ON REGULARLY BRANCHED THREE-SHEETED
COVERING RIEMANN SURFACES

By Kivosuar NiNo

§1. Let R be an open Riemann surface. Let M(R) be the family of non-
constant analytic functions meromorphic on R. Let f be a member of M(R). Let
P(f) be the number of Picard’s exceptional values of f, where we say « a Picard’s
exceptional value of f when « is not taken by f on R. Let P(R) be a quantity
defined by

P(R)= sup P(f).
JEM(R)

In general P(R)=2. It has been shown that P(R) is an important quantity belonging
to R for a criterion of non-existence of analytic mapping (cf. Ozawa [5, 6]).
From now on we shall confine ourselves to the following Riemann surfaces:
Let R be a regularly branched three-sheeted covering Riemann surface formed
by elements p=(z, y) for each z, y satisfying the equation

1.1 y¥=9(2),

where ¢(z) is an entire function having no zero other than an infinite number of
simple or double zeros. Then we have P(R)=6 from Selberg’s theory [9].

Hiromi and the author [1] has given a characterization of Riemann surfaces
R with P(R)=6 and proved that there is no regularly branched three-sheeted cover-
ing Riemann surface R with P(R)=5 and that every Riemann surface R defined
by the equation (1.1) with an entire function ¢(z). which have no zero other than
an infinite number of simple zeros ov have no zervo other lhan an infinite number
of double zeros, always satisfies P(R)=4.

Hence as an example of surface R with P(R)=4, we have a Riemann surface
R defined by the equation (1.1) with ¢(z)=e*+1.

As for surfaces with P(R)=4 nothing is known other than above facts. There-
fore we wish to get a perfect characterization of surfaces with P(R)=4. The author
regrets to say that he could not give any perfect characterization of surfaces with
P(R)=4 till now. In the present paper, however, under a certain additional condi-
tion we shall give a characterization of surfaces with P(R)=4in §4 and a criterion
for P(R)=4 in §5.

Next let S be another surface of the same type as R. Then Muto [3] has
established a perfect condition for the existence of analytic mappings from R into
S. If P(R)=P(S)=6, then the possibility on the existence of analytic mappings
from R into S remains by means of Ozawa’s criterion on non-existence of analytic
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mapping [5]. In the present paper we shall give a perfect condition of the existence
of analytic mappings between the special surfaces with P(R)=P(S)=6 in §6.

The author wishes to express his heartiest thanks to Professors Y. Komatu and
M. Ozawa and Mr. G. Hiromi for their valuable advices and kind encouragements
in preparing the paper.

§2. Let R be a regularly branched three-sheeted covering Riemann surface
defined by the equation (1.1). In the first place let us recall the following results
which Hiromi and the author [1] established about regular functions on R:

Let f be a three-valued entire algebroid function of z which is single-valued
and regular on R. Then there exist two entire functions f1(2), f2(z) and a meromorphic
function f3(2) single-valued and regular with exception of all the double zeros of
g(z) at which fi(z) has simple poles, such that

2.1 F(D)=11(2)+f(2)y+-f+(2)y"

Conversely the function f(p) defined by (2.1) with fi(2), fu(2) and f»(z) having the
described properties is clearly regular on R. Let the defining equation of f be

2.2 F(z, N)=*=5:1(2) f*+S:(2) f—Ss(2) =0,

where Si(z), S:(z) and Si(z) are entire functions. Then from (2.1) we have the
following relations:

S1(z)=3/1(2),
2.3) Su(2)=311(2)"—3/2(2) f+(2)9(2),
S3(2)=/1(2)*+/2(2)°0(2) +1+(2)*9(2)* =3 f1(2) S2(2) /3(2)9 (2).
Let D(z) be the discriminant of the cubic equation (2.2). Then we have
2.4 D(z2)=—279(2)(fx(2)*—[+(2)’9(2))*,
and from (2. 2)
2.5)  D(z)=—451(2)*Ss(2)+S1(2)2S2(2)*+1851(2)S2(2)Ss(2) —45:(2)* — 2755(2)°.

Eliminating f; and f; or f; and f. from (2.3) we see that f.%¢ and f3’¢®* are two
roots of a quadratic equation

. (2 s 1 1 /1o P
@6 X —(57 Si2) —gsl(z)sz(znsg(z)) Xt o ( =5 sz<z)) 0.

Let Di(z) be the discriminant of the quadratic equation (2. 6). The from (2. 5) we get
1
2.7 Di(2)=— o D(z).

§3. Lemmas. For our purpose we need some preparatory lemmas. The
notations 7, m, N, N; and N on meromorphic functions are used in the sense
of Nevanlinna [4]. Hiromi and Ozawa [2] proved the following lemma A and
lemma B:
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Lemma A, Let ay(z), ar(2), -, an(2) be meromorphic functions and let ¢,(z), ---,
gn(2) be entive functions. Further suppose that

T(r, @-)zo(im(n e”")), 7=0,1, -, n,
holds oulside a sel of finite measure. If tﬁe identity
i}lay(z)eg”(”:ao(z)
holds, then we have an identity

"
> ¢,a,(2)e”® =0,

v=1
where ¢,, v=1, ---, n, are constants which are not all zcro.

LemMA B. Let ai(z), -+, an(2) be meromorphic functions and let ¢(z) be an
entive function. Further suppose that

T(, a)y=o(m(r, e9)),  71=1,2, -, n,

holds outside a set of finite measure. Then the identity
2 a(2)e" @ =0
v=1

is impossible unless all ai(z), ---, @.(2) are identically zevo.
Now we shall prove

Lemma 1. Let ao(2), ai(2), -+, an(z) be meromorphic funclions and lel ¢y(z2), -,
0x(2) be entive functions. Further suppose that

I(r, as)=o(m(r, e™))
and
T(?’, aj):o(m(r: egl_gu))’ ]:0) 17 Wy ”:k, k+1) ey 1,

outside a set of finite measure. If a,(2)%#0 and the identity
3.1 Z}l a,(2)e”® =ay(2)
halds, then we have

kg}i €, (2)e" P +cowy(2) —0,

where c1=1 and ¢,, v=0, 2, 3, ---, k—1, are suitable constants.

Proof. Suppose that the identity (3.1) holds. Then, by virtue of lemma A
we get

3.2) ST ua(2)e P =0,
y=1
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where ¢,, v=1, ---, #, are conslants which are not all zero.
If ¢,=0, then a@.(2)e?®, v=2, ---, n, are linearly dependent. llence by climinat-
ing a suitable term, say a.(2)e’»®, from (3. 1), we get

n—1
>1dua(2)e? P =ay(2),
v=1

where d;=1 and the other d, are suitable constants. Here if d,=0, v=~&, k41, .-,
n—1, then there is nothing to prove. If at least one of d,, v=£k, ---, n—1, is not
zero, then by virtue of lemma A we have

n—1
3.3) Z d, d,a,(2)e”® =0,
v=1

where d,=1 and d,’ are constants which are not all zero.
If ¢;#0 and ¢,=0, v=£&, ---, #, then there is nothing to prove.
If ¢;#0 and at least one of ¢,, v=~%&, ---, #, say c¢», is not zero, then we have

n—1
Z C,,CZ,(Z)eg"(z)—g" (2) — _Cnan(Z),

v=1

and by applying lemma A to this identity, we get

-1
nZ C,,'cya,,(z)eg“(”‘g"(” :0,
y=1

where ¢,’ are constants which are not all zero. Hence we obtain

n—1

3.4 Dic/ca(2)e”® =0.
v=1

Thus (3. 2) implies (3. 3) or (3.4). By the repetition of this process, we finally
arrive at the desired result. Q.E.D.

The notations 7, m, N on algebroid functions are used in the sense of Selberg
[9]. Let f(2) be an algebroid function. In a neighborhood of a zero z, of s (2), let
f(2) be expanded:

3.5 f@=alz—z)"*+-,  (a:#0).

Let Ni*(r, 0, f) and N.*(,0,f) be the counting functions of zeros of f(z) with z>>2
and <1 in (3. 5), respectively. Let N(r, X,) and N(z, 3,) be the quantities defined
by Selberg [9].

LemMA 2. Let H(2) be an entire function and h(z) be a k-valued entive algebroid
Junction. If

m(r, b)=o(m(r, et))
holds outside a set of finite measure, then we have
N*(r, 0, eT—h)=o(m(r, e™")) and N*(@, 0, e —It)~m(r, ™)

outside a sel of finite measure.
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Proof. We set

ett—J

—h

Then f is a k-valued algebroid function regular on X,. Using ramification theorem
(cf. Ullrich [10], Selberg [9]), we get

N(r, 00, £)=N(r, 0, i) =m(r, h)+O1)=o0(m(r, e?)),
N, 1, f)=N(, 0, e)=0,
N(r, oo, f)=2N(r, 0, i)+ N(, X1)
=2N, 0, )+ ©2k—2)T (r, i)+ OQ) = o(m(r, e™)),

T =T, e®)+T, W+ T, 1/)+0Q)=m(r, e™)+o(mn(r, et))
and
m(r, e)=m(r, e —h)+m(r, )-+FOL) =T (7, f)+o(m(r, ™))

outside a set of finite measure. Nevanlinna-Selberg’s second fundamental theorem
applied to f gives

T(r, f)=N, 0, f)+N, 00, )+ N, 1, /) —N@, 3r)-+N(r, X)+-Oog v T'(r, 1))
outside a set of finite measure. Since
N(r, B7)— N, X7)=2N(r, oo, /)+N(r, 0, f')—N(r, oo, ")

:N(rx 07 f,)+0(m(7’, eH))
and
N, ¥5)=N(r, %) =(2k—2) T'(r, h)-FO(L) = 0(m(r, ™))

outside a set of finite measure, we have
T, =N, 0,1)—N, 0, f))+o(m(r, e™))
= NH@, 0, 1) HN*(, 0, )+ N, &) +o0m(r, ')
=No*(r, 0, e —h)+N:*(r, 0, L — h)+ o(m(r, e'))
outside a set of finite measure. On the other hand we have
No*(r, 0, e —h)+Ny¥(7, 0, e —h)— N *(r, 0, e — ) +-N1%(7, 0, el — )
=N, 0,eZ—h)=N(,0,)=T(, f)+01)
= NX(1, 0, e —h)+N*(r, 0, e — h)-+o(m(r, ell))
outside a set of finite measure. Thus we obtain
N*(r, 0, e —h) = Ny*(r, 0, e — h)— N 1%(r, 0, e’ — ) — o(m(r, ™)),
and hence
N*(r, 0, ef —h)=o(m(r, e™)),

and by means of T'(z,f)=m(r, e®)+o(m(r, e’)), we finally have
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N*¥(7, 0, ef —hB)=m(r, e™X)+-o(m(r, e't))
outside a set of finite measure. Thus lemma 2 has been proved.

Let f(2) be an algebroid function. Let N X(r,0,7) be the counting function of
zeros of f(z) with r=2=1 in (3. 5) whose projections do not coincide with projec-
tions of all the branch points of X;.

LEMMA 3. Under the hypotheses of lemma 2, we have
N (7, 0, e —h)~m(r, efl)
outside a set of finite measure.
Proof. By virtue of ramification theorem we have clearly
No¥(r, 0, e —I)—N (@, 0, ¢ — ) = NGz, %)+ (k-+1)N (7, X1)
=(k+2) 2k—2)T(r, )+00)=0(m(r, "))
outside a set of finite measure. Therefore lemma 2 gives our desired result. Q.E.D.

Let f(z) be a meromorphic function. Let Nu(r,0,f) be the counting {unction
of simple zeros of f(z).

LemMa 4. Let H(z) and ¢,(z) (7=1, ---, pr) be entire functions satisfying
m(r, pj)=o(m(r,e"),  j=1,-p,
outside a set of finite measuve. If the algebraic equation
(3. 6) Q) =h 4 ()7 -+ (2) =0
is irveducible, then we have
N7, 0, Qule®))~um(r, e) and N7, 0, Q.le™))=0(m(r, ¢¥))
outside a set of finite measure.

Proof. Let h(z) be p-valued entire algebroid function defined by the equation
3. 6) and £,;(z) (=1, ---, p) its p determinations. Then we have

M=

Il

No*(r, 0, e — ) = Nu(r, 0, Q™) = 31 Ne¥(r, 0, e — i)
J=1

J=1

and
Ni(r, 0, Qe = 32 No¥(r, 0, ¢l — ).
J=1

Therefore lemma 4 follows from lemma 2 and lemma 3.

Remark. If %(2) in lemma 2 reduces to an entire function or if pg=1 in
lemma 4, then these lemmas reduce to that of Hiromi and Ozawa [2], that is,

Lemma C. Let H(z) be an entire function and let ¢(z) be an entive function
satisfying m(r, 9)=o(m(r, e)) outside a set of finite measure. Then we have

N(r, 0, e —g)~m(r,ef) and Ni(r,0,ef—g)=00mn(r, e¥))
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outside a set of finite measuve.

Let fi(z) and f3(z) be two meromorphic functions. Let Ny(7,0; f1,/2) be the
counting function of common zeros of fi(z) and fx(2).

LemMA 5. Let H(z), p;(2) (j=1, -, 1) and ¢¥(2) (k=1,---,v) be entire [functions
satisfying

m(f, 901‘)20(7’”(7’, eH))’ j:]-) 2: y
and

m(”! @f)::o(m(r, eH))’ k:]-y 2: Y,

outside a set of finite measure. If the equations

Q.W=h+o () -+ (2)=0
and

QF W =h+eH@)h '+ +¢fz)=0
are irreducible, vespectively, and Q(e*)Z£Q¥(e™), then we have

No(r, 0; Qu(e™), QF(e™))=o0(mlr, ™))
outside a set of finite measure.

Proof. We denote the resultant of Q.(4) and Q¥(%) by J(2), that is,

1 Q1 Qp
1 501 ee (/)#
v
Lo = o S
J)= .
1 of o
1 of oF
o
R

Then by mecans of hypotheses of the lemma, we havc
N7, 0, [)=o0(m(r, et))
outside a set of finite measure. Hence we have
No(r, 0; Qule™), Q¥e™)=N, 0, ])+o(m(r, e™)=o(m(r, e™))
outside a set of finite measure, which proves lemma 5.

Finally, we need
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LemMmA DY Let g(z) be a transcendental entive function and let P(z) and Q(z)
be two polynomials. If the equation

goh(2)=P(2)9(2)+Q(2)
holds, then h(z) must be of the form az-+b.

§4. Now we shall consider to give a characterization of Riemann surfaces
with P(R)=4 under an additional condition.

Let R be a regularly branched three-sheeted covering Riemann surface defined
by the equation (1. 1) and suppose that P(R)=4. Then there exists a meromorphic
function feM(R) with P(f)=4. Further we may assume that its four Picard’s
exceptional values are 0, @;, @, and co. Then f becomes a three-valued entire alge-
broid function of z which is regular on R and satisfies (2.2) and (2.3). By
Rémoundos’ reasoning [8] of his celebrated generalization of Picard’s theorem, it is
sufficient to consider the following five cases:

F(z,0) c1 Bett ¢ Bre™ B
F(Zy al) = (1) Ca ) (li) C1 ’ (111) ﬁleul ’ (iV) [ ) (V) ﬂzeuz )
F(z, as) BeH Cc2 BeeH? Boe? Bse™3

where ¢, ci, ¢z, B, 1, B2 and fs are non-zero constants and H(z), Hi(2), Hx(z) and I13(z)
are non-constant entire functions satisfying H(0)=H,(0)=F,(0)=H,(0)=0.
After calculation we obtain

Si= 1 el — L Ci— ! C2ta+as,
a1 —as) Qs a(ar—as)
4. 1) S,— a ol ata; . @ ol
ax(@1—az) a1y a(a—as)
Sa=—6'1
in the case (i), and
Si=— L et — ! ¢t cataita
v a1a2 (a1 —as) ' ax(a1—as) : ! »
(4. 2) Sz:—' al+az ﬁe”— e Cl‘l' el Cz‘l‘(ll(lz,
a1qz al(al—(lz) (lz(al—az)
Sy=— el

in the case (ii), and

1) This lemrgz; h_as been proved by considering the growth of go/(z) in conirast with
that of g(z) or P(z)g(z) in Ozawa’s note which i1s yet unpublished.
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1 1
Sy - 1PV / £ S S - Y / ¢ S . .
S a(a—as) [318 + ax(a1—as) ‘Bze 1@z ctarta
“. 3) - &) my Y ooy, Gtae ’
5= oy " G iy C T
Sa=——(,‘
in the case (iii), and
Sim— — B ————— et — —————ctatay
Qs ax(a1—as) a(a;—as)
4.4 IS ai+a; eH1 2! oH? @
= — a\ds,
2 a,qz ‘Bl T 02(01—02) ‘82 (ll(a]—az) @
\ Ss=—‘81€Hl
in the case (iv), and
— 1 Hi__ 1 yies 1 I3
Si= v, e 2 ar—a) Bae™2 4 aa—aD Bse3+-a,+-as,
(4. 5) —_ M m_ % o @ I3
Sz— aQqs ﬁle (h(dl—az) ‘828 T dz((ll—dz) ,83(2 T
832_1913111

in the case (v).

Cases (i) and (ii). These cases are similar to the cases (i) and (ii) of §5 in
Hiromi and the author [1]. Hence the discriminant D(z) of the cubic equation
(2. 2) is a polynomial of degree 4 of ¢”. From the same reasoning of §5 in [1]
there exists a meromorphic function feMM(R) with P(f)=6, if the constant term?®
of D(z) does not vanish or if the constant term of D(z) vanishes but the constant
term of

S(z)=— <2~27 Si(z)*— ';—SI(Z)SZ(Z) +Ss(z)>

in (2. 6) does not vanish. Hence the constant terms of D(z) and S(z) must be zero.
Therefore from the quadratic equation (2. 6) we obtain the equations

4. 6) fPg=AeH (e —71) (eH—9), A+0,
4.7 fifgP=AeH (" —y') (e —d"), A=0.

From (4.6) we see that y and 0 do not vanish simultaneously. Hence we may
assume that 7y is not zero.

First we assume that y#d. Since a simple zero point z, of e#—y is a simple
zero point of the right hand term of (4. 6), z; is a simple zero point of ¢(z). Hence

2) Here we say “constant term” when we take D(z) for a polinomial of ¢Z(. And
we use the term “constant term” in this sense also for S(z).
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the equation (4.7) gives y=y’/ or y=0’, say y=y’. Besides, since z, is a double zcro
point of fi¢? we get y=7’=d’. Therefore if 60, then similarly we have 6=7'=0d,
which contradicts y#d. Thus we obtain y=y’=04’ and §=0, that is,

flg=AetH(ef—y) and fi’¢ =Ael(e”—7)?, Ayr+0.

Next we assume that y=d. Then similarly we get y=3’ or y=¢’, say r=y’.
If y’=d’, then from (4.6) a simple zero point z; of e#—y’ is a double zero point
of ¢g(z) and from (4.7) z, is not a double zero point of ¢(z), which is a contradic-
tion. If y/#¢’ and 6’+#0, then, by virtue of (4.7) and the properties of f3(2), a
simple zero point 2z, of e”—d’ is a double zero point of g(z). Therefore we get
y=40’, which contradicts y=7’#0¢’. Thus we obtain y=d=y’ and ¢’=0, that is,

fRlg=AeH (¥ —1)? and fi*gP=Ae*H(e"—7), Ar+0.

After all in the cases (i) and (i), we have

4.8 FHR)Pg(z) =@ —p
or
@.9) J*@re@) =" —p),

where f*(2)=/f(2)e 23| ¥/ A and f*(2)=fu(2)e~ 2@/} A are two entire functions
and y is a non-zero constant.

Conversely, let R be a regularly branched three-sheeted covering Riemann
surface defined by the equation (1.1) with ¢(z) satisfying (4.8). Then the function
fo=¥eZ—y belong to M(R) and P(f,)=4. Hence we have P(R)=4. In order to
prove P(R)=4, by virtue of theorem 1 and theorem 2 in [1], it suffices to show
the impossibility of an identity of the form

4.10) F@Yen @ —p=(e*©—a) ("0 =By,  apla—f)#0,

where L(z) is a non-constant entire function with L(0)=0, « and § are two con-
stants and f(z) is a meromorphic function which has zeros and poles possibly at
the zeros of order at least 3 of (eX—a) (e?—p)* and e” —y, respectively.

Now we shall show the impossibility of the identity (4. 10) using lemma C.
Let N; be the counting function of double zeros of the refered meromorphic func-

tion. Then we have
Na(, 0, e —1) = No(1, 0, Fo(eH —1) = No(r, 0, e —)+ Ni(r, 0, e —7),
No(7, 0, (e=—a) (eX—P)*)=Ny(r, 0, eL—a),

and thus
m(r, e£)~m(r, e*)

outside a set of finite measure. On the other hand we have
Ny(r, 0, fs(efl“f)).éZNl(f’, 0, e —p),
2N(r, 0, e —B) = Nu(r, 0, (X —a) (e%— B)*) =2Ny(r, 0, eE— B)+2Ny(#, 0, et —av),

and thus
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2m(7, eX)=o(m(r, e®))

outside a set of finite measure. This is a contradiction. Thus we have shown the
impossibility of the identity (4. 10), that is, P(R)=4.

Secondly let R’ be a regularly branched three-sheeted covering Riemann
surface defined by the equation (1.1) with ¢(z) staisfying (4.9). Then the function
fo=1/¥e—y belongs to M(R’) and P(f,)=4. Hence P(R’)=4. However we can
similarly show the impossibility of the identity of the form

F@Pem® —pp=(e 0 —a) @ =B, apla—f)#0,

where L(z) is a non-constant entire function with L(0)=0, « and B are two constants
and f(z) is a meromorphic function which has zeros and poles possibly at the zeros
of order at least 3 of (ef—a) (e2—p)? and (e —y)?, respectively. Hence we have also
P(R")=4.

Therefore we obtain a perfect characterization of R with P(R)=4 in the cases
(i) and ().

Now, we shall discuss the cases (iii), (iv) and (v). Let us suppose that one of
the growth of eX1, eHz and e#3 in (4.3), (4.4) and (4.5) is more rapid than the others.
We denote by e# the function having the above property. Then substituting (4. 3),
(4.4) and (4.5) into (2.5), respectively, we get an equation of the form
“.1D) D()= A+ 82"+ Cu2)e™ O+ Li@)eH D +L4(2)),

where A is a non-zero constant and all ,(z) (j=1,---,4) are polynomials of e¢”* or
ez in the cases (iii) and (iv), or all are polynomials of two of e”!, e2 and e¢”* in
the case (v). Hence we have, in these cases,

m(r, {j)=o(m(r, ™)), 7=1,2,3,4,
outside a set of finite measure. On the other hand from (2.4) we have
(4.12) —279%(f2°—fs°9)" = A(e? +- L™ + (oo™ + (e + L),
If the equation
Qi) =1 +G(2)h° + () +Ls(2)h+L4(2)=0

is irreducible, then, by virtue of lemma 4, the right hand side of (4.12) has simple
zeros, while the left hand side has not any simple zero. This is a contradiction.
Hence the equation, Q4(2)=0, is not irreducible. According to the similar discus-
sion as the above using lemma 4 and lemma 5, we finally get

(4.13) D(z)=A(e*7 + ¥ (z)e" @ +-LH(2))".
Then (4.11) and (4.13) yield
(4. 14) L(2)=20z), C(2)=CFR)°+20537), Cu(a)=20@R)HR), L= )"
Case (iii). First let us suppose that in (4.3)
m(r, e =o(m(r, e??))

outside a set of finite measure. Then by substituting (4.3) into (2.5) and taking
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e"=p,e™2 in (4.11) and (4.13) into account, we have
1
a®

F=(—0")/2=

tr=—

[ax(a1-Faz)Bie® (a1 —as) 2ar1—az)c+-a*ax(a1—as) (a1 —2a,)],

[@1a:% B %e* - ax(a— az) { (a2 —2a1a:+2a,%)c

—a2a:(2a® —2a,a:+ @:%)} e +a (a1 — @) { (a1 — az)c?

a.t

—I—alag(alz-!-(lzz)c—6113423(01 -02)}]7
and

L—CFP= P [@1a:"(a1—a2)*(c — ar*as) e+’ (@ — a2)* { (@ +a1a2 — aa®)c?
1

—a:X(a—as) (012+022)C+d1502(012—ﬂ102—022)}ﬁ1282H"|—01023(01
— ) {(@1— @)+ 10220, — 20105+ a:7) ¢ — a, (@ — 2ana,
+2a.%)c+ai"a* (a1 —a»)} fre H-ai’a* (a1 —as) c{ (a1 —az)c?
— (a2 —3aas+as?)c—aPas(a —az)} 1=0.
From lemma B we have
c—a*a,=0 and A’'=(a2+a:1a:—a:?)c*—a2(e—as) (@2 a:?)c+alas(al —aa.—ax?) =0.

By substituting c=a,%¢, into A’, however, we have A’=a,’a.*(a1—a,)#0, which
contradicts A’=0.
Next let us suppose that in (4.3)

m(r, ef?) =o(m(r, e’Y))

outside a set of finite measure. Then we have similarly a contradiction.
Therefore the case (iii) does not occur under a condition that one of the growth
of et and e™* is more rapid than the other.
Case (iv). First let us suppose that in (4.4)

m(r, e =o(m(r, e'?))
outside a set of finite measure. Then by substituting (4.4) into (2.5) and taking
eT=p,el? in (4.11) and (4.13) into account, we have, similarly as in the case (iii),
G t= = = [ =) e @) e as @ — e (@

—a?)c?+aila2a.t —2a,a:+ a.*)c —a*(a1—az) (a.* —3a.a.

+a,?)} i 1@, (a1 — @) { aac® — ay(ar — az) (a:®+-ax?)c?
—a:5(a, 2 —2a1a:+2a:2)c —ay"ax(a1 —az)?} e —alast (a,
—a)bcl{as.c?*—a(a®—a1a:—a:?)c— a,*as(a —as) } ] =0.

From lemma B we have
62—(112(01_(12)
and
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B'= (Cllz‘l‘alﬂz —d22)02+(112d2(2012—201dz+6122)[3—ﬂ15(01 —dz) (ﬂ12—3611dz +dzz) =0.

By substituting c¢=—a:*(@:—a.) into B’, however, we have B’ =a;%a(a;—a:)+0,
which contradicts B’=0.
Next let us suppose that in (4.4)

m(r, eH2)=o(m(r, e™"))
outside a set of finite measure. Then by substituting (4.4) into (2.5) and taking
e?=pef in (4.11) and (4.13) into account, we have

L=t

(d a )6 {012.3281“—0220+012022(a1—a2)}2[(112‘32282}“—2{a1020+a12a2(a1
17— G2

—az)z}ﬁzeHz‘l‘aazCz——Zdﬂzz(al—02)20+012022(a1—02)4] =¥

Hence by means of lemma C, we see that the quantity in the brackets [ ] must
be of the form a,%(B.e#2—y)?. However, the discriminant of the quadratic equation

a2 X2 —2{aasc+a*ax(a1— a2)? Y X+ a2 c* —2a1a:4 (a1 — az)c+a%as*(a, — a,)* =0,

is equal to 16a,%a,%(a;—a.)?c+0. This is a contradiction.

Therefore the case (iv) does not occur under a condition that one of the growth
of e#! and e¥? is more rapid than the other.

Case (v). First let us suppose that in (4.5)

m(r, ez =o(m(r, e1)) and m(r, e3=o(m(r, e’1))

outside a set of finite measure. Then by substituting (4.5) into (2.5) and taking
eH=pef in (4.11) and (4.13) into account, we have, similarly as in the case (iii),

s i
(a1—a»)®

[as(@:—@2)B22Bse® 23— (@)% — 3a1as+a2%) Bo2 BsPe T2 1 213

—aia: —dz)ﬁzﬁsseh'z" S q* (@ — 02)3,32393112—012(611 —d2)3,333€3 s
Fa1(ar—a2) (a* — 20102+ 2a5°) Bo* B 2 I3+ ap(@: — 22)* (22,

— 20105+ @2®) BaBae T2 M qo(@y — @02) (@12 — (102 — @5%) Bo %022
+a(a—a2)’ (@ aa: —a3®) B2 (a1 —a2)%(a:® ‘I‘azz)ﬂzﬁseuz FITs
— 122501 — @) Boe™ 2 —a*ax(a1 —a,)® Bre 2] =00.

Now we shall show the impossibility of the identity (4.15). If 3IL+I1,%0,
Hy+3H;#0, 2H,+H, %0, Hy+2H, %0, H,+ H;#0, 3H,—H,#0 and 2/1,—,#0, then,
by virtue of lemma 1, we have

@10:%(@1— @) Bae™? - dar*ax(ar — az)* B3 =0,

where d is a constant. Since H,*const., we get d+#0 and H,—H;=const. (=0).
Then, writing the identity (4.15) in the form

BaBs{as(a—az)B:? —(a12—3a102+a22)182, s — a1 —as) Bt et (a1 —aq)* {a¥(ay
—a2)BL2+a(a*—2a,a. +2022)[3)22ﬂ3 +ax(2a:*—2a,a, ‘l”azz)ﬁzﬁsz —a ¥ —az)ﬁ33 }e?re
+(a: —612)5{02<012—0102_022),522+ (a1 —a2) ((llz‘f‘dzz)‘@z,@s+a1(a12+fl1612_022)1832} ez

—@1@x(a1— @)% (a2 +(l1‘@3)3Hz =0,

(4.15)
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we obtain, by means of lemma B,
612,32"1“611,33:0
and
C’502(612—01622—6122),3224—(41—az) (012+022)ﬁzﬁ3+611(d12+Cl10'2—ﬂzz)ﬂgzzo-

By substituting 8;=—a.8:/a: into C’, however, we have C’'=a,*(a,—a:)B:>+0. This
is a contradiction.

If 3H,+H;=0 or H,+3H,=0 or 2H,+H,=0 or H;+2H,=0 or H,+H,=0 or
3H,—H,=0 or 2H;—H,=0, then the identity (4.15) is impossible by virtue of
lemma B because of @.*(@;—a;)’B.*+0, which is a coefficient of ¢*”2 in (4.15).

If 2H;,—H,=0, then the identity (4.15) is also impossible because of
(@1 —az)B:*Bs#0, which is a coefficient of e*72t#3 in (4. 15).

Secondly let us suppose that in (4.5)

m(r, e =o(m(r, e¥3)) and m(r, e"%)=o(m(r, %))

outside a set of finite measure. Then by substituting (4.5) into (2.5) and taking
e=pse”s in (4.11) and (4.13) into account, we have, similarly as in the case (iii),

a.?
C4_‘C;k2: — (128 (01—02)3 [01(611—612),813,8263}1“ HZ‘[‘(alz+0102_022),312,32262Hl FEIl

1
@102 BT 0,3 — ) By T — a0 Bo e T
+a:2a:(2a,® —2a:1a: + as?) B2 B2 12— g, X (4 — a,) (a®
+a:?)BifPet P — g (@ — @) (a1® —3a1azas?) i %e?
+a,bax(a,’ —a,a,—ar”) Bt 1t —a: (0 —2a1a24-2a%) Br o™ 1T
—aifa.(a; —dz)zﬁxem +afa*(an —02)‘329112] =0.

Now we shall show the impossibility of the identity (4.16). By virtue of the
above reasoning, it is sufficient to consider the case Hi(z)=H,(z), because two
coefficients of e*#1tHz and e®H! in (4.16) are not zero. Then, writing the identity
(4.16) in the form

Bifelar(ar—az)B + (@ + a1 —a:”)Bi o+ ara:po e '+ a* {as(ai— @)’
+a2(2012_2a102+5122)‘812/32-—((11 —(lz) (412+022)ﬁ1ﬁ22—01a22523}e”{1
—a*{(@1—a) (a:° —3ma:+ax") B+ ax(ar® — 24102+ 2a5%) B B

—ax(a’—aia:—a)BP 1P — it ax(ar —a) { (@1 —a2) fr— asfz e =0,

(4. 16)

we obtain, by means of lemma B,
(@1—az)p1—a:f=0
and
D’ =(a1—a2)?B:2+ (a2 — 20142+ 2a:%) BB — az(@, — a1 — a2%) B2 =0.

By substituting Be=(a1—as)Bi/a. into D’, however, we have D’=a,(a1—a:)*p:*+0.
This is a contradiction,
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Finally let us suppose that in (4.5)
m(r, e =o(m(r, e®2)) and m(r, e™)=o0(m(r, e?))

outside a set of finite measure. Then the case is analogous to the last case. Hence
we have similarly a contradiction.

Therefore the case (v) does not occur under a condition that one of the growth
of ef1, ¢#2 and e#® is more rapid than the others.

By virtue of the above discussion in the cases (i), (i), (iii), (iv) and (v), we
conclude

THEOREM 1. Let R be a regularly branched three-sheeted coveving Riemann
surface defined by the equation (1.1). If P(R)=4, then therve exisi an entire func-
tion f2(2) and an analytic function f3(2) single-valued and vegular with the exception
of all the double zeros of g(z) at which fi(z) has simple poles, such thal f»(2)%g(z)
and fs(2)*9(2)? are two roots of one among the five quadratic equations (2.6) with the
coefficients (4.1), (4.2), (4.3), (4.4) and (4.5), respectively.

Further in the cases (i) and (ii) we have

4. 8) FH2)%(z) =e @ —
oy
4.9) 742)%0(2) = (" —7),

where *(z) and f*(z) are two enlire functions and 7y iS @ non-zero constani.
Conversely if ¢(z) satisfies the equation (4.8) or (4.9), then we have P(R)=4.

And the cases (iii), (iv) and (V) do not occur under a condition that one of the
growth of e, ef2 and e 3 in (4.3), (4.4) and (4.5) is more vapid than the others.

§5. Now we shall give a criterion for P(R)=4, that is,

THEOREM 2. Let R be a regularly branched thvee-sheeted covering Riemann
surface defined by the equation (1.1) with an entive function 9(z) satisfying
F(2)29(2) =3 @ 4, (2)eE @ 4 0y(2)e ™ D+ 4(2), H(z)#const., H(0)=0,
where 7(2), H(2), ¢:1(2), 02(2) and ¢s(2) are entire functions satisfying
m(r, p)=o(m(r,e™)  (7=1,2,3)

outside a set of finite measure, and ¢3(z) has at least one zero. Then we have
P(R)=4.

Proof. In order to prove P(R)=4, from theorem 1 and theorem 2 in [1], it is
sufficient to show the impossibility of an identity of the form

6.1 I i +-puet t-ps)=(e"—a) (e"—f)*,  afla—B)#0,

where L(z) is a non-constant entire function with L(0)=0, « and S are two con-
stants and f(z) is a meromorphic function which has zeros and poles possibly at
the zeros of order at least 3 of (ef—a) (et—pB)* and e3H 4,02 4,0 +¢,, respec-
tively. If the equation
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Qu(M) =1+ 01(2)W*+a(2) i+ p5(2) =0
is irreducible, then, from lemma 4, we have
(5.2 Nu(7, 0, £2Qs(e))~3m(r, e®) and Ns(r, 0, f3Qu(e™))=o0(m(r, e®))
outside a set of finite measure. On the other hand we have
(5.3) N, 0, (e —a) (eX— B)%)~mlr, e¥) and Ns(7, 0, (eX—a) (eL—B)2)~2m(r, e*)

outside a set of finite measure. By virtue of the identity (5.1), the comparison of
(5.2) and (5. 3) yields two contradictory facts each other, that is,

m(r, eX)~3mr, e¥”) and m(r, e)=o0(m(r, e))

outside a set of finite measure. Hence the equation Qs(%)=0 is not irreducible. By
the similar discussion as above using lemma 4 and lemma 5, the identity (5.1)
must reduce to an identity

e —¢l) (e —¢f)*=(e"—a) (e"—B)",

where ¢f(z) and ¢f(z) are two entire functions satisfying m(r, ¢F)=o0(m(r, e™))
(7=1,2) outside a set of finite measure. Hence by means of lemma C we have

(5. 4) m(r, eX)~m(r, el)
outside a set of finite measure. Further we have
T, )=0(T(r, ™)+ T(r, e")
and
N, 00, f'|f)=N, 0, )+ N, oo, f)

=Ni(,0, eL—a)+Ni(#, 0, e —B)+-Ni(r, 0, el —oF) -+ Ni(7, 0, /T — o)

=o(m(r, e?)+m(7, %))
outside a set of finite measure. Thus we obtain

T, f'11)=mr, f'] )+ N, 00,1 /)=00og v T, f N+ N(r, 00, ['].S)
=o(m(r, e®)+m(r, er)),

so that
(. 5) T, f'[f)=o0(m(r, e™)+m(r, e"))
outside a set of finite measure.

Now we shall prove the impossibility of the identity (5.1) under (5.4) and
(5.5). By differentiating both sides of (5.1) and setting 7,=—(a+2p8), n.=2a8+5*
and n;=—af? we obtain
LB fAHNE+Bouf'| 420 H + ¢ )e*+@Bpof | [+ p2H -+ 2" )e™ +30: f '] f+¢4']

= L’(3e*L+2m:16* L +12e1),
and again by using the identity (5.1), we get
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8P fA-HY = LN 5 yu G 420 H 01— 2,1 Y121

+72:Q0ef | [+ 02H' + o' — oL )e™  E -1 (37| f+3H' —2L")e?H +*x

+@oif [ f+201H' + 1" =30 L")e* - 0y(3f 7| f+3H' — L/ )e*H +

+@pef | [+ @'+ o' — 302 L)e™ 340,301 f ] f420:1H '+ — o1 L )e? T+ L
0B S’ [+ @eH +¢o" —20:L")e™ 2L+ 3n3(f 7 [+ H")e*™

+ 9B S f420.H 0. ) +15(3po 7] f 1 +p2")e

+ @i [ [y’ =305 LN)e* +0:(3s 7| f " — 203 L7 )e* "

+ 7280 f [ 41" — s L")e  +15(B3ps [ f+s") =0.

Here we note from (5.4) that all the functions vH(2)-+pL(2), |v|#|¢l; v, ¢
=1, +2, +3, are not constants and further satisfy

(5. 6)

5.7 T(r, @)=0(m(r, e*™ ++E))

outside a set of finite measure, where a(z) is a meromorphic function satisfying
T(r, @)=00m(r, e™)) outside a set of finite measure.

In the first place assume that a.(2)=3(f"(2)/f @)+ H'(2)—L'(z))#0. From (5.4),
(5.5) and (5.7) we can apply lemma 1 to the identity (5.6). Therefore lemma 1
gives

al(z)esfl(z)wL(z)+cza2(z)ezll(z)f2L(z)+c3a3(z)ey(z)+uz)+Coao(z):0,

where ¢, ¢5, co are constants and @.(2) = 7:(3¢:(2) 1 (2)/ £ (2) + 20:(2) H'(2) + ¢,/ (2)
—20(2)L'(2)), as(2)=1:30:(2)f"(2)] f(2)+ () H'(2) 2" (2) — 0:(2) L' (2)), @o(2)=7s(3ps(2)
f(2)]1(2)+¢s'(2)). Since T'(r,a;)=o(m(r,e™)) (7=0,1,2,3) outside a set of finite
measure, we have

m(r, e By=o(m(r, ')
outside a set of finite measure. Since 7;#0, writing the identity (5.6) in the form
3ns(f! | f+He +[n3f"| f+3H'—L"e"+ L 47501 f!| f+20:H' +-¢1') e
F@Bf [ fH3H—2L")e* 2205301 f'| f+2¢0:.H + 1" — 1 L)+ *
+05Beef| [+ H +@")e” +[3(f' | f+H'—L")e* *t4-(Beu f ' f+20:.H'
+ 1! =20 LT+ 4 0y(30a f /| @2 H' + 02" — 02 L )e T+ 2 4-15(3s £/ [f 4 @s")]
+[Borf' [f+20:.H +@1' =301 L) L4, (30sf ' | [+ 2l 4" — 20, L )M +21
+7280s [/ f+05" — s L )e™ 2]~ + (Bt | [+ @2l 4@’ — 3L )e* 42 E
+71Bos [ 403" —20, L )e* 2]~ +-[(3ps /] f+¢s" —Bps LN)e* 21 |~ =0,
lemma B gives
(2] f(@)+H'(z2)=0, thatis, f(z)=de 7,

where d is a non-zero constant. Then the identity (5.1) reduces to
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(d3 _— 773)63H+(d3§01 — 772€H+L)62H+ (d3S02 — 77182]I+2L)611+d3§03 . 63)7 13L — O‘
Hence lemma B gives

d3:773 and d3@3(2):e?’}1(2)+3L(2).

Since ¢3(z) has at least one zero, this is impossible.
Next assume that a@,(z)=0. Then we get f(2)=deX®-¥® where d is a non-
zero constant. Here the identity (5.1) reduces to

(5. 8) (1__d3)e31'1-i 3L+771€3H+2L_|_77263H 'E—L+773e3H _d3€01e211 I~3L__d390gelli 3L __(13(103(231,_: 0.
Since 7;+#0, lemma 1 gives
(5. 9) 7736311(2) _02d3¢3(z)63L(z) '—1‘63(1 __d3)e‘311(z)1 3L(z) :0’

where ¢, and c; are constants. If c,c3(1—d?)+#0, then writing the identity (5.9) in
the form

73”7 3L cy(1—d)e* = cod’ s,
and using lemma A, we have
c'nse* 3 ¢y cs(1—d®)e* =0, that is, ci/mse *L4cs’cs(1—d?)=0,

where ¢,/ and ¢’ are constants which are not all zero. This contradicts Z(z)
#const.. If c;=c;=0, then the identity (5.9) is clearly impossible hecause of 7;+0.
If ¢,=0 and c¢s(1—d*+0, then the identity (5.9) reduces to 7s-+cs(1—d*)e*r=0,
which is impossible. If ¢,#0 and c3(1—d?)=0, then we have

m(r, e ~L)=o0(m(r, ef))
outside a set of finite measure. The identity (5.8) reduces to
e L3 H (1 —d%)eSH - e?L=2H (9, — P 0B~ )P H - o L= H (i, — dPpye?L 21 Yot 2
+ (s —dPye* L3 H) et =),
Hence lemma B gives
a?=1 and 03(2) =13 T =31(

Since ¢3(z) has at least one zero, this is impossible.
Thus we have proved the impossibility of the identity (5.1), that is, the
validity of theorem 2.

§6. Let R and S be two regularly branched three-sheeted covering Riemann
surfaces defined by two equations ¥*=G(z) and #*=g(w), respectively, where G(z)
and g(w) are two entire functions having no zero other than an infinite number of
simple or double zeros. Then Mutd [3] has established the following perfect con-
dition for the existence of analytic mappings from R into S:

TaEorREM A. If there exists an analytic mapping ¢ from R into S, then theve
exists an entire function h(z) satisfying fu(2)°G()=gn(z) or fx(2)}G(z)?=g-h(2),
wherve fx(2) is an entive function and f:(2) is a single-valued regular function
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excepting at most all the double zevos of G(z) at which fs(2) has simple poles. The
converse holds also good.

Suppose that P(R)=P(S)=6. Then by a characterization, which has been
given by Hiromi and the author [1], of R with P(R)=6, we can put

F(2)G@@)=(e"®—a) (e"®—p)?,  H(z)%const.,
H©0)=0,  afla—p)+0,
with two entire functions F'(z) and H(z) and two constants a and B, and
S glw)y= (e~ —y) (e’ —0d)*,  L(w)zconst.,
L0)=0,  yd(y—0)=0,

6.1

6. 2)

with two entire functions f(w) and L(w) and two constants y and 4.
Now we shall prove the following theorem and its corollary:

THEOREM 3. Let R and S be two regularly branched three-sheeted covering
Riemann surfaces with P(R)=P(S)=6. Then there exists an analytic mapping ¢
from R into S if and only if there exists an enlire function h(z) satisfying one of
the conditions

(a) H(z)=Loh(z)— Lok(0), F=elh O, j=eLon®p,
(a’) [I(z)=Loh(z)— Loh(0), F=elPhOf e eEPng,
(b) H(z)=—Loh(z)+Loh(0), ap=elh®, B glon®,
(b) H(z)= —Loh(z)4Leh(0), D= LR fram gL,

where R and S are defined by y*=G(2) and u*=g(w) with G(2) and g(w) satisfying
6.1) and (6.2), respectively.

COROLLARY. Let R be a rvegularly branched three-sheeted coveving Riemann
surface with P(R)=6 defined by

YP=r@*e"P—p) (" =07  yiy—0)+0, H(0)=0,

with a non-constant entive function H(z) and a meromorphic function f(z). Let ¢
be an analytic mapping from R into itself. Then ¢ is a wunivalent conformal
mapping from R onto itself and the corresponding entire function h(z) is a linear
Sfunction of the form

eZniP/qz+ b
with a suitable rational number plq.

Proof of Theorem 3. First suppose that there exists an analytic mapping ¢
from R into S. Then from theorem A there exists an entire function /#(z2)
satisfying either f2(2)’G(2)=goh(z) or fx(2)*G(2)*=g-h(z), wWhere fa(z) and fi(2) are
two functions having the properties described in theorem A, respectively.

Case 1. f2(2)*G(z)=g-h(2). In the case from (6.1) and (6.2) we get an equation
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(6_ 3) f*(z)3(eH(z) ___a) (eH(z) _‘8)2: (eLOh(z) _r) (eLOh(z) _5)2’

where f*(z)=12(2)f/(z)/F(z) is a meromorphic {unction having zeros and poles pos-
sibly at the zeros of order at least 3 of (el —y) (e%°*—d)? and (e —a) (e —p)?,
respectively. Evaluating similarly as in §5, we have

(6. 4) m(r’ eH)Nm(Y, eLOh)
and
6.5 T(r, [¥'] f¥)=0(m(r, e")+m(r, e=1)

outside a set of finite measure. Hence this case is similarly treated as in the
process of proof of theorem 2. Therefore from the reasoning of §5 it 1s sufficient
to consider the following two cases:

A. T) mlr, e® M= o0(m(r, e™)) outside a set of finite measure, and f*(z)=de 11,
where d is a non-zero constant. Then the identity (6.3) reduces to

(d3—7]3)83H+(d3C1—772€H{-Loh)e2H+(d3C2—‘7]182H+2L0h)ell _|_d3'§3_e311'4 3L°IL:O’
where (1= —(a+28), e=2aB+p% (s=—af? pi=—(r+20), p.=2yd+05*> and py=—yd".
Hence lemma B gives
d3:7]3’ d3C1=7]28H(Z) 1 LOIL(Z), d3C2:7/162H(Z)" 2L°r(2>  gnd d3C3:€3H(Z) 13LOA(2)
Therefore the function H(z)+ Lok(z) must be the constant Lo/(0). Then we have
Taz(a+2ﬂ)2(275+52)3L°h(0)y T52(2dﬁ+‘32)=(T+25)€2L°h(0) and 7‘5zaﬁ2283L°’L(0).

These relations vield ay=e%°*® and Bo=e°*®. Thus we attain to the case (b) in
our theorem.

@I f*@)=der°r®@-1I@ where d is a non-zero constant, and mr, e -L°)
=o(m(r, e®)) outside a set of finite measure. Then the identity (6.3) reduces to

e3L°h—3H(1_d3)66H+eZL°h~ZH(771_d3cleL°h—II)e5H
+eLOh_II(772—d?’CzeZLOh_ZH)€4II+(?73—d3C383L°h_3H)e3H:O.
We deduce from lemma B that the function Leo/(z)—H(z) is the constanl Lo/(0)
and the following relations hold:
74+20=(a+2B)et"®, 2yri+052=(2af+pe**® and yo?=af?eLor®,

These relations yield y=¢’°*@a and d=¢**®p. Thus we attain to the case (a) in
our theorem.

Case II. f3(2)’°G(2)*=geh(z). In the case from (6.1) and (6.2) we get an
equation

(6. 6) f*(z)?’(eH(z) _a)Z(eH (2) _ﬁ): (eLOIL(z) _T) (eLoh(z) __5)2’

where f*(2)=f:(2) (eI —p) foh(2)/F(2)*>. Here fi(z) has simple poles at most at the
double zeros of G(z), that is, at the simple zeros of ¢Z —p or at the double zecros
of e#®@—q. However from the equation (6.6) and lemma C we see that f3(z) has
simple poles at almost all simple zeros of e#®—p. Hence f*(z) satisfies the
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condition (6.5). And in this case the relation (6.4) holds also true. Therefore by
virtue of the case I, we attain to the cases (a’) and (b’) in our theorem.

Conversely, suppose that there exists an entire function /4(z) satisfying (a) or
(b) or (a’) or (b’). Then we have

( eLOh(O)F(Z)

Fohi2) ) G2)=g-I(2)

if (a) is the case, or

—eLhWF(E) \P .
<§/a,lﬁelf(”foh(z) > G(2)=g-(2)

if (b) is the case, or

< eLOh,(O)I,‘(Z)Z

oy ) (e

if (@’) is the case, or

<_- — g LOR F(z)?
%/W eII(e)(eII(z)_‘B)foll(Z)

if (b’) is the case. Since zeros of G(z) are all simple or double, e2* F(2)/f/(z)
and —eLrO F(2)/(¥/af? e® foh(2)) are two entire functions and eZ°* [(2)?/((e™ = — f)
Foh(2)) and —eLr @ F(2)2 /(¥ a?f e (eH > —B) fohi(z)) are two single-valued functions
having the properties of f3(z) in theorem A. Therefore from theorem A there
exists an analytic mapping ¢ from R into S. Thus we have just proved theorem 3.

)3G<z>2:g~/z(z>

Proof of Corollary. By virtue of theorem 3 there exists an entire function /(z)
satisfying either H(z)=Hoh(z)—H-h(0) or H(z)=—H-h(2)+H-n(0). Then we have
z)=az+b by using lemma D if H(z) is a transcendental entire function or
directly if H(z) is a polynomial. This implies the first part of corollary, that is,
¢ is a univalent conformal mapping from R onto itself.

By considering its iteration ¢,=¢°@,_, as in the proof of theorem 2 in Ozawa
[7], we can say that

}z(z):eg"“’/qz—f—b
with a suitable rational number p/q. Q.E.D.
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