ON AN ADAPTIVE PROCESS FOR LEARNING FINITE PATTERNS

By Yasuichi Horibe

1. Introduction.

It may be possible to state that pattern recognition belongs to a broad concept of classification. When an abstract organ or system is exposed to a sequence of elements from a specified set of stimuli or patterns, one of the important features for the organ's recognition problem is the mechanism of adaptive learning of stimulus classification.

Specifically a certain trainer teaches the organ if it has correctly responded to the current stimulus. Therefore the trainer may be considered in a simple case as a function of input stimulus and its corresponding output response.

It is desirable to find a class of functions of this type which leads the organ to a successful classification of stimuli, whatever the initial state of the organ. Trained step by step under a stimulus sequence by a successfully leading trainer, the organ becomes ultimately to classify the set of stimuli correctly at least to a satisfactory degree. Hence the convergence of organ's state will be an interesting problem.

We shall consider, in this paper, for a class of linear trainers some aspects of the convergence problem, which assure the potentialities of the model formulated here.

2. Formulation and definitions.

Suppose that an organ is given a finite set of stimuli: $S=\{1,2, \cdots, k+l\}$, which is pre-dichotomized into positive class S^{+}and negative class S^{-}such that

$$
S^{+}=\{1, \cdots, k\}, \quad S^{-}=\{k+1, \cdots, k+l\} .
$$

After the perception of each stimulus, it is encoded possibly by a random method into a binary n-sequence, i.e. a vector with n components of 0 or 1 . In other words the set S is mapped into the set of all 0 or 1 component vertices of the unit hypercube in the n-dimensional Euclidean space. Therefore we have for stimulus j its code $f_{j}^{\prime}=\left(\sigma_{11}, \cdots, \sigma_{n j}\right)$, where $\sigma_{\imath \jmath}=0$ or 1 , for $i=1, \cdots, n$ and $j=1, \cdots, k+l$, and f_{\jmath}^{\prime} is the transpose of column vector f_{j}.

Although elements in the code set $F=\left\{f_{1}, \cdots, f_{k}, f_{k+1}, \cdots, f_{k+l}\right\}$ are not necessarily
Received June 6, 1966.
distinct, it is not inconvenient to assume to regard them as formally different from one another, hence we may call f_{\jmath} itself stimulus f_{j}, and also sets $F^{+}=\left\{f_{1}, \cdots, f_{k}\right\}$ and $F^{-}=\left\{f_{k+1}, \cdots, f_{k+l}\right\}$ may be called positive and negative classes respectively.

Definition 1. Classification function ξ is a mapping: $F \rightarrow\{1,-1\}$ defined as follows: $\xi(f)=-1$ if $f \in F^{+}$and -1 if $f \in F^{-}$.

Definition 2. Random stimuli x_{t} at times $t=0,1, \cdots$ are random vectors which are mutually independent, each taking values in F independently with pre-assigned probability distribution for every $t=0,1, \cdots$.

Definition 3. The initial state w_{0} of the organ is an arbitrarily fixed column vector with n components.

Definition 4. The state w_{t} at time t of the organ with initial state w_{0} is a random column vector defined by the following recurrence relation:

$$
\begin{equation*}
w_{t+1}=w_{t}+\tau\left(\xi_{t}, \Delta_{t}\right) x_{t}, \tag{1}
\end{equation*}
$$

where we put $\xi_{t}=\xi\left(x_{t}\right)$ and $\Delta_{t}=w_{t}^{\prime} x_{t}-\theta, \tau(u, v)$ is a real valued function of two variables u and v which is called trainer of the organ, and θ is a fixed real number called threshold value.

Since we assume that the organ which is in state w_{t} at time interval $[t-1, t)$ receives stimulus x_{t} at time t, we have:

Assumption 1. w_{t} and x_{t} are independent for any $t=0,1, \cdots$. By this assumption it is not confusing to wright (1) as:
(1)*

$$
w_{t+1}=w_{t}+\tau\left(\xi, w_{t}^{\prime} x-\theta\right) x,
$$

t being omitted for ξ_{t} and x_{t}.
Definition 5. The response of the organ consists of $1,-1$, and * which are determined by the current stimulus x_{t}, the current state w_{t}, and θ as follows: 1 if $\Delta_{t}>0,-1$ if $\Delta_{t}<0$, and ${ }^{*}$ if $\Delta_{t}=0$, where ${ }^{*}$ means don't care.

Definition 6. The solution space $S(\theta)$ for θ is the set of all column vectors w with n components such that $w^{\prime} f>\theta$ if $f \in F^{+}$, and $w^{\prime} f<\theta$ if $f \in F^{-}$. Therefore the solution space forms an open convex set determined by $k+l$ hyperplanes in n dimensional Euclidean space.

3. A class of linear trainers.

The class of trainers $\left\{\tau_{\alpha} ; \alpha>0\right\}$ considered in this paper is essentially owed to B. Widrow introduced in [2], having the following linear form: $\tau_{\alpha}(u, v)=u-\alpha v$. Hence we have from (1)* that

$$
\begin{equation*}
w_{t+1}=w_{t}+\left(\xi-\alpha\left(w_{t}^{\prime} x-\theta\right)\right) x . \tag{2}
\end{equation*}
$$

The behavior of the organ in the case that $\alpha=0$, i.e. the trainer disregards the organ's responses is called forced learning [1].

Now let us see how the organ is trained by τ_{α}.
(a) The case $x \in F^{+}$.

Then $\xi=1$. If the organ incorrectly responds, i.e.

$$
-\Delta=w_{t}^{\prime} x-\theta<0, \text { then } w_{t+1}=w_{t}(1+\alpha \Delta) x .
$$

If, however, the organ correctly responds, i.e.

$$
\Delta=w_{t}^{\prime} x-\theta>0, \text { then } w_{t+1}=w_{t}+(1-\alpha \Delta) x .
$$

(b) The case $x \in F^{-}$.

Then $\xi=-1$. If the organ incorrectly responds, i.e.

$$
\Delta=w_{t}^{\prime} x-\theta>0, \text { then } w_{t+1}=w_{t}-(1+\alpha \Delta) x
$$

If, however, the organ correctly responds, i.e.

$$
-\Delta=w_{t}^{\prime} x-\theta<0, \text { then } w_{t-1}=w_{t}-(1-\alpha \Delta) x .
$$

In either case a stronger reinforcement is performed in incorrect response rather than in correct response.
4. Martinez's necessary and sufficient condition for the convergence of the expection of \boldsymbol{w}_{t}.

The first step for considering the validity of the trainer τ_{α} is to investigate the convergence of the expectation of w_{t}, when $t \rightarrow \infty$.

A proof of the theorem stated at the end of the section, which is due to Martinez [2], will be given here but with more succinctness.

If we define the $n \times n$ random matrix X such that its (i, j)-th element is the product of i-th and j-th components of x, we can easily rewright (2) as:

$$
\begin{equation*}
w_{t+1}=(\xi+\alpha \theta) x+(I-\alpha X) w_{t}, \tag{3}
\end{equation*}
$$

where I is the identity matrix.
By assumption 1, X and w_{t} are obviously independent for any $t=0,1, \cdots$, so taking expectation E on both sides of (3) results in the following simple vectorial recurrence equation for m_{t} :

$$
\begin{equation*}
m_{t+1}=a+A_{a} m_{t}, \quad t=0,1, \cdots, \tag{4}
\end{equation*}
$$

where we put $m_{t}=E\left(w_{t}\right), a=E(\xi x+\alpha \theta x), A_{\alpha}=I-\alpha A$, and $A=E(X)$.
Note that expectation of random matrix (including random vector) is understood as elementwise expectation. Note further than m_{0} is equal to initial state w_{0}.

The solution of the differance equation (4) is

$$
\begin{equation*}
m_{t}=\left(I+A_{\alpha}+A_{\alpha}^{2}+\cdots+A_{\alpha}^{t-1}\right) a+A_{\alpha}^{t} w_{0} \tag{5}
\end{equation*}
$$

We are interested in the convergence of m_{t}, when $t \rightarrow \infty$, regardless of what initial
state is a starting point of the training.
Now we know that the necessary and sufficient condition for A_{α}^{t} to converge to zero-matrix 0 when $t \rightarrow \infty$ is that every eigenvalue of A_{α} is less than unity in absolute value. Hence we impose that $\max _{1 \leqq i \leqq n}\left|\gamma_{i}\right|<1$, where $\gamma_{2}, i=1, \cdots, n$, are eigenvalues of A_{α}. Since $A_{\alpha}=I-\alpha A$, the set of equalities: $\operatorname{det}\left(A_{\alpha}-\gamma_{i} I\right)=0, i=1, \cdots, n$, may be rewritten as $\operatorname{det}\left(A-\left(\left(1-\gamma_{2}\right) / \alpha\right) I\right)=0, i=1, \cdots, n$. Therefore $\left(1-\gamma_{i}\right) / \alpha, i=1, \cdots, n$, are eigenvalues of A. If $\left(1-\gamma_{2}\right) / \alpha \leqq 0$ for some i, then $\gamma_{i} \geqq 1$, since $\alpha>0$. Hence we necessitate the condition that all eigenvalues of A are positive, i.e. A is positive definite. In addition if we choose α such that $\alpha<2 / \lambda(A)$ where $\lambda(A)$ is the largest eigenvalue of the positive definite matrix A, then we have that

$$
\max _{1 \leq i \leq n}\left|1-\alpha \lambda_{i}\right|=\max _{1 \leq i \leq n}\left|\gamma_{i}\right|<1,
$$

$\lambda_{\imath}, i=1, \cdots, n$, being eigenvalues of A.
Therefore the necessary and sufficient condition for $A_{\alpha}^{t} \rightarrow 0$, when $t \rightarrow \infty$, is that A is positive definite and $0<\alpha<2 / \lambda(A)$.

Note that A is non-negative definite, i.e. either positive definite or positive semidefinite, since for any vector $v^{\prime}=\left(v_{1}, \cdots, v_{n}\right)$, we have that $v^{\prime} A v=E\left(\sum_{i=1}^{n} v_{i} x_{i}\right)^{2} \geqq 0$. A simple example shows that positive definiteness of A can not always be valid.

In conclusion we have the following theorem, since $\max _{1 \leqq i \leqq n}\left|\gamma_{i}\right|<1$ ascertains the convergence of the series:

$$
I+A_{\alpha}+A_{\alpha}^{2}+\cdots
$$

Theorem 1. When $t \rightarrow \infty, m_{t}$ converges independently of the initial state w_{0} it and only if A is positive definite and the constant α satisfies that $0<\alpha<2 / \lambda(A)$.

Henceforth we shall always be under the following assumption:
Assumption 2. The matrix A defined above is positive definite.

5. A note on an upper bound for $\lambda(\boldsymbol{A})$.

The largest eigenvalue of a non-negative matrix, i.e. the matrix whose elements are all non-negative, is the so called Frobenius root of the matrix. By the well known theorem of Frobenius [3], for non-negative matrices A_{1} and A_{2}, it follows that $\lambda\left(A_{1}\right) \geqq \lambda\left(A_{2}\right)$ if $A_{1} \geqq A_{2}$, where $\lambda\left(A_{1}\right)$ and $\lambda\left(A_{2}\right)$ are Frobenius roots for A_{1} and A_{2} respectively, and the order relation for matrices is defined if the same order is preserved componentwise.

Since every element $a_{i j}$ of A is obviously seen to satisfies that $0 \leqq a_{i j} \leqq 1$, if we denote by E the $n \times n$ matrix whose elements are all unity, then we have $A \leqq E$, therefore we have that $\lambda(A) \leqq \lambda(E)=n$, since it is readily seen that

$$
\operatorname{det}(E-\lambda I)=(-\lambda)^{n-1}(n-\lambda)
$$

Note here that $A \neq E$, which will be remarked in section 7 .

6. Possibility for the limiting value of m_{t} to be a solution, for the case of uniform probability distribution.

If we denote by m_{∞} the limiting value of m_{t} when $t \rightarrow \infty$, then by (5) we have:

$$
\begin{equation*}
m_{\infty}=\left(I-A_{\alpha}\right)^{-1} a=\frac{1}{\alpha} A^{-1} a . \tag{6}
\end{equation*}
$$

Consider now whether m_{∞} itself is a solution, i.e. whether $m_{\infty} \in S(\theta)$ for some θ and α, where θ is any real number and α satisfies that $0<\alpha<2 / \lambda(A)$.

Only for simplicity we consider the special, yet interesting case of uniform distribution, i.e. prob $\left\{x=f_{j}\right\}=1 /(k+l)=p$ for every $j=1, \cdots, k+l$.

Since we easily have that $E(\xi x)=p f_{1}+\cdots+p f_{k}-p f_{k+1}-\cdots-p f_{k+l}$ and $E(x)$ $=p f_{1}+\cdots+p f_{k}+p f_{k+1}+\cdots+p f_{k+l}$, it follows that

$$
\begin{equation*}
a=p\left((1+\alpha \theta) f_{1}+\cdots+(1+\alpha \theta) f_{k}+(-1+\alpha \theta) f_{k+1}+\cdots+(-1+\alpha \theta) f_{k+l}\right) . \tag{7}
\end{equation*}
$$

If we denote by Q the $n \times(k+l)$ matrix whose j-th column is f_{j}, and by g_{i} the i-th row of Q, therefore

$$
g_{i}=\left(\sigma_{i 1}, \cdots, \sigma_{i k}, \sigma_{i k+1}, \cdots, \sigma_{i k+l}\right),
$$

then it follows that the matrix A may be of the form of

$$
A=\left[p\left(g_{i} \cdot g_{j}\right)\right]=p Q Q^{\prime}=p G,
$$

where (i, j)-th component of G is the inner product of vectors g_{i} and g_{j}. Hence the transpose of (6) results in, since A is symmetric,

$$
\begin{align*}
m_{\infty}^{\prime} & =\frac{1}{\alpha p} a^{\prime} G^{-1} \tag{8}\\
& =\frac{1}{\alpha}\left(f_{1}^{\prime}+\cdots+f_{k}^{\prime}-f_{k+1}^{\prime}-\cdots-f_{k+l}^{\prime}\right) G^{-1}+\theta\left(f_{1}^{\prime}+\cdots+f_{k}^{\prime}+f_{k+1}^{\prime}+\cdots+f_{k+l}^{\prime}\right) G^{-1}
\end{align*}
$$

Now consider the homogeneous linear equations with $n+2$ unknowns w_{1}, \cdots, w_{n}, v_{1}, v_{2} :

$$
\left\{\begin{array}{r}
\sigma_{11} w_{1}+\cdots \cdots+\sigma_{n 1} w_{n}+v_{1}=0, \tag{9}\\
\cdots \cdots, \\
\sigma_{1 k} w_{1}+\cdots \cdots+\sigma_{n k} w_{n}+v_{1}=0, \\
\sigma_{1 k+1} w_{1}+\cdots \cdots+\sigma_{1 k+1} w_{n}+v_{2}=0, \\
\cdots \\
\sigma_{1 k+l} w_{1}+\cdots \cdots+\sigma_{1 k+l} w_{n}+v_{2}=0
\end{array}\right.
$$

where we put $v_{1}=-\theta-1 / \alpha$ and $v_{2}=-\theta+1 / \alpha$. The system (9) may be rewritten as:

$$
w_{1} g_{1}+\cdots+w_{n} g_{n}=\left(\theta+\frac{1}{\alpha}, \cdots, \theta+\frac{1}{\alpha}, \theta-\frac{1}{\alpha}, \cdots, \theta-\frac{1}{\alpha}\right) .
$$

If both sides of this equation are multiplied by $g_{\imath}^{\prime}, i=1, \cdots, n$, we have that

$$
w^{\prime} G=\frac{1}{\alpha}\left(f_{1}^{\prime}+\cdots+f_{k}^{\prime}-f_{k+1}^{\prime}-\cdots-f_{k+l}^{\prime}\right)+\theta\left(f_{1}^{\prime}+\cdots+f_{k}^{\prime}+f_{k+1}^{\prime}+\cdots+f_{k+l}^{\prime}\right)
$$

hence

$$
\begin{equation*}
w^{\prime}=\frac{1}{\alpha}\left(f_{1}^{\prime}+\cdots+f_{k}^{\prime}-f_{k+1}^{\prime}-\cdots-f_{k+l}^{\prime}\right) G^{-1}+\theta\left(f_{1}^{\prime}+\cdots+f_{k}^{\prime}+f_{k+1}^{\prime}+\cdots+f_{k+l}^{\prime}\right) G^{-1} \tag{10}
\end{equation*}
$$

where $w^{\prime}=\left(w_{1}, \cdots, w_{n}\right)$.
Lemma 1. If the system (9) has a solution: $\left\{w^{*}, \theta^{*}, 1 / \alpha^{*}\right\}$ such that $1 / \alpha^{*}>0$, then we have that $w^{*} \in S\left(\theta^{*}\right)$.

Proof. Obvious.
Lemma 2. If the system (9) has a solution: $\left\{w^{*}, \theta^{*}, 1 / \alpha^{*}\right\}$ such that $1 / \alpha^{*}>0$, then for the θ^{*} and α^{*} of this solution, $m_{\infty} \in S\left(\theta^{*}\right)$.

Proof. The conclusion is immediate from the comparison of (10) with (8).
Denote by \bar{Q} the $(k+l) \times(n+2)$ matrix formed by coefficients of (9), hence

$$
\left.\bar{Q}=\left[\begin{array}{ccc}
& 1 & 0 \\
& \vdots & \vdots \\
Q^{\prime} & 1 & 0 \\
0 & 1 \\
\vdots & \vdots \\
0 & 1
\end{array}\right]\right\} l
$$

Note that $\operatorname{rank} \bar{Q} \leqq n+2$.
We now examine sufficient conditions for m_{∞} to be a solution for the following possible cases.
(I) The case $\operatorname{rank} \bar{Q}=n+2$.
Then the system (9) has at most zero-solution, $w_{1}=\cdots=w_{n}=v_{1}=v_{2}=0$, therefore it is impossible to have that $1 / \alpha>0$.
(II) The case $\operatorname{rank} \bar{Q}=n+1$.

If we know the system (9) has a solution such that $v_{1}=s_{1} \neq s_{2}=v_{2}$, then we can choose α arbitrarily such that $0<\alpha<2 / \lambda(A)$, and we have that $m_{\infty} \in S(\theta)$, where $\theta=\left(\left(s_{1}+s_{2}\right) /\left(s_{1}-s_{2}\right)\right)(1 / \alpha)$. Otherwise it is impossible to have that $1 / \alpha>0$.
(III) The case $\operatorname{rank} \bar{Q}=r \leqq n$.

Then components v_{1} and v_{2} of the general solution of the system (9) may be written as:

$$
\left\{\begin{array}{l}
v_{1}=s_{1} \lambda_{1}+\cdots+s_{n-r+2} \lambda_{n-r+2}, \tag{11}\\
v_{2}=s_{1}^{\prime} \lambda_{1}+\cdots+s_{n-r+2}^{\prime} \lambda_{n-r+2}
\end{array}\right.
$$

where $\lambda_{\imath}, i=1, \cdots, n-r+2$, are arbitrary, and s_{\imath} and $s_{i}^{\prime}, i=1, \cdots, n-r+2$, are fixed. We call the matrix formed by the coefficients of (11) s-matrix, L. Then if $\operatorname{rank} L=2$, it is easily seen that we can choose two numbers λ and μ arbitrarily such that $\lambda-\mu>\lambda(A)$, so than we have $\alpha=2 /(\lambda-\mu)$ and $\theta=(\lambda+\mu) / 2$, for which $m_{\infty} \in S(\theta)$. But if rank $L=1$, and if $v_{1}=s_{1} \neq s_{2}=v_{2}$, then the situation is the same as the case of (II).

In conclusion we have the following theorem:
Theorem 2. If the rank of s-matrix is 2 in the case that $\operatorname{rank} \bar{Q} \leqq n$, then for arbitrarily chosen numbers λ and μ such that $\lambda-\mu>\lambda(A)$ we have $m_{\infty} \in S(\theta)$, where $\alpha=2 /(\lambda-\mu)$ and $\theta=(\lambda+\mu) / 2$.

If the rank of s-matrix is 1 in the case that $\operatorname{rank} \bar{Q} \leqq n$, or if $\operatorname{rank} \bar{Q}=n+1$, then the existence of the solution of the system (9) such that $v_{1}=s_{1} \neq s_{2}=v_{2}$ assures that $m_{\infty} \in S(\theta)$, where α is arbitrary such that $0<\alpha<2 / \lambda(A)$ and $\theta=\left(\left(s_{1}+s_{2}\right) /\left(s_{1}-s_{2}\right)\right)(1 / \alpha)$.

7. Standard deviation of \boldsymbol{w}_{t}.

Let us focus our attention on an investigation of the magnitude of the expected deviation of w_{t} from its mean m_{t}, since it is necessary to examine the possibility for w_{t} to become a solution.

First we assume that:
Assumption 3. prob $\left\{x=f_{j}\right\}>0$ for any $j=1, \cdots, k+l$.
The relation (3) may be written as: $w_{t}=X_{\alpha} w_{t-1}+z$, where $X_{\alpha}=I-\alpha X, z=(\xi+\alpha \theta) x$. Hence by Minkowskii's inequality we have that

$$
\begin{equation*}
\sqrt{E\left\|w_{t}\right\|^{2}} \leqq \sqrt{E\left(\left\|X_{\alpha} w_{t-1}\right\|+\|z\|\right)^{2}} \leqq \sqrt{E\left\|X_{\alpha} w_{t-1}\right\|^{2}}+\sqrt{E\|z\|^{2}} . \tag{12}
\end{equation*}
$$

By (12) we shall estimate $E\left\|w_{t}\right\|^{2}$, where $\left\|w_{t}\right\|$ means the usual norm of w_{t} in the n-dimensional Euclidean space.

Now the question is whether it is possible to choose a constant ρ such tnat $0<\rho<1$, so that the relation $E\left\|X_{a} w_{t}\right\|^{2} \leqq \rho E\left\|w_{l}\right\|^{2}$ holds independently of t. For this purpose we need the following set of lemmas $3,4,5,6,7,8$.

Lemma 3. Let the n-dimensional random vector w take finite vector values with an assigned probability distribution, and let the $n \times n$ random matrix Z which is independent of w take finite matrix values also with certain probability distribution. If $E(Z)$ is non-negative definite, then we have that $E\left(w^{\prime} Z w\right) \geqq 0$.

Proof. Let us put prob $\left\{w=h_{i}\right\}=p_{i} \geqq 0$ for $i=1, \cdots, N, p_{1}+\cdots+p_{N}=1$, and also $w^{\prime}=\left(w_{1}, \cdots, w_{n}\right)$. Denote by $z_{i,}$ the (i, j)-the element of Z. Then we readily have that

$$
\begin{aligned}
E\left(w^{\prime} Z w\right) & =E\left(\sum_{\imath, j} w_{i} w_{j} z_{z_{j}}\right)=\sum_{\imath, j} E\left(w_{i} w_{j}\right) E\left(z_{i j}\right) \\
& =p_{1} \sum_{i_{2}, j} h_{i 1} h_{j 1} E\left(z_{i j}\right)+\cdots+p_{N} \sum_{i_{2},} h_{i N} h_{j N} E\left(z_{i j}\right) \\
& =p_{1} h_{1}^{\prime} E(Z) h_{1}+\cdots+p_{N} h_{N}^{\prime} E(Z) h_{N} \geqq 0 \quad \text { q.e.d. }
\end{aligned}
$$

Denote by U the set of all n-dimensional vectors of unit length, i.e. $U=\{e ;\|e\|=1\}$.

Lemma 4. We have $M \geqq \lambda(A) \geqq m$, where $M=\max _{e \in U} e^{\prime} \tilde{A} e, m=\min _{e \in U} e^{\prime} A e$, and $\tilde{A}=E\left(X^{2}\right)$.

Proof. We first note that for symmetric matrix B the maximum and the minimum of $e^{\prime} B e$ under $e \in U$, whose existences are due to the compactness of U and to the continuity of $e^{\prime} B e$ on U, correspond to the maximum and the minimum eigenvalues of B respectively. Indeed, for example, from $l=\min _{e \in U} e^{\prime} B e$ it follows that $l=\bar{e}^{\prime} B \bar{e}$ for some $\bar{e} \in U$ and $l \leqq e^{\prime} B e$ for all $e \in U$, hence $\bar{e}^{\prime}(B-l I) \bar{e}=0$ and $e^{\prime}(B-l I) e \geqq 0$ for all $e \in U$. Therefore $B-l I$ is positive semi-definite. Hence $B-l l$ has at least an eigenvalue equal to 0 and non-zero eigenvalues are all positive. Since for any eigenvalue λ of $B-l I$ we have $\operatorname{det}(B-(l+\lambda) I)=0, l$ is the minimum eigenvalue of B.
Therefore it is obvious that $\lambda(A) \geqq m$. To prove that $M \geqq \lambda(A)$ it is only to show that $\tilde{A} \geqq A$, since M is the Frobenius root of \tilde{A} (see section 5).

The (i, j)-th element $\tilde{a}_{i j}$ of \tilde{A} may be written as: $\tilde{a}_{2 j}=E\left(\sum_{k=1}^{n} x_{i} x_{k} x_{k} x_{j}\right)=E\left(x_{i} x_{j} r\right)$, where we put $r=\sum_{k=1}^{n} x_{k}^{2}=\sum_{k=1}^{n} x_{k}$ whose possible values are $0,1, \cdots, n$, and $x^{\prime}=\left(x_{1}, \cdots, x_{n}\right)$. Hence it is readily seen that $\tilde{a}_{i j} \geqq E\left(x_{i} x_{j}\right)=a_{i j}, a_{\imath \jmath}$ being the (i,j)-th element of A. Therefore we have $\tilde{A} \geqq A$. q.e.d.

Lemma 5. We have $0<m<1$.
Proof. First remark that $0 \leqq a_{i j} \leqq 1, i, j=1, \cdots, n$.
For some i we have $a_{i i}<1$. (By a similar discussion it may be proved that $0<a_{i i}$ for all $i=1, \cdots, n$.) Indeed, suppose that $a_{i i}=1$ for all $i=1, \cdots, n$, then $a_{i i}=p_{i} \sigma_{i 1}^{2}+\cdots+p_{k+l} \sigma_{i k+l}^{2}=1$, hence by assumption $3, \sigma_{i 1}=\cdots=\sigma_{i k+l}=1, i=1, \cdots, n$, therefore $a_{i j}=1, i, j=1, \cdots, n$. We know from section 5 that A is positive semidefinite, contradicting the assumption 2. We have, therefore, for some $i, a_{i i}<1$. If we choose $\left(e^{i}\right)^{\prime}=(0, \cdots, 0,1,0, \cdots, 0) \in U$, we have $\left(e^{i}\right)^{\prime} A e^{\imath}=a_{i i}<1$, hence $m<1$. Since A is positive definite it is clear that $0<m$. q.e.d.

Lemma 6. Any element in the set of pairs (α, ρ) satisfying $0<\alpha<2 / \lambda(A)$ and $\rho \geqq M \alpha^{2}-2 m \alpha+1$ makes $E\left(\rho I-X_{\alpha}^{2}\right)$ non-negative definite.

Proof. We have $E\left(\rho I-X_{\alpha}^{2}\right)=E\left(\rho I-(I-\alpha X)^{2}\right)=-(1-\rho) I+2 \alpha A-\alpha^{2} \tilde{A}$. Let denote by ν an eigenvalue of this matrix. Then we have that for non-zero vector b, $\left(-(1-\rho) I+2 \alpha A-\alpha^{2} \tilde{A}\right) b=\nu b$. Multiplying b^{\prime} on both sides from the left, we have

$$
-(1-\rho)\|b\|^{2}+2 \alpha\left(b^{\prime} A b\right)-\alpha^{2}\left(b^{\prime} \tilde{A} b\right)=\nu\|b\|^{2} .
$$

If we put $b /\|b\|=e \in U$, then the above equality reads as:

$$
-(1-\rho)+2 \alpha\left(e^{\prime} A e\right)-\alpha^{2}\left(e^{\prime} \tilde{A} e\right)=\nu
$$

By lemma 4, we obtain $\nu \geqq-(1-\rho)+2 m \alpha-M \alpha^{2}$ which holds for any eigenvalue ν
of the matrix cited above. Hence every pair (α, ρ) satisfying the following inequalities:

$$
\rho \geqq M \alpha^{2}-2 m \alpha+1, \quad 0<\alpha<\frac{2}{\lambda(A)},
$$

makes the matrix $E\left(\rho I-X_{\alpha}^{2}\right)$ non-negative definite. q.e.d.
The above statement in lemma 6 can be made a little precise by the following lemma.

The discriminant of the quadratic equation: $M \alpha^{2}-2 m \alpha+1=0$, is $m^{2}-M$ which, by lemmas 4 and 5 is negative, and in addition it follows that $m / M<1 / \lambda(A)$. Hence be lemma 6 we have:

Lemma 7. If we denote by R the set of all pairs (α, ρ) satisfying $1>\rho$ $\geqq M \alpha^{2}-2 m \alpha+1$, then any pair $(\alpha, \rho) \in R$ makes $E\left(\rho I-X_{\alpha}^{2}\right)$ non-negative definite.

Note that every pair $(\alpha, \rho) \in R$ satisfies that $0<\alpha<2 / \lambda(A)$ and $0<\rho<1$.
Lemma 8. We have that $E\left\|X_{\alpha} w_{t}\right\|^{2} \leqq \rho E\left\|w_{t}\right\|^{2}$ for any pair (α, ρ) in the set R.
Proof. By lemma 3 and 7 we obtain $E\left(w_{\imath}^{\prime}\left(I \rho-X_{\alpha}^{2}\right) w_{t}\right) \geqq 0$, hence the conclusion. q.e.d.

From lemma 8, for every pair $(\alpha, \rho) \in R$, (12) may be put into the form of $\sqrt{E\left\|w_{t}\right\|^{2}} \leqq \sqrt{\rho} \sqrt{E\left\|w_{t-1}\right\|^{2}}+\pi$ where $\pi=\sqrt{E\|z\|^{2}}$. Therefore we have

$$
\sqrt{E\left\|w_{t}\right\|^{2}} \leqq(\sqrt{\rho})^{t}\left\|w_{0}\right\|+\frac{1-(\sqrt{\rho})^{t}}{1-\sqrt{\rho}} \cdot \pi .
$$

When $t \rightarrow \infty$, we obtain

$$
\lim _{t \rightarrow \infty} \sqrt{E\left\|w_{t}\right\|^{2}} \leqq \frac{\pi}{1-\sqrt{\rho}}
$$

If we put $D_{t}=\sqrt{E_{i}\left|w_{t}-m_{t}\right|^{2}}$, then we have

$$
D_{t}^{2}=E\left(\left(w_{t}^{\prime}-m_{t}^{\prime}\right)\left(w_{t}-m_{t}\right)\right)=E\left\|w_{t}\right\|^{2}-\left\|m_{t}\right\|^{2} .
$$

In conclusion we have the following theorem:
Theorem 3. If the mean m_{t} of w_{t} converges independently of the initial state w_{0}, then for any pair (α, ρ) satisfying $1>\rho \geqq M \alpha^{2}-2 m \alpha+1$ (M and m being defined in lemma 4), the standard deviation D_{t} of w_{t} has the following bound:

$$
D_{t}^{2} \leq\left[(\sqrt{\rho})^{t}\left\|w_{0}\right\|+\frac{1-(\sqrt{\rho})^{t}}{1-\sqrt{\rho}} \pi\right]^{2}-\left\|m_{t}\right\|^{2}
$$

hence

$$
\lim _{t \rightarrow \infty} D_{t}^{2} \leqq\left[\frac{\pi}{1-\sqrt{\rho}}\right]^{2}-\left\|m_{\infty}\right\|^{2} .
$$

The author is much indebted to Professor K. Kunisawa for his help and encouragement.

References

[1] Вцоск, H. D., The perceptron, a model for brain functioning. Reviews of Modern Physics 34 (1962), 123-135.
[2] Martinez, H. M., A convergence theorem for linear threshold elements. Bulletın of Mathematical Biophysics 27 (1965), 153-159.
[3] Nikaidô, H., Mathematical methods of modern economics. Iwanami Shoten, Tokyo. (in Japanese)

Department of Mathematics,
Tokyo Institute of Technology.

