambda_{k}^{\prime} I\left(\theta, \theta^{*}, E_{k}\right) . \tag{4.5}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
I^{* *}(\theta)<I^{*}(\theta) \tag{4.6}
\end{equation*}
$$

Otherwise if the true parameter θ is an element of π then we have $\lim _{n \rightarrow \infty} \tilde{\theta}_{n}=\theta$ with probability 1 . So that

$$
\frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{\imath=1}^{n} C^{(i)}}
$$

converges to zero with probability 1 as to be proved.
Theorem 3. Under any procedure $\mathscr{L}^{* *}$, satisfying $\min _{j}\left(n_{j}\right) \rightarrow \infty$ as $n \rightarrow \infty$ and $\left(n_{1} / n, \cdots, n_{k} / n\right)$ converges to $\lambda^{\prime}=\left(\lambda_{1}{ }^{\prime}, \cdots, \lambda_{k^{\prime}}\right)$ as $n \rightarrow \infty\left(\lambda^{\prime} \neq \lambda\right)$, if the true unknown parameter θ is not an element of π then we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{\imath=1}^{n} C^{(i)}}=I^{* *}(\theta)<I^{*}(\theta) \tag{4.7}
\end{equation*}
$$

is satisfied with probability 1. And otherwise if the true unknown parameter θ is an element of π then

$$
\frac{S_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right)}{\sum_{\imath=1}^{n} C^{(i)}}
$$

converges to zero with probability 1.
Having expected the meaning of Theorem 3 we have called the property of our procedure \mathscr{L}^{*} as optimal condition or having optimal ratio vector.

§ 5. Original procedure \mathscr{L} in the case $\boldsymbol{k}=\mathbf{2}$.

Original procedure \mathscr{L}. We consider two exponential trials E_{1}, E_{2} and use the procedure \mathscr{L} given in [2], [3] that is $E^{(1)}=E_{1}, E^{(2)}=E_{2}$ and for $n \geqq 2$ we define successively

$$
\begin{equation*}
E^{(n+1)} \in\left\{E: \text { which maximizes } \frac{I\left(\hat{\theta}_{n}, \tilde{\theta}_{n}, E_{i}\right)}{c_{\imath}} \quad(i=1,2)\right\} . \tag{5.1}
\end{equation*}
$$

Under this procedure \mathscr{P} we shall show the optimal condition. Following to Lemma 3 , under any sequence we have $\hat{\theta}_{n}$ converges with probability 1 . By Lemma $4 \lambda_{n}$ converges to a positive ratio vector with probability 1 . And also the procedure \mathscr{L} has a property $n_{j} / n-\lambda_{n j}$ converges to zero as $n \rightarrow \infty$ with probability 1 as the proof
given in our paper [2]. Therefore n_{j} / n converges to a positive value with probability 1. So that under the procedure \mathscr{L} we have $\min \left(n_{1}, n_{2}\right) \rightarrow \infty$ as $n \rightarrow \infty$ with probability 1. Hence under the procedure \mathscr{L} we have $\hat{\theta}_{n} \rightarrow \theta$ as $n \rightarrow \infty$ with probability 1. If the true parameter θ is not an element of π then λ_{n} converges to λ with probability 1 . Then n_{j} / n converges to λ_{j} with probability 1 . And otherwise n_{j} / n converges to a positive value with probability $1(j=1,2)$ respectively. Therefore we can verify the procedure \mathcal{P} also have the optimal condition as to be proved. Then by Theorem 2 we get the limit equality (4.2) with probability 1 . Hence this procedure \mathscr{P} also has the optimal property, that is, most informative relative to the sum of costs than any other procedure having the two conditions $n_{j} \rightarrow \infty$ as $n \rightarrow \infty,\left(n_{1} / n, n_{2} / n\right)$ converges to $\lambda^{\prime}=\left(\lambda_{1}{ }^{\prime}, \lambda_{2}{ }^{\prime}\right)$ as $n \rightarrow \infty\left(\lambda^{\prime} \neq \lambda\right)$.

Example of the case $k=2$. We consider two trials E_{1}, E_{2} depending normal distributions with unknown means and known variances respectively. Then the density functions of E_{1}, E_{2} are expressed as follows

$$
\begin{equation*}
f\left(x, \theta, E_{j}\right)=\frac{1}{\sqrt{2 \pi \sigma_{J}}} \exp \left\{-\frac{\left(x-m_{j}\right)^{2}}{2 \sigma_{J}{ }^{2}}\right\} \quad(j=1,2) \tag{5.2}
\end{equation*}
$$

where $\theta=\left(m_{1}, m_{2}\right)$ is the pair of unknown means, then we get

$$
\begin{equation*}
I\left(\theta, \varphi, E_{j}\right)=\frac{\left(m_{j}-m_{j}{ }^{*}\right)^{2}}{2 \sigma_{j}{ }^{2}} \quad(j=1,2) \tag{5.3}
\end{equation*}
$$

where $\theta=\left(m_{1}, m_{2}\right), \varphi=\left(m_{1}{ }^{*}, m_{2}{ }^{*}\right)$. And the subspaces H_{1}, H_{2} and π are given by $\mu=\left(\mu_{1}, \mu_{2}\right)$ and p, that is

$$
\begin{gather*}
H_{1}=\left\{\theta: \mu_{1} m_{1}+\mu_{2} m_{2}>p\right\}, \quad H_{2}=\left\{\theta: \mu_{1} m_{1}+\mu_{2} m_{2}<p\right\}, \\
\pi=\left\{\theta: \mu_{1} m_{1}+\mu_{2} m_{2}=p\right\} . \tag{5.4}
\end{gather*}
$$

And $\lim _{n \rightarrow \infty} \tilde{\theta}_{n}=\theta^{*}$ is given uniquely by the equality (3.14) and $\theta^{*} \in \pi$.

$$
\begin{equation*}
\frac{\left(m_{1}-m_{1}{ }^{*}\right)^{2}}{2 c_{1} \sigma_{1}{ }^{2}}=\frac{\left(m_{2}-m_{2}{ }^{*}\right)^{2}}{2 c_{2} \sigma_{2}{ }^{2}} \tag{5.5}
\end{equation*}
$$

where $\theta=\left(m_{1}, m_{2}\right)$ is the true parameter and $\theta^{*}=\left(m_{1}{ }^{*}, m_{2}{ }^{*}\right)$ is the limit point of $\tilde{\theta}_{n}$. And the limit value of (4.2) $I^{*}(\theta)$ is given as the value of (5.5). Moreover we put $\mu_{1}=1 / \sqrt{2}, \mu_{2}=-1 / \sqrt{2}$ and $p=0$ then our subspaces become as following

$$
\begin{gather*}
H_{1}=\left\{\left(m_{1}, m_{2}\right): m_{1}>m_{2}\right\}, \quad H_{2}=\left\{\left(m_{1}, m_{2}\right): m_{1}<m_{2}\right\}, \\
\pi=\left\{\left(m_{1}, m_{2}\right): m_{1}=m_{2}\right\} . \tag{5.6}
\end{gather*}
$$

In this case we can get the optimal ratio λ as following by (3.13)

$$
\begin{equation*}
\frac{\lambda_{1}\left(m_{1}-m_{1}{ }^{*}\right)}{\sigma_{1}{ }^{2}}=-\frac{\lambda_{2}\left(m_{2}-m_{2}{ }^{*}\right)}{\sigma_{2}{ }^{2}} \tag{5.7}
\end{equation*}
$$

Therefore from the two relations (5.5), (5.7) we get the optimal ratio λ as next
value uniformly on $\Theta .{ }^{6}$

$$
\begin{equation*}
\lambda=\left(\frac{\sqrt{\overline{c_{2}}} \sigma_{1}}{\sqrt{c_{1}} \sigma_{2}+\sqrt{c_{2}} \sigma_{1}}, \frac{\sqrt{c_{1}} \sigma_{2}}{\sqrt{c_{1}} \sigma_{2}+\sqrt{c_{2}} \sigma_{1}}\right) \tag{5.8}
\end{equation*}
$$

Here we additionally suppose $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$, then the optimal ratio λ becomes

$$
\begin{equation*}
\lambda=\left(\frac{\sqrt{c_{2}}}{\sqrt{c_{1}}+\sqrt{c_{2}}}, \frac{\sqrt{c_{1}}}{\sqrt{c_{1}}+\sqrt{c_{2}}}\right) \tag{5.9}
\end{equation*}
$$

We can see this result in our paper [3], that is, this result of Section 5 is a generalization of papers [2], [3] as to be proved.

Acknowledgement. The auther expresses hearty thanks to Professor K. Kunisawa for many useful suggestions.

References

[1] Chernoff, H., Sequential design of experiments. Ann. Math. Stat. 30 (1959), 755-770.
[2] Kawamura, K., Asymptotic behavior of sequential design with costs of experiments. Kōdai Math. Sem. Rep. 16 (1964), 169-182.
[3] Kawamura, K., Asymptotic behavior of sequential design with costs of experiments (The case of normal distribution). Kōdai Math. Sem. Rep. 17 (1965), 48-52.
[4] Kullback, S., Information theory and statistics. (1959), Wiley.
[5] Kunisawa, K., Modern probability theory. 12th Ed. (1963), Iwanami Co. (In Japanese)
[6] Kunisawa, K., Introduction to information theory for operations research. 4th Ed. (1963), J. U.S.E. (In Japanese)

[^3]
[^0]: Received June 30, 1966.

[^1]: 1) In this paper we assumed as a restriction of density function of $E_{j}(j=1, \ldots, k)$ that continuity of $d^{2} I\left(\theta, \varphi, E_{j}\right) / d \varphi_{j}{ }^{2}$ with respect to φ_{J} for any fixed θ_{j} in the interval $\theta_{J}(j=1, \cdots, k)$ respectively.
 2) $\partial S_{n}\left(\hat{\theta}_{n}, \varphi\right) / \partial \varphi \cdot d \varphi$ is the innerproduct of two vectors $\partial S_{n}\left({ }_{n}, \varphi\right) / \partial \varphi=\left(\partial S_{n}(n, \varphi) / \partial \varphi_{1}\right.$, $\left.\cdots, \partial S_{n}\left({ }_{-}^{n}, \varphi\right) / \partial \varphi_{k}\right)$ and $d \varphi=\left(d \varphi_{1}, \cdots, d \varphi_{k}\right)$.
 3) $\mu \cdot d \varphi$ is also the innerproduct of the vectors $\mu=\left(\mu_{1}, \cdots, \mu_{k}\right)$ and $d \varphi=\left(d \varphi_{1}, \cdots, d \varphi_{k}\right)$.
[^2]: 4) If $\hat{\theta}_{n-1} \nsubseteq \pi$ then we can define λ_{n} uniquely by (3.2), where $\theta_{n-1} *$ in (3.2) is defined uniquely by $\hat{\theta}_{n-1}$ from (3.1). Hence we can consider λ_{n} as a function of $\hat{\ell}_{n-1}: \lambda_{n}=\lambda_{n}\left(\hat{\theta}_{n-1}\right)$.
 5) Where λ_{0} is uniquely given as a function of the limit point $\theta_{0}: \lambda_{0}=\lambda_{0}\left(\theta_{0}\right)$.
[^3]: 6) Generally λ is a function of θ on $\theta(\theta \nexists \pi)$ but, in this special example of trials E_{1}, E_{2} with normal distributions of the case $k=2, \lambda$ does not depending on θ, that is, λ equals to a constant value uniformly on $\theta(\theta \nexists \pi)$.

 This is the reason why, in this case of special example, the optimal procedure \mathscr{P} does not depending on previous observations till now but only on sample sizes till now as we showed in the note in [3].

