DIFFERENTIAL GEOMETRY IN TANGENT BUNDLE

By KENTARO YANO AND SHIGERU ISHIHARA

The differential geometry of tangent bundle of a Riemannian manifold has been
studied by Sasaki [4] and that of a Finslerian manifold by Yano and Davies [8].

It is now well known [1], [3], [5], [8] that the tangent bundle of a differentiable
manifold with a linear connection admits an almost complex structure and that the
integrability condition of the almost complex structure is the vanishing of torsion
and curvature tensors of the linear connection. Yano and Davies [8] used this fact
in their study of the tangent bundle of a Finslerian manifold.

A linear connection in an n-dimensional differentiable manifold may be defined
as an zn-dimensional distribution, transversal to the fibre and invariant by all right
translations in the principal fibre bundle associated with the tangent bundle.

On the other hand, what we call a non-linear connection is defined as an #-
dimensional distribution, transversal to the fibre and invariant by all dilatations in
the tangent bundle, and consequently a linear connection is of course a non-linear
connection.

The mazin purpose of the present paper is to study the differential geometry of
tangent bundle of a differentiable manifold with a non-linear connection.

In §1, we define the non-linear connection as a distribution in the tangent
bundle and in §2 we introduce what we call adapted frame which is very suitable
for the study of differential geometry of tangent bundle of a manifold with a non-
linear connection.

§ 3 is devoted to the study of the three kinds of lifts, horizontal, vertical and
complete.

In §4, we show that the tangent bundle of a manifold with a non-linear con-
nection admits an almost complex structure and study the integrability condition
of the almost complex structure.

In §5, we study what we call restricted tensor fields which played an important
role in the classical theory of manifolds with a non-linear connection and in the
theory of Finslerian manifolds.

Since the tangent bundle of a manifold with non-linear connection admits an
almost complex structure, we can talk about almost analytic vector fields in the
tangent bundle. We study in §6 these vector fields which could be obtained as
lifts of vector fields in the underlying manifold.

We then in §7 introduce a linear connection in tangent bundle of the tangent
bundle of the manifold which has special importance.

In the last § 8, we shall discuss properties of curves which are obtained as lifts
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from curves in the base manifold.

§1. Nonlinear connection in 7'(M).

Let there be given an x-dimensional differentiable manifold M of class C* and
denote its tangent bundle by T'(M). The bundle 'T(M) consisting of all non-zero
vectors tangent to M is a subbundle of 7'(M). If, for a non-zero real number «,
we define a bundle transformation R,: T(M)—T(M) by Rawy=as, ¢ being an
arbitrary element of 7'(M), then =<R, is the identity mapping of M, where = is
the bundle projection =: T(M)—M. The group of all such bundle transformations
R, will be denoted by D. The group D is a group of bundle transformations of
the subbundle ' T(M).

Let 'Fe='n"'(P) be the fibre of 'T'(M) over a point P of M, ‘= denoting the
bundle projection ‘z: 'T(M)—M. In the tangent bundle T(T(M)) of 'T(M), there
exists always a differentiable distribution H of class C* satisfying the following
two conditions:

(a) T TM)=T,(Fe)+H, (direct sum),
(1.1 ‘z(0)=P,
(b) dRa(H,)=Hra for any real number =0,

where T,(T(M)) and T,('Fp) are the tangent spaces of 'T'(M) and 'Fr at o respec-
tively and H, is the value of the distribution H at ¢. Such a distribution 7 is
called a non-linear connection in 'T'(M), or by the abuse of terminology, in the
tangent bundle T(M). H, is sometimes called the horizontal plane at ¢ and I the
horizontal plane field. The horizontal plane field H is necessarily #-dimensional
because of the condition (a) given in (1. 1).

Let U be a coordinate neighborhood of M and (&*) local coordinates” defined
in U. The open set z='(U) is a coordinate neighborhood of 7'(M) and there exist
local coordinates (&%, »*) in z—}(U) such that for a point ¢ with local coordinates
(é", »™) the point P=n(s) has coordinates (¢*) in U and (»*) is the system of
cartesian coordinates in the fibre Fr=="'(P) with respect to the natural basis
0/0gr. We call such coordinates (&*, »*) adapted coordinates associated with (£*) in
z~Y(U).

Let there be given a non-linear connection A in ’T(M). Then, H will be
regarded as a distribution in 7'(M) with singularities along the zero cross-section.
Taking account of the condition (a) given in (1.1), we easily see that H is ex-
pressed in =~*(U) by pfaffian equations®

1.2 oV =1I"M¢§, p)d&’+dy=0

1) The 1indices %4, i, 4, k, s, ¢t run over the range {1, 2, .-, n}.
2) The indices A%, i*, j*, k*, s*, t* run over the range {1*, 2%, ..., »*}, The index 4* will
be sometimes identified with the corresponding index #.
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outside the zero cross-section, where the coefficients I';*(&, 5) are uniquely de-
termined by giving adapted coordinates (£%, »*) in z~%(U) and are defined in the
domain (5*)%(0,0, ---,0). As an immediate consequence of the condition (b) given
in (1. 1), the functions I",/*(¢, ) are necessarily homogeneous of degree one with
respect to the arguments 7%, i.e.

1.3 IE, )=t 7), (E=0),
which is equivalent to the fact that Euler’s formula

ol
oyt

(L. 4) gi=T"j

and
g, —n)=—I¢E, )

are valid. The set of functions I';* are called the components of the non-linear
connection H with respect to adapted coordinates (&%, »").

The distribution consisting of all tangent planes to the fibres is expressed by
pfaffian equations

(1.5) wh=d"=0

in #~}(U) with respect to adapted coordinates (&%, »").

We shall now give a remark which is useful in later discussions. Let w=wsdé&?
be a differential 1-form in M. Then o is regarded as a function wxp* in T(M).
If a vector field X in T'(M) satisfies X(w)=0 for any 1l-form o in M, then X
necessarily vanishes (cf. Yano and Ledger [9]). In fact, let X have components
(X*, Y™ in adapted coordinates (&*, »*) and put w=w,(£&)dé*. Then we have

awh

X(w)= "@—Xlﬂh—{—am Yr=0,

which implies X*=0, Y*=0, i.e. X=0 because of the arbitrariness of w. Taking
account of this fact, we have

ProposiTioN 1. 1. The tangent bundle T(M) admits a vector field J such that
Jo=w

Sfor any 1-form o in M. The vector field ] vanishes only along the zero cross-
section of T(M) and has components (0, ") at point (&, 7*) with respect to adapted
coordinates.

It is easily verified that

1 6 h* apjh t h ¥
(1. 6) .,Ew =y n'ds+-dpt=w
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where {; denotes the Lie derivation in T'(M) with respect to the vector field J.

Thus we have

ProrosiTiON 1. 2. The wvector field ] generates the l-parameter group
D¥*={Ra|la>0} of transformations in T(M) and the Euler's formula (1.4) is
equivalent to

L o=
J

Let there be given two intersecting coordinate neighborhoods U, U’ in M, and
let 3, and 2y be adapted coordinates in z=(U) and z~*(U’) respectively. Then we
get the law of coordinate transformation®

a h
€7 P, gr= o

in #Y(U)Nz="YU’), where (&, 7" and (&, ") are coordinates of a point
ger {(U)N=~Y(U’) with respect to 2y and Xy, respectively. Denoting by I';* and
I",» the components of the given non-linear connection H with respect to 2y and
2y respectively, we find

ogh

. —_agh’

azsh

o
(L.§) =+ 7",

Ly M(ER, 7¥)y=1" (", 77)

because two systems of equations
o"=I""der+dp"=0, o™ =I",Vd/+dy"=0

define the same distribution H. The relation (1. 8) is the law of transformation of
components of a non-linear connection.
The law (1. 8) of transformation reduces to*

S
1.9 o= PG h
On the other hand, we get
S
(1. 10) = PR w®

directly from the definition (1.5) of ™.

Let A={U} be an open covering of M consisting of coordinate neighborhoods
U and 2y adapted coordinates in z~%(U) where UeA. If we now suppose that there
are given #? functions I'/4(§, 5), homogencous of degree 1 with respect to #”, in
each #~'(U) and that the law (1. 8) of transformation is valid in any intersection

3) The indices #',#, j/, k', s', ¢’ run over the range {1’,2', ---, #'}.
4) The indices A%, @, j4/ k¥, s*' % run over the range {1%¥, 2%, ... n¥'},
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=} U)N=w-YU’), U and U’ belonging to A, then the distribution Hy defined by
(1. 2) involving the given I';* in each #~(U) determines globally a distribution H
in /T'(M), which is a non-linear connection having the given I';* as its components
in each =~1(U).

Differentiating the both sides of (1. 8) with respect to %%, we find

6’{:" ! K’ kY —— N (&K k aé] agl - _32«5_}" .
(1.11) e Lo &, =L 79 5w + arae
where
0 0
- ) 2= N L
1.12) It P rj, T, 577 I,

Thus the quantity I';», defined above behaves just as a linear connection does.

As is well known, there exists always a linear connection in 7'(M). Denoting
by I';*, components of a linear connection in local coordinates (£*) defined in a
coordinate neighborhood U of M, and putting

(1.13) =Ty

in z=Y(U), we see that I';* thus defined determines a non-linear connection. A
non-linear connection defined in terms of a linear connection by (1.13) is briefly
called a linear connection.

Let there be given a differentiable manifold in which a system of curves called
paths is determined by a system of ordinary differential equations

dZEh

axr _ ag
dt -

+I', §)=0, ¢&" p7a

(1. 14)
where I'*(§, ) are functions of 2z independent variables &* and %", homogeneous
of degree 2 with respect to »* and ¢ is a parameter determined up to an affine
transformation. Such a space is called a general space of paths (cf. Douglas [2]).
We can easily see that the quantity

1 oI*

h—=
(1. 15) Ii= 5 %

determines a non-linear connection in the tangent bundle. Conversely, if there is
given a non-linear connection 7%, putting

Fh(g; 77)=[7.7’h(§7 77)77'77

we see that the differential equations (1. 14) determine a system of paths.

§2. Adapted frame.

Let there be given a non-linear connection in 7(M). Then the 2z 1-forms o”
and " appearing in (1. 2) and (1. 5) form in z~*(U) a coframe which is called the
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adapted coframe associated with coordinates (£%) defined in U, U being a coordinate
neighborhood of M. Putting®

2.1 ot=BrdE4, oM=C",dE4,
we see that
@.2) (B")=(,0), (C")=T"", ).
If we put
2.3) Arg=PBry, AV 4=C",,
and define 2% 1-forms A= by®
2.4 Ar=A=4dE4,
we have
(2. 5) Ar=ot,  AV=o".
We now put
2. 6) dA*=02ArNAB, 2,57+ 25,2=0.
If we take account of (1.2), (1. 5) and (2. 5), we get
2,6"=0,
2.7 2;0=Kuyt,  Q2¥=I",
2,027=0,

where we have put
2. 8) Kijit= 0l 7y — T80l 3) — (0, s — I 0 T)+ T I it —T L,
2.9) r'=0.I'",
the operators dr and 9. being defined respectively by
0x=0/8* and  dwn=0/dn~.

Then the equations (2. 6) reduces to
(2 10) do"=0, do™'= —;—(Kj“h;?‘)wi Aw’—thiwf'Aw’.

Let A; be the 2% vector fields defined in z=*(U) by
2. 11) Ax(Ap)=03

5) Putting &r*=ph, we have (£4)=(&r, ph), and in the sequel the indices A, B, C, D,
E run over the range {1, 2, ---, 5, 1¥, 2%, ... ¥},

6) The indices a, 8, 1, 9, ¢ stand for %, 1,7, k, s, t or &*, i*, j* k*, s*, t* and hence they
run over the range {1, 2, .-+, n, 1, 2% ..., ¥},
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and denote by A4 the components of A; with respect to adapted coordinates
(&* 7). We put

2.12) Bi=A, Cu=Au
and
(2. 13) Bi4= A4, CuA=AuA.

Taking account of (2.2), (2.3) and (2.11), we see that the components B4 of B;
and the components C.4 of C,. are given respectively by

o 0
2. 14) (Bf")=( ) (€9 =< )
_rp P

with respect to adapted coordinates.
As is well known, the equation (2. 6) is equivalent to equations

(2. 15) [Ay, Apl= =025 Ae,
ie. to equations

[B), Bil=—(Kji"7")Che,
(2. 16) [B;, Cl=1"*:Cha,

[Cjw Cis]=0.

The non-linear connection H, i.e. the horizontal plane field defined by w**=0 is
integrable if and only if we have

de™=0 (mod w™*),
which is equivalent to the condition
2;M=0, ie.
Kjiypt=0.
Thus we have

THEOREM 2.1. A necessary and sufficient condition for a non-linear connec-
tion is integrable is
K nt=0.
(Cf. Kandatu [3]).
Let V be an arbitrary vector on T'(M) at a point seT(M). Then there exists

uniquely a vector /V at ¢ such that /V belongs to the horizontal plane A, and
satisfies

*(V)=0(' V).
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There exists uniquely a tangent vector 7V at ¢ such that it belongs to the tangent
plane 7,(F;,) of the fibre F.«, and satisfies

V)= (" V),

The two vectors 'V and 7V are called the horizontal and vertical parts of V
respectively. When we have 'V=7V, V is said to be horizontal. When we have
"V=V, V is said to be vertical.

If ¥ has components
V=ViBi+V*C.,,
then we find
2.17) "V=ViBi "V=V%Cau.

These terminologies will be applied also to vector fields on 7'(M).
Let IT be an arbitrary 1-form on T(M). Then there exists uniquely a 1-form
’IT such that

ICVY=1(V), 'H("V)=0
for any vector field V. There exists uniquely a 1-form ”/I such that
//H(I V)=O’ I/H(// V)=H(// V)

for any vector field V. The two l-forms ’/T and “II are called respectively the
horizontal and vertical parts of II. When we have ’II=II, Il is said to be
horizontal. When we have “II=II, II is said to be vertical. If II has components

1= Hiaﬂ—l—l]pwi’,
then we find
=110, ![T =11 0.

These terminologies will be applied also to covectors on T'(M).

§3. Lift of vector field.

Let v be a vector field in M. If we define a vertical vector field “» in T(M) by
3.1 "v-(df)=df (®)em
for any differentiable function f on M (Cf. [9]), then “» has components

0
3.2 ("p*)= ( ) or "y=0v"Chs

o

with respect to adapted frame, where »*=v"(§) are the components of v. “v is
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called the wertical lift of v, which is determined independently of non-linear con-
nection. The vertical lift “» has components “v4=0v=A,4, ie.

0
(3. 3) (”1)‘4)=< >
vh

with respect to adapted coordinates (£%, ") because of (3. 2).
Let v be a vector field in M. We define a vector field 7 on T(M) by

@9 I(o)=Lo

for any 1-form o in M, £ denoting the Lie derivation with respect to » (Cf. [9]).
The vector field » is called the complete lift of » and has components
v N
3.5 (17“):( . ) or I=0v"By+@W w")Ch.
7t o
with respect to adapted frame, where P is defined by
3.6) Par=o0" 417,

v"* being the components of ». The complete lift 7 of v is determined independently
of non-linear connection. The complete lift 7 has components 74=0vA4,4, i.e.

Z)h
3.7 @A):( ‘ )
Wlaivh

with respect to adapted coordinates (£% 7*) because of (3. 5).
Let v be an arbitrary vector field in M. Then there exists on 7'(M) uniquely
a horizontal vector field ‘v satisfying =(‘v)=wv, which has the components

ZJh'
3.9 (’v“)=( 0 ) or ‘v=v"B,

with respect to adapted frame, »" being the components of ». We call v the
horizontal lift of v. The horizontal lift ‘o has components ‘v4='vA.4, i.e.

Uh'
(3. 10) (v )=< g )

with respect to adapted coordinates (&%, ™).
Taking account of (2. 16), we have from (3. 2) and (3. 9).

ProroSITION 3. 1. If u and v are vector fields in M, then
["u, "v]="[u, v]— (@v*K;i,"p*)Cps,
3.11) [“u, "v]= WV p*)Cpx,

[llu’ I/v] — O’
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where u" and v* ave components of u and v vespectively and '[u, v] is the horizontal
lift of [u, v], Vjo" being defined by

3.12) Vot =a" 4 "0,

§4. Almost complex structure in 7'(M).

Let there be given a non-linear connection in 7'(M). We shall define in T'(M)
a tensor field F of type (1,1) by

4.1 Flo="y, F'v=—"v

for any vector field » in M. Then F has components of the form
0 —-FE

@2 (Fs")=< )
E 0

or

.3 F=FyrAsQAi=— hilB@w’%hi Cr @0
- =1

with respect to adapted frame, £ being the zXx# identity matrix. The equation
(4. 2) implies immediately
Fi=—],

I being the Kronecker’s identity tensor field in 7'(M). This means that F is an
almost complex structure in 7(M) (Cf. Yano [7]). Thus we have.

THEOREM 4. 1. If there is given a non-linear connection in T(M), then there
exists an almost complex structure corvesponding to the given non-linear connection.

(Cf. [1], (31, [5], [8D-
The Nijenhuis tensor N of the almost complex structure F is by definition
4.4 N(X, Y)=[FX, FY]-F[FX, Y]-F[X, FY]-[X, Y]

X and Y being arbitrary vector fields in 7'(M). Thus, taking account of (2. 16)
and (4. 4), we find

N(B;, Bi)=—Tji"Bu+ K" Cre
4.5) N(B,, Cu)=—Kj;i"Bn— T5"Chs,
N(Cj, Co)=Tjs"Br— K;ji"Cns,
where we have put
4.6) Kji'=Kju"y', Tyt=I "1

Thus we have
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THEOREM 4. 2. A necessary and sufficient condition for the almost complex
structure corrvesponding to a non-linear connection in T(M) to be complex analytic
is that the now-linear commection satisfy the conditions

K;i"=0, T3"=0.
(Cf. Kandatu [3]).

§5. Restricted tensor field in 7'(M).

Let (¢%) be coordinates defined in a coordinate neighborhood U of M. Then
the » vertical vector fields C.. and » horizontal 1-form " which are defined by
(2. 12) and (1. 5) respectively, are determined in #—(U) and they are independent of
non-linear connection. Let () be coordinates defined in another coordinate neigh-
borhood U’ of M, and C.. and «* respectively the » vertical vector fields and the
»n horizontal 1-forms associated with (£) in z~'(U’). Then, by means of (1. 10),
we obtain

oY

a ‘Eh
. N >
P @

C‘L*') wr= aEh’

6.1 C.=
in z=YU)N=YU").

Let V and I be respectively a vertical vector field and a horizontal 1-form.
Then we have

(5.2) V=V*C.u, II=1I,0" in z~Y(U)

and

(5. 3) V=V"Cy, =1I.0" in #~}U").

Taking account of (5. 1), (5.2) and (5. 3), we find in ==*(U)N="Y(U")
__ asl i* . aEh'

(5. 4) 14 —a—E;V , H”__agh i,

which are the laws of transformations of vertical vector and horizontal covector
respectively. Thus we call any vertical vector field a restricted temsor field of
type (1,0) and any horizontal covector field a restricted tensor field of type (0, 1) in

proper sense.
Let T be a tensor field of type (1, 2) in T(M) such that

(5. 5) T=T;;" 0’ @u*QCrx
in each #=(U). Then we find
01" QEY  QEN

AN T]:L:h“

PN S P
. 6) =5 2o v
in =-(U)Nz-Y(U’), where T=Ty"" &’ Q" @Che
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in #=%(U’). We call thus such a tensor field 7" a restricted tensor field of type
(1, 2). Similarly, we can define restricted tensor field of any type. The notion of
restricted tensor field in the present sense does not depend on non-linear connection.

In the next step, we shall extend the notion of restricted tensor field by
making use of a non-linear connection. Let there be given a non-linear connection
in T(M). Then, by means of (1.9), we find

o0&V

ash
— B, ot
857’ 2y w

= o

whv

6.7 B;

in ==Y (U)N="Y(U’). Let V and I] be a horizontal vector field and a vertical 1-form
respectively. Then we have

(5. 8) V=ViB; I=Il,.0" in =~Y(U)
and
(5.9) V=V¥B,, H=I,.0"" in z~YU").

Thus we have in z~(U)N=z"*(U’)

_

=g VO =

(5. 10) Vi
which are the laws of transformations of horizontal vector and vertical covector
respectively. We call now any horizontal vector field a restricted tensor field of type
(1, 0) in extended sense and any vertical 1-form a resiricted tensor field of type (0, 1)
in extended sense. We can now define restricted tensor fields of any type in ex-
tended sense. For example, the tensor field having in ==*(U) the form

T= T’ @o* R By,

is a restricted tensor field of type (1, 2) in extended sense.
If there is given, for example, a tensor field 7 of type (1, 1), then 7 is de-
composed in four parts as follows:

T= Ty AP® Au= Tf ' @Bi-+ Ty 0! QC ot Ty ®Bi-+ Ty 0" QCo,

where each of the four parts determines globally a tensor field in T°(M). The
second part T;/7e’®C,. is a restricted tensor field in proper sense and the other
three parts are restricted tensor fields in extended sense. These four parts are called
the restricted parts of the given T. In a similar way, we can define restricted parts of
any tensor field.

The vector field J defined in Proposition 1.1 is a restricted tensor field in
proper sense. The quantity K" defined by (4.6) determines a restricted tensor
field K in extended sense, where we have put

K=K;i*"@?Q@0*QCp-.
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In fact, we have from (2. 10)
Kjil'w Nor=do™ + 1"} Nt
and, taking account of (1.9), (1. 10) and (1. 11),

Ko o081 p&v g
Ji

A o
T 981 o9& Qe K

in z=(U)N="Y(U").
Let V=V"C,. and II=Il;w* be respectively restricted tensor fields of type
(1, 0) and of type (0, 1) in proper sense. Then, if we put

V,V¥=0,V¥—I 33 V¥+I V", l?] V=0, Vi —I"pd Vi, Vs
(5.11)
VjIL:ajﬂi—Fjsas‘IIi—thiﬂt,
we can easily verify, taking account of (1. 8), (1. 11) and (5. 4), that V,V"** and 4 Ve
defined above are components of a restricted tensor field of type (1,1), and that

V;II; are components of a restricted tensor fields of type (0, 2). Therefore, if we
define

(5.12) VV=F,V"0®Cr, V=V ll0@w,

they are restricted tensor fields and called respectively the covariant derivatives of V'
and IT with respect to the given non-linear commection. The operations 7, and 7,
will be defined by (5.11) for restricted vector fields and covector fields of any sense
and will be extended to restricted tensor fields of every type as a derivation.

In the next step, we shall introduce another derivation operating on restricted
tensor fields. Let V=V"Cu. be a restricted tensor field of type (1, 0) and put

(5.13) VuV¥=0auV",

Then V;V" are components of a restricted tensor field of type (1, 1), which will
be denoted by

(5. 14) V V=V . V"0""®Che.
We define similarly l7 applied to any restricted tensor fields of type (0,1) and
extend the operation V to restricted tensor fields of any type as a derivation.
Let T be a restricted tensor field, say, 7= T}:*"@’@w*®Cn and put
(5. 15) VxT=(XW, Ti"")0'Qw*RChs, VyT=(Y*V . T )’ Q@ &QChs,

X=X"B;, and Y=Y"C, being respectively horizontal and vertical vector fields,
local or global.



284 KENTARO YANO AND SHIGERU ISHIHARA

§6. Almost analytic vector field in 7'(M).

Let there be given a non-linear connection and ¥V be an arbitrary vector field
in T(M). If we put V=V<A, in =~Y(U), we find in =~ (U), taking account of
the relations (2. 16),

6.1) %A,a: —(Ap- Vet V12,59Aa,
because of the identity

LY=[X, Y],

X

where ,)({3 denotes the Lie derivation with respect to a vector field X (Cf. Yano [6]).
Furthermore, taking account of (6. 1), we have in z=%(U)

6.2) LA=(Ag Vet Vg A,
because of the identity
(LAY (Ap)=—Ax(L Ap).
14 14

The almost complex structure F associated with the given non-linear connec-
tion is expressed as

F=FAQA%

where Fg* is defined by (4.2). Taking Lie derivatives of the both sides and taking
account of (6. 1) and (6. 2), we find

£F=[V5(A$aFﬂ")—Fﬂ‘(AE- Vet Vi, )+ Fs(Ap Vi+ V12, ]A.R A8
for any vector field V=1V*A,. Thus "EF has the following components
6. 3) (,’gF)ﬂ“= —Fg(A.- Vet Vi, )+ Fs(As- Vo4 V12,6

with respect to adapted frame because of A.-Fp*=0. By means of (2.7) and (2. 14),
the equation (6. 3) reduces to

(,,CVF)ih: -V VvV, Vt—TVsKs",

(LR)M=P V=P V",
6. 4) v .
(,CVF)i.h:VZVh—VZ.V’",
(%F)J*:V YAV LV VKt

where V, is defined by (5. 11) and /.. is defined by (5. 13).
When V is horizontal, V* being zero, (6. 4) reduces to
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(LR)Y=—F Vi—VKu,  (CF)M=F, V",
(6. 5) v . v

(ogF)i*h:Vz Vh’ (oEF)i*h*:VI* VIL_I_ VsK“h'
When V is vertical, V" being zero, (6. 4) reduces to
(og F)f=—-F V", (gF V==V V",

({;F)i*"= V.V (L=
v

(6. 6)

A vector field V in T(M) is said to be almost analytic (Cf. Yano [7]) when we
have ,IQF=O. Thus we have from (6. 5).

THEOREM 6. 1. In a tangent bundle with a non-linear conmection, a horizontal
vector field V is almost analytic if and only if

PVh=0, .V V3K =0.
(Cf. Kandatu [3]).
We also have from (6. 6).

THEOREM 6. 2. In a tangent bundle T(M) with a non-linear comnection, «
vertical vector field V is almost analytic if and only if 'V is the vertical lift "v of
a vector field v in M such that

o +1""vt=0.
(Cf. Kandatu [3]).

If V is the complete lift of a vector field » in M, then we have from (3.5)

and (6. 4)
LF)i=—(LF)u"=(LI )y,
(6.7) v 4 ’
(LF)u=(LF)"=0,
14 14

where L£I',", denotes the Lie derivative of I, with respect to » and is by defini-
tion (Cf. Yano [6])

6. 8) L£ri=r o405 Ko+ Togip'V o,

the tensor field T;" being defined by

(6.9) Tsit= 0Dy = el

and P being defined by (3.6). Thus we have

THEOREM 6. 3. In a tangent bundle T(M) with a non-linear connection, the
complete lift of a vector field v in M is almost analytic if and only if

(LI s)n*=0.
(Cf. Kandatu [3]).
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When the given non-linear connection reduces to a linear connection, we have
from Theorem 6. 2

THEOREM 6. 4. In a tangent bundle T (M) with a linear connection, a vertical
vector field V is almost analytic if and only if V is the vertical lift "'v of a
parallel vector field v in M. (Cf. Yano and Davies [8] for Riemannian case).

We have also from Theorem 6.3

THEOREM 6. 5. In a tangent bundle TM) with a linear commection, the com-
plete lift of a veclor field v in M is almost analytic if and only if v is an in-
Sfinitesimal affine motion. (Cf. Yano and Davies [8] for Riemannian case).

In the tangent bundle of a Riemannian manifold there exists the Riemannian
connection. Thus we have from Theorem 6.1

THEOREM 6. 6. In the tangent bundle T(M) of a Riemannian manifold M, the
horizontal lift v of a vector field v in M is almost analytic if and only if v is
parallel in M. (Yano and Davies [8]).

§7. Linear connection in 7'(T'(M)).

Let there be given a non-linear connection A in T(M) and a linear connection
A in T(T(M)). If we denote by 4,%; the components of 4 with respect to adapted
frame constructed in #—}(U) by making use of the given non-linear connection H,
then the covariant derivative of a vector field V in 7'(M) is given by

7.1 D, Ve=A, Vet Ve

in adapted frame, V'« being the components of V" with respect to adapted frame.
We have already obtained in (5. 1) and (5.7)

(7' 2) Ap:—ﬂglApf, A“:dﬁ,A""
in z~XU)N=-YU’), where
ogn

oEr 0
@.3) (az)= per
0
&

and

(a3)=(az)™".
Thus, taking account of (7.1) and (7. 2), we get
7. 4) @l g= A% palal+ Apa
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in #~(U)Nz"Y(U’), which is the law of transformation of 4,%. Therefore, if we
take account of (7. 3) and (7. 4), we have

ProrosiTiON 7.1. The following subsets of the components (A,%) of a connec-
tion A given in T(T(M)) have the tensor property:

(Aj*hi)) (A]"hi’)’ (AJ“’L'i! (Aj*h‘i*)y (AJ’LI')’ (A]h‘i)'

The covariant derivative of the almost complex structure F' associated with the
given non-linear connection is given by

DrFﬁa:Ar'Fﬁ“_AraﬁFﬁa"f"AreﬁFea)
which reduces to
(7. 5) DTFp": —Araana—{-AT‘pR“

because Fy* are constants given by (4. 2). When the connection 4 has the property
D,Fy==0, A is called an F-connection. Thus we have from (7.5)

ProprosiTION 7. 2. A connection A is an F-connection if and only if
Arhz*"}_/lrh'l: f
(7. 6)
A — A=

with respect to adapied frame.

Taking account of Propositions 7.1 and 7.2, we see that there exists an F-
connection 4 in T(T(M)), or, by the abuse of terminology, in 7(M) which has
zero components except

(7. 7) /i]hz:/ijjh‘z*z[vjhz
with respect to adapted frame, where I',*, is defined by
I'r=6.I",

I')* being the components of a given ncgn-linear connection . Denoting by D
the covariant derivation with respect to 4, we find

D;u*=r;U*,  D;U*=0,
D Ur=rn.U"  D;U"=0
for any horizontal vector field U= U"B; and
D, V=0, D, V=, V™",
D, V=0, Dvr=r.ve
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for any vertical vector field V=V"C., where V, and V,. are defined respectively
by (5.11) and (5.13). Thus we have

THEOREM 7. 1. If there is ggven a non-linear connection in T(M), then there
exists uniquely an F-connection A in T(T(M) satisfying

DxU=rxU, DyU=FyU,
DxV=FyV, DyV=FyV
for any horizontal vector fields U, X and any vertical vector fields V, Y.

TgEOREM 7.2. A hovizontal vector field is parallel with respect to the connec-
tion A if and only if it is the horizontal lift of a vector field v* in M such that
oo+ 00 =0.

A wvertical vector field is parallel with respect to the commection A if and only
if it is the vertical lift of a vector field v* in M such that dp*+TI v*=0.

We have now from Theorems 6.2 and 7. 2
THEOREM 7.3. In a tangent bundle T(M) with a non-linear connection, a

vertical vector ﬁoeld is almost analytic if and only if it is parallel with respect to
the connection A and is the vertical lift of a vector field in M.

On putting
(7.8) Opr=A,%Ar
we have
(7.9 A0 — B A0, =K 5,5 A7 \ Ar,

where 10(5,,9“ are the components of the curvature tensor K of the connection 4
with respect to adapted frame. If we take account of (2.6) and (2.7), we see from
(7.8) and (7.9) that K has components all zero except

ZO{ kjih: —Z% kjith‘=Kkjih,
(7. 10) . 5
K=Ky = — 000",
where I%kjih are defined by (2.8). Thus we have from (7. 10)

o - -
THEOREM 7.4. The connection A is of zervo curvature if and only if the given
non-linear connection reduces to a lineav connection of zevo curvature.

As is well known, we have

(7.11) dA—Bg N As=8;,°A N\ Ar,
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where §,;," are the components of the torsion tensor S of the connection 4 with
respect to adapted frame. Taking account of (2. 6) and (2.7), we have from (7. 11)

(7. 12) §jih=§juh*=f’]hi—rz"], §jih=Kjih,
the other §a," being all zero. Thus, taking account of Theorem 7.4, we have

THEOREM 7.5. The commection A is locally flat (K=0, S=0) if and only if
the given non-linear connection reduces to a symmetric linear connection which is
of zero curvature.

Next, taking account of Theorem 4. 1, we have

THEOREM 7. 6. The connection A is symmetric if and only if the almost com-
Plex structure associated with the given non-linear connection is complex analytic.

Let there be given a linear connection 4 in T(T(M)). Then, applying the
formula (7. 11) to 4, we have

Aahr_/lrhﬁzsﬁrh, Ajh‘i_/lilz*]: _Kjih_‘_sﬁh*’
7.12)
A]h*v—/lpm]=thj—I—Sji*h*, Aj*htq;'——/luh*‘,szsj*z*h*,

where S;, are components of the torsion tensor S of 4. (Cf. Yano and Ledger
[9D.

We now proceed to the consideration of other particular cases.

ProprosiTiON 7.3. A linear connection A in T(T(M)) satisfies the following
two conditions (a) and (b) if and only if we have

(7.13) At =0,  Aptn=0,  A*.=0.

(@) FEach fibre is tolally geodesic and every path in each fibre is expressed by
linear equations p*=a™-+b", a* and b* being constant and t the affine parameter.

(b) The horizontal plane field is parallel along each fibre.
Taking account of (7.12), we have

ProrosiTiON 7.4. A symmetric linear conmection A in T(T(M)) satisfies the
conditions (@) and (b) mentioned in Proposition 7.3 if and only if we have

A, =0, A, =0, A, =0,
(7. 14) A=,

Afs—Ar=0, A= AP =0, At A, =0.
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The condition A, .=I"", appearing above is equivalent to the fact that
(7.15) Dx V=PV
for any vertical vector field V and any hovizontal vector field X.

ProrosiTiON 7.5. A symmetric linear connection in T(T(M)) satisfies the
following condition (c) if and only if we have

1
A= (T I,

(c) For any horizontal vector field V we have
(7. 16) "Dy V)=FvV,

wheve the left hand side denotes the horizontal part of DyV.

§8. Lift of curve.

Let C be a curve defined in M by equations &*=£&*() and v™(¢) a vector field
along C. _If there is given a non-linear connection in 7'(M), then we get in T(M)
a curve C defined by equations £4=£4(¢) of the form

8.1 gh=EM), V=210,

which is called the /ift of the curve C with hights v*(t). If a curve C defined by
(8. 1) satisfies, at all its points, the relation

(A

the curve C is said to be horizonial. The equation (8. 2) is written as follows:

o
8.3 i =0,
where we have put
ar dt 2 dsr
8.4 p7aT +IME, v) s =0.

When a lift C of a curve C in M is horizontal, C is called the horizontal lift
of C. When " is the tangent vector d&"/dt to the given curve C in M, the lift is
called the natural lift of C and denoted by C.

If there is given a symmetric linear connection 4 in T(T(M)), the differential
equations of a path &4=£4(¢), i.e. of a path &*=:&"{¢), &M =yM(¢) are given by
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d dé . dé (dé )
@®.9) ”%“’( )“”* <dt) a )"

with respect to adapted frame.

If the symmetric linear connection 4 is supposed to satisfy the conditions (a)
and (b) mentioned in Proposition 7.3, we find from (1. 2) and (1. 5), taking account
of Proposition 7. 4, that the equation (8.5) becomes

d&r ov

{dzgh g dg U
ar at

h h
T ) G S L2 ) G

(8. 6)

d [ ot dgr owv . s’ df‘
{dt( >+th’(§’ DV i ]+ M g g =0

If a curve C defined in M by &r=¢&M¢) satisfies the differential equation

3 (dgm\_ a (. dE\ d&
@7 74’7( dt )‘ Tar F’<$’ ) a0

the curve C is called a generalized path in M. Thus we have.

ProrosiTiON 8. 1. Let there be given a symmetric linear connection A in T(T(M)
satisfying the conditions (a), (b), (¢) mentioned in Propositions 7.4 and 7.5, a non-
linear commection being given in T(M). The natural lift of a gemeralized path
Er=EM(H) in M is a path in T(M) if and only if we have

dé\ d&r d&
h* —
@8 4 "(5’ dz‘) dt dt 0.

If the matural lift of a generalized path having the properties (8.8) is horvizontal,
then the natural lift is a path in T(M).

We have finally

THEOREM 8. 1. Let there be given a symmetric linear comnection A in T(T(M))
satisfying the conditions (2) and (b) mentioned in Proposition 7.4, a non-linear
connection beirg given in T(M).  Any horizontal lift of an arbitrary generalized path
in Mis a path in T(M) if and only if the given non-linear commection veduces to a
limear connection and A satisfies the condition (c) mentioned in Proposition 7.5
and the following condition:

+ * ]‘
A= — A= — 5 it

(Cf. Yano and Davies [8]).
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