KÖDAI MATH. SEM. REP. 19 (1967), 43-52

ON AN ADAPTIVE PROCESS FOR LEARNING FINITE PATTERNS

By Yasuichi Horibe

1. Introduction.

It may be possible to state that pattern recognition belongs to a broad concept of classification. When an abstract organ or system is exposed to a sequence of elements from a specified set of stimuli or patterns, one of the important features for the organ's recognition problem is the mechanism of adaptive learning of stimulus classification.

Specifically a certain trainer teaches the organ if it has correctly responded to the current stimulus. Therefore the trainer may be considered in a simple case as a function of input stimulus and its corresponding output response.

It is desirable to find a class of functions of this type which leads the organ to a successful classification of stimuli, whatever the initial state of the organ. Trained step by step under a stimulus sequence by a successfully leading trainer, the organ becomes ultimately to classify the set of stimuli correctly at least to a satisfactory degree. Hence the convergence of organ's state will be an interesting problem.

We shall consider, in this paper, for a class of linear trainers some aspects of the convergence problem, which assure the potentialities of the model formulated here.

2. Formulation and definitions.

Suppose that an *organ* is given a finite set of stimuli: $S = \{1, 2, \dots, k+l\}$, which is pre-dichotomized into positive class S^+ and negative class S^- such that

$$S^+ = \{1, \dots, k\}, \qquad S^- = \{k+1, \dots, k+l\}.$$

After the perception of each stimulus, it is *encoded* possibly by a random method into a binary *n*-sequence, i.e. a vector with *n* components of 0 or 1. In other words the set S is mapped into the set of all 0 or 1 component vertices of the unit hypercube in the *n*-dimensional Euclidean space. Therefore we have for stimulus *j* its code $f'_j = (\sigma_{1j}, \dots, \sigma_{nj})$, where $\sigma_{ij} = 0$ or 1, for $i=1, \dots, n$ and $j=1, \dots, k+l$, and f'_j is the transpose of column vector f_j .

Although elements in the code set $F = \{f_1, \dots, f_k, f_{k+1}, \dots, f_{k+l}\}$ are not necessarily

Received June 6, 1966.

distinct, it is not inconvenient to assume to regard them as formally different from one another, hence we may call f_j itself *stimulus* f_j , and also sets $F^+=\{f_1, \dots, f_k\}$ and $F^-=\{f_{k+1}, \dots, f_{k+l}\}$ may be called positive and negative classes respectively.

DEFINITION 1. Classification function ξ is a mapping: $F \rightarrow \{1, -1\}$ defined as follows: $\xi(f) = -1$ if $f \in F^+$ and -1 if $f \in F^-$.

DEFINITION 2. Random stimuli x_t at times $t=0, 1, \cdots$ are random vectors which are mutually independent, each taking values in F independently with pre-assigned probability distribution for every $t=0, 1, \cdots$.

DEFINITION 3. The *initial state* w_0 of the organ is an arbitrarily fixed column vector with n components.

DEFINITION 4. The state w_t at time t of the organ with initial state w_0 is a random column vector defined by the following recurrence relation:

(1)
$$w_{t+1} = w_t + \tau(\xi_t, \Delta_t) x_t,$$

where we put $\xi_t = \xi(x_t)$ and $\Delta_t = w'_t x_t - \theta$, $\tau(u, v)$ is a real valued function of two variables u and v which is called *trainer* of the organ, and θ is a fixed real number called *threshold value*.

Since we assume that the organ which is in state w_t at time interval [t-1, t) receives stimulus x_t at time t, we have:

Assumption 1. w_t and x_t are independent for any $t=0, 1, \dots$. By this assumption it is not confusing to wright (1) as:

$$(1)^* \qquad \qquad w_{t+1} = w_t + \tau(\xi, w_t' x - \theta) x,$$

t being omitted for ξ_t and x_t .

DEFINITION 5. The response of the organ consists of 1, -1, and * which are determined by the current stimulus x_t , the current state w_t , and θ as follows: 1 if $\Delta_t > 0$, -1 if $\Delta_t < 0$, and * if $\Delta_t = 0$, where * means don't care.

DEFINITION 6. The solution space $S(\theta)$ for θ is the set of all column vectors w with n components such that $w'f > \theta$ if $f \in F^+$, and $w'f < \theta$ if $f \in F^-$. Therefore the solution space forms an open convex set determined by k+l hyperplanes in n-dimensional Euclidean space.

3. A class of linear trainers.

The class of trainers $\{\tau_{\alpha}; \alpha > 0\}$ considered in this paper is essentially owed to B. Widrow introduced in [2], having the following linear form: $\tau_{\alpha}(u, v) = u - \alpha v$. Hence we have from (1)* that

(2)
$$w_{t+1} = w_t + (\xi - \alpha (w_t' x - \theta)) x.$$

The behavior of the organ in the case that $\alpha=0$, i.e. the trainer disregards the organ's responses is called *forced learning* [1].

Now let us see how the organ is trained by τ_{α} .

(a) The case $x \in F^+$.

Then $\xi=1$. If the organ incorrectly responds, i.e.

 $-\Delta = w_t x - \theta < 0$, then $w_{t+1} = w_t (1 + \alpha \Delta) x$.

If, however, the organ correctly responds, i.e.

 $\Delta = w_t x - \theta > 0$, then $w_{t+1} = w_t + (1 - \alpha \Delta) x$.

(b) The case $x \in F^-$.

Then $\xi = -1$. If the organ incorrectly responds, i.e.

 $\Delta = w_t x - \theta > 0$, then $w_{t+1} = w_t - (1 + \alpha \Delta) x$.

If, however, the organ correctly responds, i.e.

 $-\Delta = w_t x - \theta < 0$, then $w_{t-1} = w_t - (1 - \alpha \Delta) x$.

In either case a stronger reinforcement is performed in incorrect response rather than in correct response.

4. Martinez's necessary and sufficient condition for the convergence of the expection of w_i .

The first step for considering the validity of the trainer τ_{α} is to investigate the convergence of the expectation of w_t , when $t \rightarrow \infty$.

A proof of the theorem stated at the end of the section, which is due to Martinez [2], will be given here but with more succinctness.

If we define the $n \times n$ random matrix X such that its (i, j)-th element is the product of *i*-th and *j*-th components of x, we can easily rewright (2) as:

(3)
$$w_{t+1} = (\xi + \alpha \theta) x + (I - \alpha X) w_t,$$

where I is the identity matrix.

By assumption 1, X and w_t are obviously independent for any $t=0, 1, \dots$, so taking expectation E on both sides of (3) results in the following simple vectorial recurrence equation for m_t :

(4)
$$m_{t+1} = a + A_{\alpha} m_t, \quad t = 0, 1, \dots,$$

where we put $m_t = E(w_t)$, $a = E(\xi x + \alpha \theta x)$, $A_{\alpha} = I - \alpha A$, and A = E(X).

Note that expectation of random matrix (including random vector) is understood as elementwise expectation. Note further than m_0 is equal to initial state w_0 .

The solution of the differance equation (4) is

(5)
$$m_t = (I + A_\alpha + A_\alpha^2 + \dots + A_\alpha^{t-1})a + A_\alpha^t w_0.$$

We are interested in the convergence of m_i , when $t \rightarrow \infty$, regardless of what initial

state is a starting point of the training.

Now we know that the necessary and sufficient condition for A_{α}^{i} to converge to zero-matrix 0 when $t \to \infty$ is that every eigenvalue of A_{α} is less than unity in absolute value. Hence we impose that $\max_{1 \le i \le n} |\gamma_i| < 1$, where γ_i , i=1, ..., n, are eigenvalues of A_{α} . Since $A_{\alpha} = I - \alpha A$, the set of equalities: det $(A_{\alpha} - \gamma_i I) = 0$, i=1, ..., n, may be rewritten as det $(A - ((1 - \gamma_i)/\alpha)I) = 0$, i=1, ..., n. Therefore $(1 - \gamma_i)/\alpha$, i=1, ..., n, are eigenvalues of A. If $(1 - \gamma_i)/\alpha \le 0$ for some i, then $\gamma_i \ge 1$, since $\alpha > 0$. Hence we necessitate the condition that all eigenvalues of A are positive, i.e. A is positive definite. In addition if we choose α such that $\alpha < 2/\lambda(A)$ where $\lambda(A)$ is the largest eigenvalue of the positive definite matrix A, then we have that

$$\max_{1\leq i\leq n}|1-\alpha\lambda_i|\!=\!\!\max_{1\leq i\leq n}|\gamma_i|\!<\!1,$$

 λ_i , $i=1, \dots, n$, being eigenvalues of A.

Therefore the necessary and sufficient condition for $A^t_{\alpha} \rightarrow 0$, when $t \rightarrow \infty$, is that A is positive definite and $0 < \alpha < 2/\lambda(A)$.

Note that A is non-negative definite, i.e. either positive definite or positive semidefinite, since for any vector $v'=(v_1, \dots, v_n)$, we have that $v'Av=E(\sum_{i=1}^n v_ix_i)^2 \ge 0$. A simple example shows that positive definiteness of A can not always be valid.

In conclusion we have the following theorem, since $\max_{1 \le i \le n} |\gamma_i| < 1$ ascertains the convergence of the series:

$$I + A_{\alpha} + A_{\alpha}^2 + \cdots$$

THEOREM 1. When $t \rightarrow \infty$, m_t converges independently of the initial state w_0 if and only if A is positive definite and the constant α satisfies that $0 < \alpha < 2/\lambda(A)$.

Henceforth we shall always be under the following assumption:

Assumption 2. The matrix A defined above is positive definite.

5. A note on an upper bound for $\lambda(A)$.

The largest eigenvalue of a non-negative matrix, i.e. the matrix whose elements are all non-negative, is the so called Frobenius root of the matrix. By the well known theorem of Frobenius [3], for non-negative matrices A_1 and A_2 , it follows that $\lambda(A_1) \ge \lambda(A_2)$ if $A_1 \ge A_2$, where $\lambda(A_1)$ and $\lambda(A_2)$ are Frobenius roots for A_1 and A_2 respectively, and the order relation for matrices is defined if the same order is preserved componentwise.

Since every element a_{ij} of A is obviously seen to satisfies that $0 \le a_{ij} \le 1$, if we denote by E the $n \times n$ matrix whose elements are all unity, then we have $A \le E$, therefore we have that $\lambda(A) \le \lambda(E) = n$, since it is readily seen that

$$\det (E - \lambda I) = (-\lambda)^{n-1} (n - \lambda).$$

Note here that $A \neq E$, which will be remarked in section 7.

6. Possibility for the limiting value of m_t to be a solution, for the case of uniform probability distribution.

If we denote by m_{∞} the limiting value of m_t when $t \rightarrow \infty$, then by (5) we have:

(6)
$$m_{\infty} = (I - A_{\alpha})^{-1} a = \frac{1}{\alpha} A^{-1} a.$$

Consider now whether m_{∞} itself is a solution, i.e. whether $m_{\infty} \in S(\theta)$ for some θ and α , where θ is any real number and α satisfies that $0 < \alpha < 2/\lambda(A)$.

Only for simplicity we consider the special, yet interesting case of uniform distribution, i.e. prob $\{x=f_j\}=1/(k+l)=p$ for every $j=1, \dots, k+l$.

Since we easily have that $E(\xi x) = pf_1 + \dots + pf_k - pf_{k+1} - \dots - pf_{k+l}$ and $E(x) = pf_1 + \dots + pf_k + pf_{k+1} + \dots + pf_{k+l}$, it follows that

(7)
$$a = p((1+\alpha\theta)f_1 + \dots + (1+\alpha\theta)f_k + (-1+\alpha\theta)f_{k+1} + \dots + (-1+\alpha\theta)f_{k+l}).$$

If we denote by Q the $n \times (k+l)$ matrix whose j-th column is f_j , and by g_i the i-th row of Q, therefore

$$g_i = (\sigma_{i1}, \cdots, \sigma_{ik}, \sigma_{ik+1}, \cdots, \sigma_{ik+l}),$$

then it follows that the matrix A may be of the form of

$$A = [p(g_i \cdot g_j)] = pQQ' = pG,$$

where (i, j)-th component of G is the inner product of vectors g_i and g_j . Hence the transpose of (6) results in, since A is symmetric,

(8)

$$m'_{\infty} = \frac{1}{\alpha p} a' G^{-1}$$

$$= \frac{1}{\alpha} (f'_{1} + \dots + f'_{k} - f'_{k+1} - \dots - f'_{k+l}) G^{-1} + \theta (f'_{1} + \dots + f'_{k} + f'_{k+1} + \dots + f'_{k+l}) G^{-1}.$$

Now consider the homogeneous linear equations with n+2 unknowns w_1, \dots, w_n , v_1, v_2 :

(9)
$$\begin{pmatrix} \sigma_{11}w_1 + \dots + \sigma_{n1}w_n + v_1 = 0, \\ \dots & \dots \\ \sigma_{1k}w_1 + \dots + \sigma_{nk}w_n + v_1 = 0, \\ \sigma_{1k+1}w_1 + \dots + \sigma_{1k+1}w_n + v_2 = 0, \\ \dots & \dots \\ \sigma_{1k+l}w_1 + \dots + \sigma_{1k+l}w_n + v_2 = 0 \end{pmatrix}$$

where we put $v_1 = -\theta - 1/\alpha$ and $v_2 = -\theta + 1/\alpha$. The system (9) may be rewritten as:

$$w_1g_1+\cdots+w_ng_n=\Big(\theta+\frac{1}{\alpha},\cdots,\theta+\frac{1}{\alpha},\theta-\frac{1}{\alpha},\cdots,\theta-\frac{1}{\alpha}\Big).$$

If both sides of this equation are multiplied by g'_i , $i=1, \dots, n$, we have that

$$w'G = \frac{1}{\alpha} (f'_1 + \dots + f'_k - f'_{k+1} - \dots - f'_{k+l}) + \theta(f'_1 + \dots + f'_k + f'_{k+1} + \dots + f'_{k+l})$$

hence

(10)
$$w' = \frac{1}{\alpha} (f'_1 + \dots + f'_k - f'_{k+1} - \dots - f'_{k+l}) G^{-1} + \theta (f'_1 + \dots + f'_k + f'_{k+1} + \dots + f'_{k+l}) G^{-1},$$

where $w' = (w_1, \dots, w_n)$.

LEMMA 1. If the system (9) has a solution: $\{w^*, \theta^*, 1/\alpha^*\}$ such that $1/\alpha^* > 0$, then we have that $w^* \in S(\theta^*)$.

Proof. Obvious.

LEMMA 2. If the system (9) has a solution: $\{w^*, \theta^*, 1/\alpha^*\}$ such that $1/\alpha^* > 0$, then for the θ^* and α^* of this solution, $m_{\infty} \in S(\theta^*)$.

Proof. The conclusion is immediate from the comparison of (10) with (8).

Denote by \overline{Q} the $(k+l) \times (n+2)$ matrix formed by coefficients of (9), hence

$$ar{Q} = \left[egin{array}{cccc} & 1 & 0 \ & dots & dots \ Q' & 1 & 0 \ & dots & dots \ Q' & 0 & 1 \ & dots & dots \ & dots & dots \ \end{pmatrix}
ight\} k$$

Note that rank $\overline{Q} \leq n+2$.

We now examine sufficient conditions for m_{∞} to be a solution for the following possible cases.

(I) The case rank $\overline{Q} = n+2$.

Then the system (9) has at most zero-solution, $w_1 = \cdots = w_n = v_1 = v_2 = 0$, therefore it is impossible to have that $1/\alpha > 0$.

(II) The case rank $\bar{Q} = n+1$.

If we know the system (9) has a solution such that $v_1=s_1 \pm s_2=v_2$, then we can choose α arbitrarily such that $0 < \alpha < 2/\lambda(A)$, and we have that $m_{\infty} \in S(\theta)$, where $\theta = ((s_1+s_2)/(s_1-s_2))(1/\alpha)$. Otherwise it is impossible to have that $1/\alpha > 0$.

(III) The case rank $\bar{Q} = r \leq n$.

Then components v_1 and v_2 of the general solution of the system (9) may be written as:

(11)
$$\begin{cases} v_1 = s_1 \lambda_1 + \dots + s_{n-r+2} \lambda_{n-r+2}, \\ v_2 = s_1' \lambda_1 + \dots + s_{n-r+2}' \lambda_{n-r+2} \end{cases}$$

where λ_i , $i=1, \dots, n-r+2$, are arbitrary, and s_i and s'_i , $i=1, \dots, n-r+2$, are fixed. We call the matrix formed by the coefficients of (11) s-matrix, L. Then if rank L=2, it is easily seen that we can choose two numbers λ and μ arbitrarily such that $\lambda - \mu > \lambda(A)$, so than we have $\alpha = 2/(\lambda - \mu)$ and $\theta = (\lambda + \mu)/2$, for which $m_{\infty} \in S(\theta)$. But if rank L=1, and if $v_1=s_1 \neq s_2=v_2$, then the situation is the same as the case of (II).

In conclusion we have the following theorem:

THEOREM 2. If the rank of s-matrix is 2 in the case that rank $\overline{Q} \leq n$, then for arbitrarily chosen numbers λ and μ such that $\lambda - \mu > \lambda(A)$ we have $m_{\infty} \in S(\theta)$, where $\alpha = 2/(\lambda - \mu)$ and $\theta = (\lambda + \mu)/2$.

If the rank of s-matrix is 1 in the case that rank $\overline{Q} \leq n$, or if rank $\overline{Q} = n+1$, then the existence of the solution of the system (9) such that $v_1=s_1 \neq s_2=v_2$ assures that $m_{\infty} \in S(\theta)$, where α is arbitrary such that $0 < \alpha < 2/\lambda(A)$ and $\theta = ((s_1 + s_2)/(s_1 - s_2))(1/\alpha)$.

7. Standard deviation of w_t .

Let us focus our attention on an investigation of the magnitude of the expected deviation of w_t from its mean m_t , since it is necessary to examine the possibility for w_t to become a solution.

First we assume that:

Assumption 3. prob $\{x=f_j\}>0$ for any $j=1, \dots, k+l$.

The relation (3) may be written as: $w_t = X_{\alpha}w_{t-1} + z$, where $X_{\alpha} = I - \alpha X$, $z = (\xi + \alpha \theta)x$. Hence by Minkowskii's inequality we have that

(12)
$$\sqrt{E||w_t||^2} \leq \sqrt{E(||X_{\alpha}w_{t-1}|| + ||z||)^2} \leq \sqrt{E||X_{\alpha}w_{t-1}||^2} + \sqrt{E||z||^2}.$$

By (12) we shall estimate $E||w_t||^2$, where $||w_t||$ means the usual norm of w_t in the *n*-dimensional Euclidean space.

Now the question is whether it is possible to choose a constant ρ such that $0 < \rho < 1$, so that the relation $E ||X_{\alpha}w_t||^2 \leq \rho E ||w_t||^2$ holds independently of t. For this purpose we need the following set of lemmas 3, 4, 5, 6, 7, 8.

LEMMA 3. Let the n-dimensional random vector w take finite vector values with an assigned probability distribution, and let the $n \times n$ random matrix Z which is independent of w take finite matrix values also with certain probability distribution. If E(Z) is non-negative definite, then we have that $E(w'Zw) \ge 0$.

Proof. Let us put prob $\{w=h_i\}=p_i\geq 0$ for $i=1, \dots, N, p_1+\dots+p_N=1$, and also $w' = (w_1, \dots, w_n)$. Denote by z_{ij} the (i, j)-the element of Z. Then we readily have that

$$E(w'Zw) = E\left(\sum_{i,j} w_i w_j z_{ij}\right) = \sum_{i,j} E(w_i w_j) E(z_{ij})$$
$$= p_1 \sum_{i,j} h_{i1} h_{j1} E(z_{ij}) + \dots + p_N \sum_{i,j} h_{iN} h_{jN} E(z_{ij})$$
$$= p_1 h'_1 E(Z) h_1 + \dots + p_N h'_N E(Z) h_N \ge 0 \qquad \text{q.e.d.}$$

Denote by U the set of all *n*-dimensional vectors of unit length, i.e. $U = \{e; ||e|| = 1\}.$

LEMMA 4. We have $M \ge \lambda(A) \ge m$, where $M = \max_{e \in U} e' \widetilde{A}e$, $m = \min_{e \in U} e' Ae$, and $\widetilde{A} = E(X^2)$.

Proof. We first note that for symmetric matrix B the maximum and the minimum of e'Be under $e \in U$, whose existences are due to the compactness of U and to the continuity of e'Be on U, correspond to the maximum and the minimum eigenvalues of B respectively. Indeed, for example, from $l=\min_{e \in U} e'Be$ it follows that $l=\bar{e}'B\bar{e}$ for some $\bar{e} \in U$ and $l \leq e'Be$ for all $e \in U$, hence $\bar{e}'(B-lI)\bar{e}=0$ and $e'(B-lI)e \geq 0$ for all $e \in U$. Therefore B-lI is positive semi-definite. Hence B-lI has at least an eigenvalue equal to 0 and non-zero eigenvalues are all positive. Since for any eigenvalue λ of B-lI we have det $(B-(l+\lambda)I)=0$, l is the minimum eigenvalue of B.

Therefore it is obvious that $\lambda(A) \ge m$. To prove that $M \ge \lambda(A)$ it is only to show that $\tilde{A} \ge A$, since M is the Frobenius root of \tilde{A} (see section 5).

The (i, j)-th element \tilde{a}_{ij} of \tilde{A} may be written as: $\tilde{a}_{ij} = E(\sum_{k=1}^{n} x_i x_k x_k x_j) = E(x_i x_j r)$, where we put $r = \sum_{k=1}^{n} x_k^2 = \sum_{k=1}^{n} x_k$ whose possible values are 0, 1, ..., *n*, and $x' = (x_1, \dots, x_n)$. Hence it is readily seen that $\tilde{a}_{ij} \ge E(x_i x_j) = a_{ij}$, a_{ij} being the (i, j)-th element of A. Therefore we have $\tilde{A} \ge A$. q.e.d.

LEMMA 5. We have 0 < m < 1.

Proof. First remark that $0 \leq a_{ij} \leq 1$, $i, j = 1, \dots, n$.

For some *i* we have $a_{ii} < 1$. (By a similar discussion it may be proved that $0 < a_{ii}$ for all i=1, ..., n.) Indeed, suppose that $a_{ii}=1$ for all i=1, ..., n, then $a_{ii}=p_i\sigma_{i1}^2+...+p_{k+l}\sigma_{ik+l}^2=1$, hence by assumption 3, $\sigma_{i1}=...=\sigma_{ik+l}=1$, i=1, ..., n, therefore $a_{ij}=1, i, j=1, ..., n$. We know from section 5 that A is positive semi-definite, contradicting the assumption 2. We have, therefore, for some *i*, $a_{ii} < 1$. If we choose $(e^i)'=(0, ..., 0, 1, 0, ..., 0) \in U$, we have $(e^i)'Ae^i=a_{ii} < 1$, hence m < 1. Since A is positive definite it is clear that 0 < m. q.e.d.

LEMMA 6. Any element in the set of pairs (α, ρ) satisfying $0 < \alpha < 2/\lambda(A)$ and $\rho \ge M\alpha^2 - 2m\alpha + 1$ makes $E(\rho I - X_a^2)$ non-negative definite.

Proof. We have $E(\rho I - X_{\alpha}^2) = E(\rho I - (I - \alpha X)^2) = -(1 - \rho)I + 2\alpha A - \alpha^2 \tilde{A}$. Let denote by ν an eigenvalue of this matrix. Then we have that for non-zero vector b, $(-(1-\rho)I + 2\alpha A - \alpha^2 \tilde{A})b = \nu b$. Multiplying b' on both sides from the left, we have

$$-(1-\rho)||b||^{2}+2\alpha(b'Ab)-\alpha^{2}(b'\tilde{A}b)=\nu||b||^{2}.$$

If we put $b/||b|| = e \in U$, then the above equality reads as:

$$-(1-\rho)+2\alpha(e'Ae)-\alpha^2(e'\tilde{A}e)=\nu.$$

By lemma 4, we obtain $\nu \ge -(1-\rho)+2m\alpha-M\alpha^2$ which holds for any eigenvalue ν

of the matrix cited above. Hence every pair (α, ρ) satisfying the following inequalities:

$$ho \geq M lpha^2 - 2m lpha + 1, \qquad 0 < lpha < rac{2}{\lambda(A)},$$

makes the matrix $E(\rho I - X_a^2)$ non-negative definite. q.e.d.

The above statement in lemma 6 can be made a little precise by the following lemma.

The discriminant of the quadratic equation: $M\alpha^2 - 2m\alpha + 1 = 0$, is $m^2 - M$ which, by lemmas 4 and 5 is negative, and in addition it follows that $m/M < 1/\lambda(A)$. Hence be lemma 6 we have:

LEMMA 7. If we denote by R the set of all pairs (α, ρ) satisfying $1 > \rho \ge M\alpha^2 - 2m\alpha + 1$, then any pair $(\alpha, \rho) \in R$ makes $E(\rho I - X_{\alpha}^2)$ non-negative definite.

Note that every pair $(\alpha, \rho) \in R$ satisfies that $0 < \alpha < 2/\lambda(A)$ and $0 < \rho < 1$.

LEMMA 8. We have that $E||X_{\alpha}w_{i}||^{2} \leq \rho E||w_{i}||^{2}$ for any pair (α, ρ) in the set R.

Proof. By lemma 3 and 7 we obtain $E(w'_t(I\rho - X_a^2)w_t) \ge 0$, hence the conclusion. q.e.d.

From lemma 8, for every pair $(\alpha, \rho) \in \mathbb{R}$, (12) may be put into the form of $\sqrt{E||w_t||^2} \leq \sqrt{\rho} \sqrt{E||w_{t-1}||^2} + \pi$ where $\pi = \sqrt{E||z||^2}$. Therefore we have

$$\sqrt{E}||w_t||^2 \leq (\sqrt{
ho})^t ||w_0|| + rac{1-(\sqrt{
ho})^t}{1-\sqrt{
ho}} \cdot \pi.$$

When $t \rightarrow \infty$, we obtain

$$\lim_{t\to\infty}\sqrt{E||w_t||^2} \leq \frac{\pi}{1-\sqrt{\rho}}.$$

If we put $D_t = \sqrt{E ||w_t - m_t||^2}$, then we have

$$D_t^2 = E((w_t' - m_t')(w_t - m_t)) = E||w_t||^2 - ||m_t||^2.$$

In conclusion we have the following theorem:

THEOREM 3. If the mean m_t of w_t converges independently of the initial state w_0 , then for any pair (α, ρ) satisfying $1 > \rho \ge M\alpha^2 - 2m\alpha + 1$ (M and m being defined in lemma 4), the standard deviation D_t of w_t has the following bound:

$$D_t^2 \leq \left[(\sqrt{\rho})^t ||w_0|| + \frac{1 - (\sqrt{\rho})^t}{1 - \sqrt{\rho}} \pi \right]^2 - ||m_t||^2,$$

hence

$$\lim_{t\to\infty}D_t^2 \leq \left[\frac{\pi}{1-\sqrt{\rho}}\right]^2 - ||m_{\infty}||^2.$$

The author is much indebted to Professor K. Kunisawa for his help and encouragement.

References

- BLOCK, H. D., The perceptron, a model for brain functioning. Reviews of Modern Physics 34 (1962), 123-135.
- [2] MARTINEZ, H. M., A convergence theorem for linear threshold elements. Bulletin of Mathematical Biophysics 27 (1965), 153-159.
- [3] NIKAIDÔ, H., Mathematical methods of modern economics. Iwanami Shoten, Tokyo. (in Japanese)

Department of Mathematics, Tokyo Institute of Technology.