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Introduction.

In 1933, H. Cartan [4]υ proved that the group of all complex analytic transfor-
mations of a bounded domain in Cn is a Lie transformation group. As a matter
of fact, the group of differentiable transformations on a differentiate manifold
leaving a certain geometric structure invariant is often a Lie transformation group.
The problem has been studied by many authors. Recently, Chu and Kobayashi [5]
have summarized these known results in the chronological order and given system-
atic proofs. On the other hand, Ruh [11] has obtained a condition under which
the group of differentiable transformations leaving a G-structure invariant on a
compact differentiable manifold is a Lie transformation group.

The purpose of the present paper is to prove that the automorphism group of
a compact /-manifold of some kind is a Lie transformation group (Theorem in § 2).
We shall give the proof in §4.

§ 1. (f, #)-manif olds.

Let V be an n-dimensional connected differentiable manifold of class O . 11
there exists a non-null tensor field / of type (1,1) and of class C°° satisfying

(1.1) / 3 + / = 0 ,

and if the rank of / is constant everywhere and is equal to r, then we call such
a structure an f-structure of rank r (Yano [14]). We call a differentiable manifold
admitting an /-structure an f-manifold. We put

(1.2) l=~f\ nι=f2+l,

where 1 denotes the unit tensor, then we have

(1.3) t+tn=l, P=l, m2=m, lm=ml=Q.

These equations mean that the operators / and m applied to the tangent space at
each point of the manifold are complementary projection operators. Thus, there
exist in the manifold complementary distributions L and M corresponding to the
projection operators / and m respectively. When the rank of / is equal to r, L is
r-dimensional and M is (n—r)-dimensional.
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Let fiJ 2 ) be components of an /-structure of rank r and m%3 those of the
complementary projection operator m. Then it is known [14] that we can introduce,
in a manifold admitting an /-structure of rank r, a positive definite Riemannian
metric tensor g, say gju satisfying

(1.4) grsf/fis+mji=gji,

where mji—m3

rgr%. If an /-manifold admits a positive definite Riemannian metric
tensor satisfying (1. 4), then the structure is called an (/, g)-structure and the mani-
fold an (/, g)-manifold.

In an (/, g)-manifold F, we put

(1. 5) ω(X, Y) = g(mX, m Y)

for any vector fields X and Y in #(F), where #(F) is a Lie algebra of vector
fields on F.

§2. Automorphisms of (f, #)-manifolds.

Let F and V be ^-dimensional (/, g)-manifolds and let (/, g) and (/, g) be their
(/, g)-structures respectively. A diffeomorphism h of F onto V is called an iso-
morphism of V onto V if the following conditions are satisfied:

(2.1) dhof=fodh

and

(2.2) δhω = ω,

where dh and δh are respectively the differential mapping of h and the dual mapping
of dh. Moreover, if V=V and (/, g) = (/, g), then an isomorphism h is called an
automorphism of F The set of all automorphisms of F forms a group of transfor-
mations on F, which will be denoted by A(f, ω). We state the main theorem,
which will be proved in the last section.

THEOREM. The automorphism group A(f, ω) of a compact (/, g)-manifold is a
Lie transformation group with respect to the topology of uniform convergence of
functions together with the partial derivations through the third order.

Let there be given an /-manifold and denote by / its /-structure. Then the
set of all tangent vectors belonging to the distribution M determined by the projec-
tion tensor m has a vector bundle structure, which will be denote by M(V). As
is well known, there exists a metric tensor ώ in M( F), that is, a real-valued bilinear
mapping ώ of *(M( V)) X *(M( V)) such that

ώ(X, X)^0 for XsX(M( V))

and ώ(X,X)=0 for XeX(M(V)) if and only if X=0, where 3£(M(F)) denotes the
vector space consisting of all cross-sections of M(V) over the ring g-(M) of all

2) T h e indices i,j, - r u n over the range 1,2, •••,«.



AUTOMORPHISM GROUPS OF /-MANIFOLDS 253

differentiate functions on V.
We suppose now that there is given a metric tensor ώ in M{V). Then it is

easily verified that there exists a Riemannian metric tensor g satisfying

g(mX, mY)=ώ(mX, mY)

for any elements X and Y of 36( V). If we denote now by A(f, ώ) the group of all
transformations on V, which preserve the /-structure / and the metric tensor ώ on
M(V), we have the following corollary to the main theorem.

COROLLARY. // there is given a metric tensor w on the vector bundle M{ V)
over a compact f-manifold, then the group A(f, ώ) is a Lie transformation group
with respect to the topology of uniform convergence of functions together with the
partial derivations through the third order.

An /-structure reduces to an almost complex structure, if its rank r is equal
to the dimension n of the manifold V (Yano [14]). In such a case, the vector
bundle M( V) is trivially null. Thus, from the corollary above we have a theorem
due to Boothby-Kobayashi-Wang [3], roughly speaking, that the automorphism group
of a compact almost complex manifold is a Lie group.

An almost contact structure (Sasaki [12]) is defined by a triple (/, ξ, η) of a
tensor field / of type (1,1), a vector field ξ and the covector field η such that

(2. 1)

where the first equation of (2.1) means

/(f)=0,

for any vector field X, which implies

/ 3 + / = 0 ,

i.e. that / is an/-structure of rank n—1, the manifold being ^-dimensional. In this
case, the manifold is necessarily orientable. Conversely, it is well known that any
orientable manifold with an /-structure of rank n—1 admits an almost contact
structure (Yano [14]). If there is given an almost contact structure (/, ξ, ή) in an
^-dimensional manifold V, then we can define a metric tensor ώ by

in the vector bundle M(V) consisting of all tangent vectors belonging to the distri-
bution M determined by the projection operator m=l+f2=ξ(x)^. Thus, if we
denote by A(f, ξ) the automorphism group, i.e. the group of all transformations on
V leaving / and ξ invariant, then A(f, ξ) is nothing but the automorphism group
A(f, w). Therefore, we have from the corollary above

COROLLARY. The automorphism group A(f, ξ) on a compact almost contact
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manifold is a Lie trans formation group with respect to the topology of uniform
convergence of functions together with the partial derivations through the third order.

The torsion tensor N defined in [13] for the almost contact structure is given by

N{X, Y)=[X, Y]+f[fX, Y]+flX,fY]-[fX,fY]

, Y])ξ-dV(X, Y)ξ.

When the torsion tensor vanishes identically, the almost contact structure is said
to be normal. Morimoto [7] has proved the fact that the automorphism group
A(f, ζ) on a compact normal almost contact manifold is a Lie transformation group
with respect to the compact open topology. Morimoto and Tanno [8] have also
announced the corollary above without proof, however the present proof seems to
be different from Morimoto and Tanno's.

§ 3. On elliptic differential equations.

In this section, we give the lemma concerning the elliptic partial differential
equations, which is used in the proof of the main theorem. Let D be a bounded
domain and let

(3. >, X\

be a system of linear partial differential equations in n independent variables xι, •••, xn

and n unknown functions X1, --',Xn. In our case, the theorem due to Douglis-
Nirenberg [6] reduces to

LEMMA 1. In a system of partial differential equations (3. 1), we make the
following assumptions'.
(1) there exists a positive number K such that a^(x)pj pi^K (pi2-] \-pn

2) for all
x in D and all real numbers p1} •••, pn,

(2) ajι(x) is symmetric in j and i and differentiable in D and there exists a con-
stant C\ such that

for k=0,l,2;
dx%ι"-dx%k

(3) X—iX1, -"yXn) being a solution of (3. 1) in D, there exists a constant C2 such
that

^C2 for k=0,1,2.

Then for any compact subset F in D there exists a constant C depending only on
Ci, C2 and K such that

xlldxt2dx13 dxlldxl2dx13

where y and z are arbitrary points in F.
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Let Ω={X(y)} be a family of all solutions of (3. 1) satisfying the conditions in
Lemma 1 with C fixed. Then it follows from Lemma 1 that the family Ω of
functions and their partial derivatives through the third order is bounded and
equicontinuous in F. Making use of Arzela's theorem, we see that every sequence
in Ω has a subsequence which is convergent with respect to the topology of uni-
form convergence of functions together with their partial derivatives through the
third order. This means that the family Ω is relatively compact in the space of
all solutions in (3. 1) over D with respect to the topology above.

Now, let V be a compact differentiable manifold and let S be a vector space of
infinitesimal transformations X such that, for every point in V there is a system
(3. 1) of partial differential equations defined in a neighbourhood of that point and
satisfied by all X in S. Moreover we assume that an infinitesimal transformation
X in S satisfies the condition in Lemma 1. An infinitesimal transformation X in
Ω is given by

in local coordinates. By choosing a Riemannian metric tensor, we define the norm
of X to be

|Z|+Max | | | |
p£V p£V pGV pζV

where V denotes the covariant derivative with respect to the Riemannian connect ion
and I I denotes the norm obtained by extending the Riemannian metric.

We see that Ω is a Banach space with the norm || ||. The Banach space Ω
is locally compact [2], since convergence in the norm || || is equivalent to uniform
convergence of functions together with their partial derivatives through the third
order. As is well known [1], Ω is finite dimensional, because it is locally compact.
Thus we find

LEMMA 2. The vector space Ω is finite dimensional. (See for example Ruh [11].)

§ 4. Proof of the main theorem.

We now state a well known theorem due to Palais concerning the Lie transfor-
mation group:

THEOREM (Palais [10]). Let G be a certain group of differentiate transfor-
mations on a diff erentiable manifold V. Let ©' be the set of all vector fields X
on V which generate a global 1-parameter group of transformations which belong to
the given group G. Let © be the Lie subalgebra of the Lie algebra 36( V) generated
by (S'. If (S is finite dimensional, then G is a Lie transformation group.

Making use of this theorem, we shall prove the main theorem. Let Φ(f, ω) be
the set of all infinitesimal transformations X on V such that

(4.1) Lzfi>=Q, j

where Lx denotes the Lie derivative with respect to X. The set Φ(f ω) is a Lie
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subalgebra of the Lie algebra X(V). Since V is compact, any infinitesimal transfor-
mation X in Φ(/, ω) is complete. Hence X generates a global 1-parameter group
of transformations φt(—co<t<oo) of V. Moreover, it follows from the definition
of the Lie derivative that φt is an automorphism in A(f, ω). Accordingly, by virtue
of the theorem due to Palais, in order to prove our theorem stated in § 2 it suffices
to show that the Lie subalgebra Φ(f, ώ) is finite dimensional. Subsequently we
proceed to show that Φ(f, ω) is finite dimensional.

For any infinitesimal transformation X in Φ(f, ω), we get

0 = Q"Lχfr = XΨrf*' ~f trPrX> +fr>FίXr,

where fiJ are components of an /-structure / and fJt = gjr/r\ Fί = cfrFr. Differenti-
ating this equation covariantly, we get

PkX
s F,/< J+XΨkFspJ - Fkf

ίs FSX> -pΨkFsXJ + V*U' ^Xs +/**?*?* Xs - 0.

Operating / / to the equation above and then contracting with respect to k and i,
we get

(4.2) Ph-mrhPr-fthPrX°(Prfst+Fsfrt)-fthLχft=O,

where Ph = gjιLχ{!ί

ι

ί} and fJ=Prf
rj. On the other hand, we have L*nijί — Q, from

which by making use of the formula of the Lie derivative we get

LxFjfΠih = — tJiiΠrh — tJf

where t}i=Lx{}i}. Taking account of the equation above and of the fact that
niji is symmetric in j and i, we have

Transvecting this with gjfι, we get

(4. 3) Prmir= -—

where mjui^Fjmίh—F'ίmnj+Puntji. Substituting (4. 3) into (4. 2), we get

(4. 4) TIrΨrPsXh+HrshPrX*+HrhXr - 0,

where

Hrs

h=ghtmrts+ j δhrQtumι xu -fth{FrU+PJrι) +f*hfr,

Thus we have a system of partial differential equations satisfied by all infinitesimal
transformations X which leave an /-structure / and a tensor πiji on V invariant.
Since V is compact and the Riemannian metric tensor g is positive definite, the
system (4. 4) is elliptic and satisfies the assumption of Lemma 1 in § 3. Hence
Lemma 2 in § 3 shows that the Lie subalgebra Φ(f, ώ) is finite dimensional. Thus
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the main theorem is proved completely.

The topology of the automorphism group A(f, ω) is stronger than the compact

open topology. We do not know whether the automorphism group A(f, ώ) is a

Lie group with respect to the compact open topology or not.
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