ON THE AUTOMORPHISM GROUPS OF *f*-MANIFOLDS

By Hisao Nakagawa

Introduction.

In 1933, H. Cartan [4]¹⁾ proved that the group of all complex analytic transformations of a bounded domain in C^n is a Lie transformation group. As a matter of fact, the group of differentiable transformations on a differentiable manifold leaving a certain geometric structure invariant is often a Lie transformation group. The problem has been studied by many authors. Recently, Chu and Kobayashi [5] have summarized these known results in the chronological order and given systematic proofs. On the other hand, Ruh [11] has obtained a condition under which the group of differentiable transformations leaving a *G*-structure invariant on a compact differentiable manifold is a Lie transformation group.

The purpose of the present paper is to prove that the automorphism group of a compact f-manifold of some kind is a Lie transformation group (Theorem in § 2). We shall give the proof in § 4.

§ 1. (f, g)-manifolds.

Let V be an *n*-dimensional connected differentiable manifold of class C^{∞} . If there exists a non-null tensor field f of type (1, 1) and of class C^{∞} satisfying

(1.1)
$$f^3+f=0,$$

and if the rank of f is constant everywhere and is equal to r, then we call such a structure an *f*-structure of rank r (Yano [14]). We call a differentiable manifold admitting an *f*-structure an *f*-manifold. We put

$$(1.2) l=-f^2, m=f^2+1,$$

where 1 denotes the unit tensor, then we have

(1.3)
$$l+m=1, l^2=l, m^2=m, lm=ml=0.$$

These equations mean that the operators l and m applied to the tangent space at each point of the manifold are complementary projection operators. Thus, there exist in the manifold complementary distributions L and M corresponding to the projection operators l and m respectively. When the rank of f is equal to r, L is r-dimensional and M is (n-r)-dimensional.

Received January 24, 1966.

¹⁾ Numbers in brackets refer to the bibliography at the end of the paper.

IIISAO NAKAGAWA

Let $f_i^{j^{2}}$ be components of an *f*-structure of rank *r* and m_i^j those of the complementary projection operator *m*. Then it is known [14] that we can introduce, in a manifold admitting an *f*-structure of rank *r*, a positive definite Riemannian metric tensor *g*, say g_{ji} , satisfying

where $m_{ji}=m_j^r g_{ri}$. If an *f*-manifold admits a positive definite Riemannian metric tensor satisfying (1.4), then the structure is called an (f, g)-structure and the manifold an (f, g)-manifold.

In an (f, g)-manifold V, we put

(1.5)
$$\omega(X, Y) = g(mX, mY)$$

for any vector fields X and Y in $\mathfrak{X}(V)$, where $\mathfrak{X}(V)$ is a Lie algebra of vector fields on V.

§ 2. Automorphisms of (f, g)-manifolds.

Let V and \overline{V} be *n*-dimensional (f, g)-manifolds and let (f, g) and $(\overline{f}, \overline{g})$ be their (f, g)-structures respectively. A diffeomorphism h of V onto \overline{V} is called an *iso-morphism* of V onto \overline{V} if the following conditions are satisfied:

$$(2.1) dh \circ f = \bar{f} \circ dh$$

and

$$(2.2) \qquad \qquad \delta h \bar{\omega} = \omega,$$

where dh and δh are respectively the differential mapping of h and the dual mapping of dh. Moreover, if $V = \overline{V}$ and $(f, g) = (\overline{f}, \overline{g})$, then an isomorphism h is called an *automorphism* of V. The set of all automorphisms of V forms a group of transformations on V, which will be denoted by $A(f, \omega)$. We state the main theorem, which will be proved in the last section.

THEOREM. The automorphism group $A(f, \omega)$ of a compact (f, g)-manifold is a Lie transformation group with respect to the topology of uniform convergence of functions together with the partial derivations through the third order.

Let there be given an *f*-manifold and denote by *f* its *f*-structure. Then the set of all tangent vectors belonging to the distribution *M* determined by the projection tensor *m* has a vector bundle structure, which will be denote by M(V). As is well known, there exists a metric tensor $\tilde{\omega}$ in M(V), that is, a real-valued bilinear mapping $\tilde{\omega}$ of $\mathfrak{X}(M(V)) \times \mathfrak{X}(M(V))$ such that

$$\tilde{\omega}(X, X) \ge 0$$
 for $X \in \mathfrak{X}(M(V))$

and $\tilde{\omega}(X, X) = 0$ for $X \in \mathfrak{X}(M(V))$ if and only if X = 0, where $\mathfrak{X}(M(V))$ denotes the vector space consisting of all cross-sections of M(V) over the ring $\mathfrak{F}(M)$ of all

2) The indices i, j, \dots run over the range $1, 2, \dots, n$.

252

differentiable functions on V.

We suppose now that there is given a metric tensor $\tilde{\omega}$ in M(V). Then it is easily verified that there exists a Riemannian metric tensor g satisfying

$$g(mX, mY) = \tilde{\omega}(mX, mY)$$

for any elements X and Y of $\mathfrak{X}(V)$. If we denote now by $A(f, \tilde{\omega})$ the group of all transformations on V, which preserve the f-structure f and the metric tensor $\tilde{\omega}$ on M(V), we have the following corollary to the main theorem.

COROLLARY. If there is given a metric tensor \tilde{w} on the vector bundle M(V) over a compact f-manifold, then the group $A(f, \tilde{\omega})$ is a Lie transformation group with respect to the topology of uniform convergence of functions together with the partial derivations through the third order.

An *f*-structure reduces to an almost complex structure, if its rank r is equal to the dimension n of the manifold V (Yano [14]). In such a case, the vector bundle M(V) is trivially null. Thus, from the corollary above we have a theorem due to Boothby-Kobayashi-Wang [3], roughly speaking, that the automorphism group of a compact almost complex manifold is a Lie group.

An almost contact structure (Sasaki [12]) is defined by a triple (f, ξ, η) of a tensor field f of type (1, 1), a vector field ξ and the covector field η such that

(2. 1)
$$\begin{cases} f^2 = -1 + \xi \otimes \eta, \\ f(\xi) = 0, \quad \eta \circ f = 0, \\ \eta(\xi) = 1, \end{cases}$$

where the first equation of (2.1) means

 $f(fX) = -X + \eta(X);$

for any vector field X, which implies

$$f^{3}+f=0,$$

i.e. that f is an f-structure of rank n-1, the manifold being n-dimensional. In this case, the manifold is necessarily orientable. Conversely, it is well known that any orientable manifold with an f-structure of rank n-1 admits an almost contact structure (Yano [14]). If there is given an almost contact structure (f, ξ, η) in an *n*-dimensional manifold V, then we can define a metric tensor $\tilde{\omega}$ by

$$\tilde{\omega}(\xi,\xi) = 1$$

in the vector bundle M(V) consisting of all tangent vectors belonging to the distribution M determined by the projection operator $m=1+f^2=\xi \otimes \eta$. Thus, if we denote by $A(f,\xi)$ the automorphism group, i.e. the group of all transformations on V leaving f and ξ invariant, then $A(f,\xi)$ is nothing but the automorphism group $A(f, \tilde{w})$. Therefore, we have from the corollary above

COROLLARY. The automorphism group $A(f,\xi)$ on a compact almost contact

HISAO NAKAGAWA

manifold is a Lie transformation group with respect to the topology of uniform convergence of functions together with the partial derivations through the third order.

The torsion tensor N defined in [13] for the almost contact structure is given by

$$N(X, Y) = [X, Y] + f[fX, Y] + f[X, fY] - [fX, fY] -\eta([X, Y])\xi - d\eta(X, Y)\xi.$$

When the torsion tensor vanishes identically, the almost contact structure is said to be *normal*. Morimoto [7] has proved the fact that the automorphism group $A(f,\xi)$ on a compact normal almost contact manifold is a Lie transformation group with respect to the compact open topology. Morimoto and Tanno [8] have also announced the corollary above without proof, however the present proof seems to be different from Morimoto and Tanno's.

§3. On elliptic differential equations.

In this section, we give the lemma concerning the elliptic partial differential equations, which is used in the proof of the main theorem. Let D be a bounded domain and let

(3.1)
$$a^{ji}(x) \frac{\partial^2 X^h}{\partial x^j \partial x^i} + F^h(x^j, X^i, \partial X^k / \partial x^l) = 0$$

be a system of linear partial differential equations in n independent variables x^1, \dots, x^n and n unknown functions X^1, \dots, X^n . In our case, the theorem due to Douglis-Nirenberg [6] reduces to

LEMMA 1. In a system of partial differential equations (3.1), we make the following assumptions:

- (1) there exists a positive number K such that $a^{j_1}(x)\rho_j\rho_i \ge K (\rho_1^2 + \dots + \rho_n^2)$ for all x in D and all real numbers ρ_1, \dots, ρ_n ,
- (2) $a^{j\iota}(x)$ is symmetric in j and i and differentiable in D and there exists a constant C_1 such that

$$\left|\frac{\partial^k a^{ji}}{\partial x^{i_1}\cdots\partial x^{i_k}}\right| \leq C_1 \quad for \ k=0,1,2;$$

(3) X=(X¹,..., Xⁿ) being a solution of (3.1) in D, there exists a constant C₂ such that

$$\left|\frac{\partial^k X^h}{\partial x^{i_1} \cdots \partial x^{i_k}}\right| \leq C_2 \quad for \ k=0, 1, 2.$$

Then for any compact subset F in D there exists a constant C depending only on C_1 , C_2 and K such that

$$\left|\frac{\partial^3 X^h(y)}{\partial x^{i_1} \partial x^{i_2} \partial x^{i_3}} - \frac{\partial^3 X^h(z)}{\partial x^{i_1} \partial x^{i_2} \partial x^{i_3}}\right| \leq C|y-z|^h,$$

where y and z are arbitrary points in F.

254

Let $\Omega = \{X(y)\}$ be a family of all solutions of (3.1) satisfying the conditions in Lemma 1 with *C* fixed. Then it follows from Lemma 1 that the family Ω of functions and their partial derivatives through the third order is bounded and equicontinuous in *F*. Making use of Arzela's theorem, we see that every sequence in Ω has a subsequence which is convergent with respect to the topology of uniform convergence of functions together with their partial derivatives through the third order. This means that the family Ω is relatively compact in the space of all solutions in (3.1) over *D* with respect to the topology above.

Now, let V be a compact differentiable manifold and let S be a vector space of infinitesimal transformations X such that, for every point in V there is a system (3.1) of partial differential equations defined in a neighbourhood of that point and satisfied by all X in S. Moreover we assume that an infinitesimal transformation X in S satisfies the condition in Lemma 1. An infinitesimal transformation X in Ω is given by

$$X = X^j \partial \partial x^j$$

in local coordinates. By choosing a Riemannian metric tensor, we define the norm of X to be

$$\|X\| = \underset{p \in V}{\operatorname{Max}} |X| + \underset{p \in V}{\operatorname{Max}} |\mathcal{P}X| + \underset{p \in V}{\operatorname{Max}} |\mathcal{P}^{2}X| + \underset{p \in V}{\operatorname{Max}} |\mathcal{P}^{3}X|,$$

where $\vec{\nu}$ denotes the covariant derivative with respect to the Riemannian connection and $| \cdot |$ denotes the norm obtained by extending the Riemannian metric.

We see that Ω is a Banach space with the norm $\| \|$. The Banach space Ω is locally compact [2], since convergence in the norm $\| \|$ is equivalent to uniform convergence of functions together with their partial derivatives through the third order. As is well known [1], Ω is finite dimensional, because it is locally compact. Thus we find

LEMMA 2. The vector space Ω is finite dimensional. (See for example Ruh [11].)

§4. Proof of the main theorem.

We now state a well known theorem due to Palais concerning the Lie transformation group:

THEOREM (Palais [10]). Let G be a certain group of differentiable transformations on a differentiable manifold V. Let \mathfrak{G}' be the set of all vector fields X on V which generate a global 1-parameter group of transformations which belong to the given group G. Let \mathfrak{G} be the Lie subalgebra of the Lie algebra $\mathfrak{X}(V)$ generated by \mathfrak{G}' . If \mathfrak{G} is finite dimensional, then G is a Lie transformation group.

Making use of this theorem, we shall prove the main theorem. Let $\Phi(f, \omega)$ be the set of all infinitesimal transformations X on V such that

$$(4.1) L_X f_{i^j} = 0, L_X m_{ji} = 0,$$

where L_X denotes the Lie derivative with respect to X. The set $\Phi(f, \omega)$ is a Lie

HISAO NAKAGAWA

subalgebra of the Lie algebra $\mathfrak{X}(V)$. Since V is compact, any infinitesimal transformation X in $\Phi(f, \omega)$ is complete. Hence X generates a global 1-parameter group of transformations $\phi_t(-\infty < t < \infty)$ of V. Moreover, it follows from the definition of the Lie derivative that ϕ_t is an automorphism in $A(f, \omega)$. Accordingly, by virtue of the theorem due to Palais, in order to prove our theorem stated in §2 it suffices to show that the Lie subalgebra $\Phi(f, \omega)$ is finite dimensional. Subsequently we proceed to show that $\Phi(f, \omega)$ is finite dimensional.

For any infinitesimal transformation X in $\Phi(f, \omega)$, we get

$$0 = g^{\imath r} L_X f_r^{\jmath} = X^r \nabla_r f^{\imath j} - f^{\imath r} \nabla_r X^{\jmath} + f_r^{\jmath} \nabla^i X^r,$$

where f_{i} are components of an *f*-structure *f* and $f^{ji}=g^{jr}f_{r}$, $V^{i}=g^{ir}V_{r}$. Differentiating this equation covariantly, we get

$$\nabla_k X^s \cdot \nabla_s f^{ij} + X^s \nabla_k \nabla_s f^{ij} - \nabla_k f^{is} \cdot \nabla_s X^j - f^{\imath s} \nabla_k \nabla_s X^j + \nabla_k f_s^j \cdot \nabla^i X^s + f_s^j \nabla_k \nabla^i X^s = 0.$$

Operating f_{j^h} to the equation above and then contracting with respect to k and i, we get

$$(4.2) P^{h} - m_{r}^{h} P^{r} - f_{t}^{h} \nabla^{r} X^{s} (\nabla_{r} f_{s}^{t} + \nabla_{s} f_{r}^{t}) - f_{t}^{h} L_{\mathbf{X}} f^{t} = 0,$$

where $P^{h}=g^{ji}L_{\mathcal{X}}\{_{ji}^{h}\}$ and $f^{j}=V_{r}f^{rj}$. On the other hand, we have $L_{\mathcal{X}}m_{ji}=0$, from which by making use of the formula of the Lie derivative we get

$$L_X \nabla_j m_{ih} = -t_{ji}^r m_{rh} - t_{jh}^r m_{ir},$$

where $t_{ji}^{h} = L_{X} \{ {}_{ji}^{h} \}$. Taking account of the equation above and of the fact that m_{ji} is symmetric in j and i, we have

$$L_X \nabla_j m_{ih} - L_X \nabla_i m_{hj} + L_X \nabla_h m_{ji} = -2t_{jh}^r m_{ir}.$$

Transvecting this with g^{jh} , we get

(4.3)
$$P^{r}m_{ir} = -\frac{1}{2}g^{jh}L_{X}m_{jih},$$

where $m_{jih} = \nabla_j m_{ih} - \nabla_i m_{hj} + \nabla_h m_{ji}$. Substituting (4.3) into (4.2), we get

where

$$\begin{pmatrix}
H^{rs} = g^{rs}, \\
H_{rs}^{h} = g^{ht}m_{rts} + \frac{1}{2}\delta^{h}_{r}g^{tu}m_{tsu} - f_{t}^{h}(\nabla_{r}f_{s}^{t} + \nabla_{s}f_{r}^{t}) + f_{s}^{h}f_{r}, \\
H_{r}^{h} = K_{r}^{h} + \frac{1}{2}g^{hs}g^{tu}\nabla_{r}m_{tsu} - f_{s}^{h}\nabla_{r}f^{s}.
\end{cases}$$

Thus we have a system of partial differential equations satisfied by all infinitesimal transformations X which leave an f-structure f and a tensor m_{ji} on V invariant. Since V is compact and the Riemannian metric tensor g is positive definite, the system (4.4) is elliptic and satisfies the assumption of Lemma 1 in § 3. Hence Lemma 2 in § 3 shows that the Lie subalgebra $\Phi(f, \omega)$ is finite dimensional. Thus

the main theorem is proved completely.

The topology of the automorphism group $A(f, \omega)$ is stronger than the compact open topology. We do not know whether the automorphism group $A(f, \omega)$ is a Lie group with respect to the compact open topology or not.

Bibliography

- [1] BANACH, S., Théorie des óperations linéaires, Warsaw, 1932.
- [2] BOCHNER, S., AND D. MONTGOMERY, Locally compact groups of differentiable transformations. Ann. of Math. 47 (1946), 639-653.
- [3] BOOTHBY, W. M., S. KOBAYASHI, AND H. C. WANG, A note on mapping and automorphisms of almost complex manifolds. Ann. of Math. 77 (1963), 329-334.
- [4] CARTAN, H., Sur les groups de transformations analytiques. Actualités Sci. Ind. No. 198, Hermann, Paris (1935).
- [5] CHU, H., AND S. KOBAYASHI, The automorphism group of a geometric structure. Trans. Amer. Math. Soc. 113 (1964), 141–150.
- [6] DOUGLIS, A., AND L. NIRENBERG, Interior estimates for elliptic system of partial differential equations. Comm. Pure Appl. Math. 8 (1955), 503-538.
- [7] MORIMOTO, A., On normal almost contact structures. J. Math. Soc. Japan 15 (1963), 420-436.
- [8] MORIMOTO, A., AND S. TANNO, The transformation group of almost contact structures. (in Japanese) Sugaku 16 (1964), 46-54.
- [9] NAKAGAWA, H., On framed f-manifolds. To appear.
- [10] PALAIS, R. S., A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., No. 22, (1957).
- [11] RUH, E. A., On the automorphism group of a G-structure. Comm. Math. Helv. 39 (1964), 189-204.
- [12] SASAKI, S., On differentiable manifolds with certain structures which are closely related to almost contact structure, I. Tôhoku Math. J. 12 (1960), 459–476.
- [13] SASAKI, S., AND Y. HATAKEYAMA, On differentiable manifolds with certain structures which are closely related to almost contact structure, II. Tôhoku Math. J. 13 (1961), 281-294.
- [14] YANO, K., On a structure f satisfying $f^3+f=0$. Technical Report, No. 2, June 20 (1961), Univ. of Washington.

Tokyo University of Agriculture and Technology.