
DIFFERENTIAL GEOMETRY IN TANGENT BUNDLE

By KENTARO YANO AND SHIGERU ISHIHARA

The differential geometry of tangent bundle of a Riemannian manifold has been
studied by Sasaki [4] and that of a Finslerian manifold by Yano and Davies [8].

It is now well known [1], [3], [5], [8] that the tangent bundle of a differentiate
manifold with a linear connection admits an almost complex structure and that the
integrability condition of the almost complex structure is the vanishing of torsion
and curvature tensors of the linear connection. Yano and Davies [8] used this fact
in their study of the tangent bundle of a Finslerian manifold.

A linear connection in an ^-dimensional differentiable manifold may be defined
as an ^-dimensional distribution, transversal to the fibre and invariant by all right
translations in the principal fibre bundle associated with the tangent bundle.

On the other hand, what we call a non-linear connection is defined as an n-
dimensional distribution, transversal to the fibre and invariant by all dilatations in
the tangent bundle, and consequently a linear connection is of course a non-linear
connection.

The main purpose of the present paper is to study the differential geometry of
tangent bundle of a differentiable manifold with a non-linear connection.

In § 1, we define the non-linear connection as a distribution in the tangent
bundle and in § 2 we introduce what we call adapted frame which is very suitable
for the study of differential geometry of tangent bundle of a manifold with a non-
linear connection.

§ 3 is devoted to the study of the three kinds of lifts, horizontal, vertical and
complete.

In §4, we show that the tangent bundle of a manifold with a non-linear con-
nection admits an almost complex structure and study the integrability condition
of the almost complex structure.

In § 5, we study what we call restricted tensor fields which played an important
role in the classical theory of manifolds with a non-linear connection and in the
theory of Finslerian manifolds.

Since the tangent bundle of a manifold with non-linear connection admits an
almost complex structure, we can talk about almost analytic vector fields in the
tangent bundle. We study in §6 these vector fields which could be obtained as
lifts of vector fields in the underlying manifold.

We then in § 7 introduce a linear connection in tangent bundle of the tangent
bundle of the manifold which has special importance.

In the last § 8, we shall discuss properties of curves which are obtained as lifts
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from curves in the base manifold.

§ 1. Nonlinear connection in T(M).

Let there be given an ^-dimensional differentiable manifold M of class C°° and
denote its tangent bundle by T(M). The bundle fT(M) consisting of all non-zero
vectors tangent to M is a subbundle of T(M). If, for a non-zero real number a,
we define a bundle transformation Ra: T(M)-»T(M) by Ra^=aσ, σ being an
arbitrary element of T(M), then π°Ra is the identity mapping of M, where π is
the bundle projection π: T(M)— >M The group of all such bundle transformations
Ra will be denoted by D. The group D is a group of bundle transformations of
the subbundle 'Γ(M).

Let /Fp=/τr-1(P) be the fibre of fT(M) over a point P of M, fπ denoting the
bundle projection 'π: fT(M}-*M. In the tangent bundle T(fT(M)) of 'Γ(M), there
exists always a differentiable distribution H of class C°° satisfying the following
two conditions:

( a ) Ta(
f T(M))= Tβ('F?)+Hβ (direct sum),

(1. D X*)=P,

(b) dRa(H,)=HRaw for any real number #=^0,

where Ta(
fT(M}} and TX'Fp) are the tangent spaces of '7W) and 'FP at <τ respec-

tively and Ha is the value of the distribution H at σ. Such a distribution H is
called a non-linear connection in 'T(M), or by the abuse of terminology, in the
tangent bundle T(M). Hσ is sometimes called the horizontal plane at σ and // the
horizontal plane field. The horizontal plane field H is necessarily ^-dimensional
because of the condition (a) given in (1. 1).

Let U be a coordinate neighborhood of M and (ξh) local coordinatesυ defined
in U. The open set π~l(U) is a coordinate neighborhood of T(M) and there exist
local coordinates (ξh,ηh} in π~l(U) such that for a point <τ with local coordinates
(ξh, ηh} the point P=π(σ) has coordinates (ξh) in C7 and (^Λ) is the system of
cartesian coordinates in the fibre FΓ=^~1(P) with respect to the natural basis
dldξh. We call such coordinates (ζh, ηh) adapted coordinates associated with (ξh) in

Let there be given a non-linear connection H in 'T(M}. Then, H will be
regarded as a distribution in T(M) with singularities along the zero cross-section.
Taking account of the condition (a) given in (1. 1), we easily see that H is ex-
pressed in π~l(U) by pfaffian equations2)

(1. 2) ωΛ*=/y(

1) The indices h, i,j, k, 5, t run over the range {1, 2, •••, n}.
2) The indices A*, i*,j*t k*, 5*, ί* run over the range {!*, 2*, •••, w*}. The index h* will

be sometimes identified with the corresponding index h.
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outside the zero cross-section, where the coefficients Γ/(f , ή) are uniquely de-
termined by giving adapted coordinates (ξh, ηh} in π~l(U) and are defined in the
domain 0/0^(0, 0, •••,()). As an immediate consequence of the condition (b) given
in (1. 1), the functions Γjh(ξ, η) are necessarily homogeneous of degree one with
respect to the arguments ηh, i.e.

(1.3) ΓΛf, fy) = //y (£,*),

which is equivalent to the fact that Euler's formula

(1.4)

and

are valid. The set of functions Γf are called the components of the non-linear
connection H with respect to adapted coordinates (ξh, ηh).

The distribution consisting of all tangent planes to the fibres is expressed by
pfaffian equations

(1. 5) ωh=dζh=Q

in π~l(U) with respect to adapted coordinates (ζh, ηh).
We shall now give a remark which is useful in later discussions. Let ω=ωhdξh

be a differential 1-form in M. Then ω is regarded as a function ωhη
h in T(M).

If a vector field X in T(M) satisfies X(ω)=Q for any 1-form ω in M, then X
necessarily vanishes (cf. Yano and Ledger [9]). In fact, let X have components
(Xhy Yh) in adapted coordinates (ξh, ηh) and put ω=ωh(ξ}dξh. Then we have

which implies Xh=Q, Yh=0, i.e. X=Q because of the arbitrariness of ω. Taking
account of this fact, we have

PROPOSITION 1. 1. The tangent bundle T(M) admits a vector field J such that

f ω=ω

for any 1-form ω in M. The vector field J vanishes only along the zero cross-
section of T(M) and has components (0, ηh) at point (ζh, ηh) with respect to adapted
coordinates.

It is easily verified that

dΓίh

(1. 6) £ωh*= ~- ηtd
l
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where £ denotes the Lie derivation in T(M) with respect to the vector field /.
j

Thus we have

PROPOSITION 1. 2. The vector field J generates the \-parameter group
D+={Ra\a>Q} of transformations in T(M) and the Ruler's formula (1.4) is
equivalent to

Let there be given two intersecting coordinate neighborhoods U, Uf in M, and
let ΣΌ and ΣUf be adapted coordinates in π~\U) and π~l(Uf) respectively. Then we
get the law of coordinate transformation3'

fiέϊi

(1.7) £Λ=£Λ(£Λ'), l h = v l h '

in π~l(U}^π-l(Ur\ where (ξh,ηh) and (ξh',ηh') are coordinates of a point
σzπ-l(U){}π-l(U'} with respect to Σv and ΣUf respectively. Denoting by Γ/ and
Γ r

h< the components of the given non-linear connection H with respect to ΣΌ and
Σϋf respectively, we find

because two systems of equations

define the same distribution H. The relation (1. 8) is the law of transformation of
components of a non-linear connection.

The law (1. 8) of transformation reduces to4)

3£h

(1.9) ft

On the other hand, we get

directly from the definition (1. 5) of ωh.
Let A= {U] be an open covering of M consisting of coordinate neighborhoods

f/and ΣU adapted coordinates in π~l(U) where UeA. If we now suppose that there
are given n2 functions Γjh(ξ, ή), homogeneous of degree 1 with respect to rfl, in
each π~\U) and that the law (1. 8) of transformation is valid in any intersection

3) The indices h', ir, /, k', s', t' run over the range {Γ, 2', •••, n'}.
4) The indices h*1, P'J*', k*', s*;, ί*; run over the range {!*', 2*7, •
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π-\U)Γ(π-l(Ur\ U and Uf belonging to A, then the distribution Hu denned by
(1.2) involving the given Γ'/ in each π~l(U) determines globally a distribution H
in rT(M}, which is a non-linear connection having the given Γ/ as its components
in each π~\U).

Differentiating the both sides of (1. 8) with respect to rf', we find

(1. 11) — jr\/^\,(£fc/, η^'^^Γ'/li(£*:> rf"} —1 ~,—~ >
dζh' dςj/ 3ζ%> dζJ'oζ*''

where

(i 12) /y<= -/τΓΛ Λ' Λ V= -~V/V'

Thus the quantity /"V\ defined above behaves just as a linear connection does.
As is well known, there exists always a linear connection in T(M). Denoting

by Γj\ components of a linear connection in local coordinates (ξh) defined in a
coordinate neighborhood U of M, and putting

(1.13) Γ/=Γ/f37*

in π~l(U), we see that Γjh thus defined determines a non-linear connection. A
non-linear connection defined in terms of a linear connection by (1.13) is briefly
called a linear connection.

Let there be given a differentiate manifold in which a system of curves called
paths is determined by a system of ordinary differential equations

(1.14) -ζ?

where Γh(ζt η) are functions of 2n independent variables ζh and τ?Λ, homogeneous
of degree 2 with respect to ηh and ί is a parameter determined up to an affine
transformation. Such a space is called a general space of paths (cf. Douglas [2]).
We can easily see that the quantity

α is) *y = 4- -£-
determines a non-linear connection in the tangent bundle. Conversely, if there is
given a non-linear connection Γf-, putting

we see that the differential equations (1. 14) determine a system of paths.

§ 2. Adapted frame.

Let there be given a non-linear connection in T(M). Then the 2n 1-forms ωh

and ωh* appearing in (1. 2) and (1. 5) form in π~l( U) a coframe which is called the
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adapted coframe associated with coordinates (ξ Λ) defined in U, U being a coordinate
neighborhood of M Putting5)

(2. 1) ωh=Bh

AdξA, ω^=Ch*AdξA,

we see that

(2. 2) (β^)=(% 0), (CΛ^)=(AΛ, 5».

If we put

(2.3) A\i=S\i, AΛ^=CΛ^,

and define 2n 1-forms Aa by6)

(2. 4) A =A AdζA,

we have

(2. 5) Ah=ωh, Ah*=ωh\

We now put

(2.6) dA*=Ωrβ«ArΛAfl, Ωrβ«+Ωβr°=0.

If we take account of (1. 2), (1. 5) and (2. 5), we get

(2. 7)

where we have put

(2.8) ^^(dfcFΛ-Γ^

(2.9) ΓΛ-^ΓΛ
the operators 5Λ and d** being defined respectively by

3»=d/f* and

Then the equations (2. 6) reduces to

(2. 10) Jc^=0, JωΛ*- ̂ (̂
z

Let ̂  be the 2^ vector fields defined in π~l(U) by

(2. 11) A«(Aβ)=d β

5) Putting ξh*=ηh^ we have (^A)=(|Λ, ί?71), and in the sequel the indices A, B, C, D,
E run over the range {1, 2, •••, n, 1*, 2*, •••, n*}.

6) The indices α, β, γ, δ, ε stand for /?, f, '̂, ,̂ s, t or A*, i*, ;'*, yfe*, s*, ί* and hence they
run over the range {1, 2, •••, «, 1*, 2*, ••-, ^*>.
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and denote by Aβ

A the components of Λβ with respect to adapted coordinates
(£Λ, yh). We put

(2. 12) £<= A, Ct,= A.

and

(2. 13) BiA=AiA, C^*A=Ai*
A.

Taking account of (2. 2), (2. 3) and (2. 11), we see that the components BiA of A
and the components Cv,A of Cz* are given respectively by

(2.14) (
/ 5? \ / 0 \

=( , (C^)=(
\-Γ,V \ δf /

with respect to adapted coordinates.
As is well known, the equation (2. 6) is equivalent to equations

(2.15) [Ar,Aβ]=-Ωrβ*Aa,

i.e. to equations

[5,,S<]=-(JK>«V)CΛ.,

(2. 16) [BJ9 C»J=Γy\CΛ,,

[C,., C*]=0.

The non-linear connection //, i.e. the horizontal plane field defined by ω7l*=0 is
integrable if and only if we have

dωh*=Q (mod ωΛ*),

which is equivalent to the condition

Ωjih'=Q, i.e.

Kjify'^Q.

Thus we have

THEOREM 2. 1. A necessary and sufficient condition for a non-linear connec-
tion is integrable is

A}«V=0.

(Cf. Kandatu [3]).

Let V be an arbitrary vector on T(M) at a point σeT(M). Then there exists
uniquely a vector ' F at o such that x F belongs to the horizontal plane Ha and
satisfies
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There exists uniquely a tangent vector " V at σ such that it belongs to the tangent
plane Tσ(Fπ^) of the fibre Fπ^ and satisfies

ωh(V)=ωh("V).

The two vectors fV and "V are called the horizontal and vertical parts of V
respectively. When we have ' V= V, V is said to be horizontal. When we have
" γ= V, V is said to be vertical.

If V has components

then we find

(2.17) 'V=ViBi, »V=V*C».

These terminologies will be applied also to vector fields on T(M\
Let Π be an arbitrary 1-form on T(M). Then there exists uniquely a 1-form

'Π such that

'Π('V)=Π('V), '/7("F)=0

for any vector field V. There exists uniquely a 1-form "Π such that

"77C F) = 0, "Π(» F) = 77(" F)

for any vector field F. The two 1-forms 'Π and "Π are called respectively the
horizontal and vertical parts of 77. When we have '77=77, 77 is said to be
horizontal. When we have "77=77, 77 is said to be vertical. If 77 has components

77=77^+77^*,

then we find

These terminologies will be applied also to covectors on T(M).

§ 3. Lift of vector field.

Let v be a vector field in M If we define a vertical vector field "v in T(M) by

(3.1) »υ (df)=df(υ) π

for any differentiate function / on M (Cf. [9]), then "v has components

(3.2) (V)= or "0=0ΛCΛ*
\ 0 Λ /

with respect to adapted frame, where vh=vh(ξ) are the components of v. "v is
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called the vertical lift of v, which is determined independently of non-linear con-
nection. The vertical lift "υ has components "vA=vaAa

A, i.e.

/ O
(3.3) ('>*)=(

\vh

with respect to adapted coordinates (ξh, yh} because of (3. 2).
Let v be a vector field in M. We define a vector field v on Γ(M) by

(3.4) v(ω)=£ω
V

for any 1-form ω in M, £ denoting the Lie derivation with respect to v (Cf. [9]).
V

The vector field 0 is called the complete lift of v and has components

/ vh \
(3.5) (£«)=( Λ or O=

with respect to adapted frame, where UiVh is defined by

(3. 6) Vίv
h=dίv

h+Γj

h

ίυi,

υh being the components of v. The complete lift v oί v is determined independently
of non-linear connection. The complete lift v has components vΛ=vaAa

A, i.e.

(3.7) (̂ )

with respect to adapted coordinates (ξh, ηh) because of (3. 5).
Let v be an arbitrary vector field in M. Then there exists on T(M) uniquely

a horizontal vector field fv satisfying π('v)=v, which has the components

(3.9) ('0α)= or fv=vhBh
\ 0 /

with respect to adapted frame, vh being the components of v. We call '# the
horizontal lift of 0. The horizontal lift 'v has components 'vA='v«Aa

A, i.e.

(3.10) (̂ )

with respect to adapted coordinates (£Λ, ηh).
Taking account of (2. 16), we have from (3. 2) and (3. 9).

PROPOSITION 3. 1. If u and v are vector fields in M, then

(3. 11) ["u, fv] = (u

["u, "*]=(),
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where uh and vh are components of u and v respectively and f[u, v] is the horizontal
lift of \u, υ], V jVh being defined by

(3. 12) Pjvh=dJv
h'+ΓJ\v*.

% 4. Almost complex structure in T(M).

Let there be given a non-linear connection in T(M). We shall define in T(M)
a tensor field F of type (1,1) by

(4.1) F'v="v, F"v=-'v

for any vector field v in M. Then F has components of the form

0 -E
(4.2) (Fβ*)

or

(4. 3) F=Fβ*Aa®At= - Σ Bh®ωh*+ Σ Ch*®ωh

h=l ft=l

with respect to adapted frame, E being the nxn identity matrix. The equation
(4. 2) implies immediately

/ being the Kronecker's identity tensor field in T(M). This means that F is an
almost complex structure in Γ(M) (Cf. Yano [7]). Thus we have.

THEOREM 4.1. If there is given a non-linear connection in T(M), then there
exists an almost complex structure corresponding to the given non-linear connection.
(Cf. [1], [3], [5], [8]).

The Nijenhuis tensor N of the almost complex structure F is by definition

(4. 4) N(X, T)=[FX, FY]-F[FX, Y]-F[X, FY]-[X, Y]

X and Y being arbitrary vector fields in T(M). Thus, taking account of (2. 16)
and (4. 4), we find

N(BJ9 Bi)=-Tjihl

(4.5) N(BJ,C^*)=-Kj^
h.

where we have put

(4.6)

Thus we have
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THEOREM 4. 2. A necessary and sufficient condition for the almost complex
structure corresponding to a non-linear connection in T(M) to be complex analytic
is that the non-linear connection satisfy the conditions

(Cf. Kandatu [3]).

§ 5. Restricted tensor field in T(M).

Let (ξh) be coordinates defined in a coordinate neighborhood U of M. Then
the n vertical vector fields C^* and n horizontal 1-form ωh, which are defined by
(2. 12) and (1. 5) respectively, are determined in π~l(U) and they are independent of
non-linear connection. Let (ξh/) be coordinates defined in another coordinate neigh-
borhood U' of M, and Cι*, and ωh> respectively the n vertical vector fields and the
n horizontal 1-forms associated with (ξίl') in π~l(Uf}. Then, by means of (1. 10),
we obtain

dP' d£h

(5.i) c^^α,, 0*=^*"

in π-l(U)ΐ]π-\U'}.
Let V and 77 be respectively a vertical vector field and a horizontal 1-form.

Then we have

(5.2) F=F**C*,, Π=Πhω
h in π~\U)

and

(5.3) F=F*"G*,, 77=77Λ,ωΛ' in π~l(U').

Taking account of (5. 1), (5. 2) and (5. 3), we find in π-\U)r\π~l(U')

(5.4)

which are the laws of transformations of vertical vector and horizontal covector
respectively. Thus we call any vertical vector field a restricted tensor field of
type (1, 0) and any horizontal covector field a restricted tensor field of type (0, 1) in
proper sense.

Let T be a tensor field of type (1, 2) in Γ(M) such that

(5. 5) Γ= Γy

in each π~\U). Then we find

in π-\U)nπ-l(U'), where Γ=
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in π-\Uf). We call thus such a tensor field T a restricted tensor field of type
(1, 2). Similarly, we can define restricted tensor field of any type. The notion of
restricted tensor field in the present sense does not depend on non-linear connection.

In the next step, we shall extend the notion of restricted tensor field by
making use of a non-linear connection. Let there be given a non-linear connection
in T(M). Then, by means of (1. 9), we find

d£1' d£h

(5.7) 5'= Γ* ^'=r^"

in π~1(C7)nπ-1(C7/)- Let V and 77 be a horizontal vector field and a vertical 1-form
respectively. Then we have

(5.8) V=VίBi9 7/=/7Λ,ωΛ* mπ

and

(5.9) V=VifBi,, /7=//Λ.,α>Λ" in π~l(Uf).

Thus we have in π-l(U)ΐ\π-l(U')

d£l d£h'

(5.10) γi=WVί'' //Λ =-^-y/A"

which are the laws of transformations of horizontal vector and vertical covector
respectively. We call now any horizontal vector field a restricted tensor field of type
(1, 0) in extended sense and any vertical 1-form a restricted tensor field of type (0, 1)
in extended sense. We can now define restricted tensor fields of any type in ex-
tended sense. For example, the tensor field having in π~\U) the form

T= TjίSωJ(g)ωί*(g)Bll

is a restricted tensor field of type (1, 2) in extended sense.
If there is given, for example, a tensor field T of type (1, 1), then T is de-

composed in four parts as follows:

T= Tβ

aAβ®Aa= 2yW®5<+ Γ/V(g)Ct.+ TjW®Bi+ 7y V<g>a.,

where each of the four parts determines globally a tensor field in T(M). The
second part TfωJξQCz* is a restricted tensor field in proper sense and the other
three parts are restricted tensor fields in extended sense. These four parts are called
the restricted parts of the given T. In a similar way, we can define restricted parts of
any tensor field.

The vector field / defined in Proposition 1. 1 is a restricted tensor field in
proper sense. The quantity ΛV defined by (4. 6) determines a restricted tensor
field K in extended sense, where we have put
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In fact, we have from (2. 10)

KjfωJ /\ωl= dωh* + ΓfrωJ Λ ω* *

and, taking account of (1. 9), (1. 10) and (1. 11),

in π-\U)ΐ\π~\Uf).

Let V=Vh*Ch* and Π=Πiωl be respectively restricted tensor fields of type
(1, 0) and of type (0, 1) in proper sense. Then, if we put

(5. 11)

we can easily verify, taking account of (1. 8), (1. 11) and (5. 4), that F^F7** and F^F7'*
defined above are components of a restricted tensor field of type (1, 1), and that
F 'jΠi are components of a restricted tensor fields of type (0, 2). Therefore, if we
define

(5. 12) F F= F, FA V(g)CΛ,, F/7 - rjΠiω>®ω\

they are restricted tensor fields and called respectively the covariani derivatives of V
and Π with respect to the given non-linear connection. The operations F ' 3 and Fj
will be defined by (5. 11) for restricted vector fields and covector fields of any sense
and will be extended to restricted tensor fields of every type as a derivation.

In the next step, we shall introduce another derivation operating on restricted
tensor fields. Let F= F/ltC/t* be a restricted tensor field of type (1, 0) and put

(5.13) pJΦFA*=d>FA*.

Then Fy*FA* are components of a restricted tensor field of type (1, 1), which will
be denoted by

(5. 14) F F= F,* Vh V*<g)Cλ..

We define similarly F applied to any restricted tensor fields of type (0, 1) and
extend the operation F to restricted tensor fields of any type as a derivation.

Let T be a restricted tensor field, say, T= 7yiΛV®ω*®CΛ* and put

(5. 15) Vx T= (XΨt ΓjiΛ>><8)α>H8)CΛ., ΓF T= ( Y'Ψt. Γy<

ft V®

X=XhBn and Y= Yh*Ch* being respectively horizontal and vertical vector fields,
local or global.
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§ 6. Almost analytic vector field in T(M).

Let there be given a non-linear connection and V be an arbitrary vector field
in T(M). If we put V=VaΛa in π~l(U), we find in π-\U), taking account of
the relations (2. 16),

(6. 1) £Aβ= -(Aβ V*+ V?Ωΐβ«)Aa,

because of the identity

£Y=[X9 Y],
X

where £ denotes the Lie derivation with respect to a vector field X (Cf. Yano [6]).

Furthermore, taking account of (6. 1), we have in π~\U)

(6. 2) £A*= (Aβ - V

because of the identity

The almost complex structure F associated with the given non-linear connec-
tion is expressed as

where Fβa is defined by (4. 2). Taking Lie derivatives of the both sides and taking
account of (6. 1) and (6. 2), we find

£F=[V (A. Fβ )-Fβ (A. V + VrΩrf)+F8 (Aβ Vδ+ V'Ωrβ') }
V

for any vector field V= VaAa. Thus £F has the following components
V

(6. 3) OCίV= -Fβ*(Aε. Va+ VrΩrf)+F8 (Aβ Vs + V^Ω^}
V

with respect to adapted frame because of Aε'Fβ

a=0. By means of (2. 7) and (2. 14),
the equation (6. 3) reduces to

(6.4)

where ?ι is defined by (5. 11) and V%* is defined by (5. 13).
When V is horizontal, Vh* being zero, (6. 4) reduces to
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(6. 5)

V V

When V is vertical, V1 being zero, (6. 4) reduces to

(6. 6) F

(£F)t,
h= -Vv Vh',

F F

A vector field F in Γ(M) is said to be #/w<9sί analytic (Cf . Yano [7]) when we
have £F=0. Thus we have from (6. 5).

F

THEOREM 6. 1. In a tangent bundle with a non-linear connection, a horizontal
vector field V is almost analytic if and only if

(Cf. Kandatu [3]).

We also have from (6. 6).

THEOREM 6, 2. In a tangent bundle T(M) with a non-linear connection, a
vertical vector field V is almost analytic if and only if V is the vertical lift r f v of
a vector field v in M such that

(Cf. Kandatu [3]).

If V is the complete lift of a vector field v in M, then we have from (3. 5)
and (6. 4)

(6.7)

where £ΓJ

ft

 l denotes the Lie derivative of F,\ with respect to v and is by defini-

tion (Cf! Yano [6])

(6. 8) £Γ,\=yj$iVh+v*K*Ji
h+ Tsji^PtV8,

V

the tensor field TV//1 being defined by

(6. 9) Twh=d*Γ,\=d*Jdi*Γ3

h

and Fi^ being defined by (3. 6). Thus we have

THEOREM 6. 3. In a tangent bundle T(M) with a non-linear connection, the
complete lift of a vector field v in M is almost analytic if and only if

(Cf. Kandatu [3]).
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When the given non-linear connection reduces to a linear connection, we have
from Theorem 6. 2

THEOREM 6. 4. In a tangent bundle T(M) with a linear connection, a vertical
vector field V is almost analytic if and only if V is the vertical lift l f v of a
parallel vector field v in M. (Cf. Yano and Davies [8] for Riemannian case).

We have also from Theorem 6. 3

THEOREM 6. 5. In a tangent bundle T(M) with a linear connection, the com-
plete lift of a vector field v in M is almost analytic if and only if v is an in-
finitesimal affine motion. (Cf. Yano and Davies [8] for Riemannian case).

In the tangent bundle of a Riemannian manifold there exists the Riemannian
connection. Thus we have from Theorem 6. 1

THEOREM 6. β. In the tangent bundle T(M) of a Riemannian manifold M, the
horizontal lift rv of a vector field v in M is almost analytic if and only if v is
parallel in M. (Yano and Davies [8]).

§7. Linear connection in T(T(M)).

Let there be given a non-linear connection // in T(M) and a linear connection
A in T(T(M)). If we denote by Λr

a

β the components of A with respect to adapted
frame constructed in π~l(U) by making use of the given non-linear connection H,
then the covariant derivative of a vector field V in T(M) is given by

(7.1) DrV*=Ar Va+Λr«βVe

in adapted frame, Va being the components of V with respect to adapted frame.
We have already obtained in (5. 1) and (5. 7)

(7. 2) Aβ=aβ

pΆβt, A«=a°a,A«'

in π-\U){\π-\Uf\ where

(7.3) (*;,)=

and

Thus, taking account of (7. 1) and (7. 2), we get

(7. 4)
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in π-\U)Γ\π-l(U'\ which is the law of transformation of Ar

a

β. Therefore, if we
take account of (7. 3) and (7. 4), we have

PROPOSITION 7. 1. The following subsets of the components (Ar

aβ) of a connec-
tion A given in T(T(M)) have the tensor property:

The covariant derivative of the almost complex structure F associated with the
given non-linear connection is given by

which reduces to

(7. 5) DTFf= -Λr i

because Fβ

α are constants given by (4. 2). When the connection A has the property
DrFβα=Q, A is called an F-connection. Thus we have from (7. 5)

PROPOSITION 7. 2. A connection A is an F-connection if and only if

ΛΓ\*+ΛΛ=O,
(7.6)

ΛΛ-ΛΛ*t =o

with respect to adapted frame.

Taking account of Propositions 7. 1 and 7. 2, we see that there exists an F
connection A in T(T(M)), or, by the abuse of terminology, in T(M) which has
zero components except

(7 7} A h — A h* — Γ h
\l I J Sl j % — - / I j i * — J j %

with respect to adapted frame, where Γ3

h

% is defined by

Γjh being the components of a given non-linear connection H. Denoting by D
the covariant derivation with respect to A, we find

for any horizontal vector field U= UhBh and
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for any vertical vector field V= Vh*Ch*, where V3 and V 3* are defined respectively
by (5. 11) and (5. 13). Thus we have

THEOREM 7. 1. If there is given a non-linear connection in T(M\ then there
exists uniquely an F-connection Λ in T(T(M) satisfying

for any horizontal vector fields U, X and any vertical vector fields V, Y.

THEOREM 7. 2. A horizontal vector field is parallel with respect to the connec-
tion A if and only if it is the horizontal lift of a vector field vh in M such that

A vertical vector field is parallel with respect to the connection A if and only
if it is the vertical lift of a vector field vh in M such that djVh+ΓjhiVl=ΰ.

We have now from Theorems 6. 2 and 7. 2

THEOREM 7. 3. In a tangent bundle T(M) with a non-linear connection, a
vertical vector field is almost analytic if and only if it is parallel with respect ιo
the connection A and is the vertical lift of a vector field in M.

On putting

(7. 8) θβ =Ar βAr

we have

(7. 9) dθβ*-θβ ΛΘt*=Jtδrβ

aAδ/\Ar,

where Kδrβ
a are the components of the curvature tensor K of the connection A

with respect to adapted frame. If we take account of (2. 6) and (2. 7), we see from
(7. 8) and (7. 9) that K has components all zero except

Kkji
h=-Kkji.

h*=Kkji
h,

(7. 10)
K^h=KkJ^=-d^Γk\

where Kkji

h are defined by (2. 8). Thus we have from (7. 10)

THEOREM 7. 4. The connection A is of zero curvature if and only if the given
non-linear connection reduces to a linear connection of zero curvature.

As is well known, we have

(7. 11) dA"-Θf/\At=Sίr«A'/\Ar,
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o o o

where SSΐ

a are the components of the torsion tensor S of the connection Λ with
respect to adapted frame. Taking account of (2. 6) and (2. 7), we have from (7. 11)

σ -\O\ ς*,.h—ς*..h*—.Γh._rιh Q . Λ — ZΓ.Λ. L6) Oji — 0.71* — L j i ί ^ j, Oji — J^.J^ ,

the other Sar

a being all zero. Thus, taking account of Theorem 7. 4, we have

THEOREM 7. 5. The connection Λ is locally flat CK"=0, S=0) if and only if
the given non-linear connection reduces to a symmetric linear connection which is
of zero curvature.

Next, taking account of Theorem 4. 1, we have

THEOREM 7. 6. The connection A. is symmetric if and only if the almost com-
plex structure associated with the given non-linear connection is complex analytic.

Let there be given a linear connection A in T(T(M)\ Then, applying the
formula (7. 11) to Λ, we have

(7. 12)

where Sar

a are components of the torsion tensor S of Λ. (Cf. Yano and Ledger
[9]).

We now proceed to the consideration of other particular cases.

PROPOSITION 7. 3. A linear connection A in T(T(M}) satisfies the following
two conditions (a) and (b) if and only if we have

(7. 13) 4*Λ*t=0, 4/Λ*=0, W=0.

(a) Each fibre is totally geodesic and every path in each fibre is expressed by
linear equations ηh=aht-}-bh, ah and bh being constant and t the affine parameter.

(b) The horizontal plane field is parallel along each fibre.

Taking account of (7. 12), we have

PROPOSITION 7. 4. A symmetric linear connection A in T(T(M)) satisfies the
conditions (a) and (b) mentioned in Proposition 7. 3 if and only if we have

(7. 14)
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The condition Ajh*^—Γ3

h

% appearing above is equivalent to the fact that

(7.15) DxV=VχV

for any vertical vector field V and any horizontal vector field X.

PROPOSITION 7. 5. A symmetric linear connection in T(T(M)) satisfies the
following condition (c) if and only if we have

(c) For any horizontal vector field V we have

(7.16) >(DvV}=VvV,

where the left hand side denotes the horizontal part of Dv V.

§ 8. Lift of curve.

Let C be a curve defined in M by equations ξh=ξh(t) and vh(f) a vector field
along C. If there is given a non-linear connection in T(M), then we get in T(M)
a curve C defined by equations ξA=ζA(f) of the form

(8. 1) £Λ=£Λ(f), £ft*=»Λ(f),

which is called the lift of the curve C with hights vh(f). If a curve C defined by
(8. 1) satisfies, at all its points, the relation

(8.2) a

the curve C is said to be horizontal. The equation (8. 2) is written as follows:

(8.3) ~^~=^

where we have put

When a lift C of a curve C in M is horizontal, C is called the horizontal lift
of C. When κh is the tangent vector dξhjdt to the given curve C in Λf, the lift is
called the natural lift of C and denoted by C.

If there is given a symmetric linear connection A in T(T(M)\ the differential
equations of a path ξA=ξA(t), i.e. of a path ξh=ζh(t\ ξh*=vh(t) are given by
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with respect to adapted frame.
If the symmetric linear connection A is supposed to satisfy the conditions (a)

and (b) mentioned in Proposition 7. 3, we find from (1. 2) and (1. 5), taking account
of Proposition 7. 4, that the equation (8. 5) becomes

[ dt2 ' J w ' dt dt
(8.6)

,» , dξ>

If a curve C defined in M by ξh—ξh(f) satisfies the differential equation

the curve C is called a generalized path in M. Thus we have.

PROPOSITION 8. 1. Let there be given a symmetric linear connection Λ in T(T(M)
satisfying the conditions (a), (b), (c) mentioned in Propositions 7. 4 and 7. 5, a non-
linear connection being given in T(M). The natural lift of a generalized path
ζh=ξh(t) in M is a path in T(M) if and only if we have

If the natural lift of a generalized path having the properties (8. 8) is horizontal,
then the natural lift is a path in T(M).

We have finally

THEOREM 8. 1. Let there be given a symmetric linear connection Λ in T(T(M))
satisfying the conditions (a) and (b) mentioned in Proposition 7. 4, a non-linear
connection being given in T(M). Any horizontal lift of an arbitrary generalized path
in M is a path in T(M) if and only if the given non-linear connection reduces to a
linear connection and A satisfies the condition (c) mentioned in Proposition 7. 5
and the following condition:

(Cf. Yano and Davies [8]).
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