
ON REGULARLY BRANCHED THREE-SHEETED
COVERING RIEMANN SURFACES

By KTYOSHI NIINO

§ 1. Let R be an open Riemann surface. Let %R(R) be the family of non-
constant analytic functions meromorphic on R. Let / be a member of Wl(R). Let
P(f) be the number of Picard's exceptional values of / , where we say a a Picard's
exceptional value of / when a is not taken by / on R. Let P(R) be a quantity
defined by

P(R) = sup P( / ) .
/€2R(Λ)

In general P(R)^2. It has been shown that P(R) is an important quantity belonging
to R for a criterion of non-existence of analytic mapping (cf. Ozawa [5, 6]).

From now on we shall confine ourselves to the following Riemann surfaces:
Let R be a regularly branched three-sheeted covering Riemann surface formed

by elements p=(z, y) for each z, y satisfying the equation

(1. 1) y*=ΰ(z),

where g(z) is an entire function having no zero other than an infinite number of
simple or double zeros. Then we have P(R)^6 from Selberg's theory [9].

Hiromi and the author [1] has given a characterization of Riemann surfaces
R with P(R)=6 and proved that there is no regularly branched three-sheeted cover-
ing Riemann surface R with P(R) = 5 and that every Riemann surface R defined
by the equation (1. 1) with an entire function g(z), which have no zero other than
an infinite number of simple zeros or have no zero other than an infinite number
of double zeros, always satisfies P(R)^4.

Hence as an example of surface R with P(R)=4, we have a Riemann surface
R defined by the equation (1. 1) with g(z)=ez-\-\.

As for surfaces with P(i?)^4 nothing is known other than above facts. There-
fore we wish to get a perfect characterization of surfaces with P(R)=L The author
regrets to say that he could not give any perfect characterization of surfaces with
P(R)—4 till now. In the present paper, however, under a certain additional condi-
tion we shall give a characterization of surfaces with P(R)=4 in § 4 and a criterion
for P(2?)^4 in §5.

Next let S be another surface of the same type as R. Then Muto [3] has
established a perfect condition for the existence of analytic mappings from R into
S. If P(R)=P(S)=6, then the possibility on the existence of analytic mappings
from R into S remains by means of Ozawa's criterion on non-existence of analytic
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mapping [5]. In the present paper we shall give a perfect condition of the existence
of analytic mappings between the special surfaces with P(R)=P(S)=6 in §6.

The author wishes to express his heartiest thanks to Professors Y. Komatu and
M. Ozawa and Mr. G. Hiromi for their valuable advices and kind encouragements
in preparing the paper.

§ 2. Let R be a regularly branched three-sheeted covering Riemann surface
denned by the equation (1.1). In the first place let us recall the following results
which Hiromi and the author [1] established about regular functions on R:

Let / be a three-valued entire algebroid function of z which is single-valued
and regular on R. Then there exist two entire functions fi(z), f2iz) and a meromorphic
function fz(z) single-valued and regular with exception of all the double zeros of
g{z) at which fs(z) has simple poles, such that

(2.1)

Conversely the function /(/>) defined by (2.1) with f^z), /2(z) and /8(z) having the
described properties is clearly regular on R. Let the defining equation of / be

(2.2) F ( Z , / ) Ξ / 3 - S 1 ( Z ) / 2 + S 2 ( Z ) / - S 3 ( Z ) = 0 ,

where Si(z), S2(z) and S3(z) are entire functions. Then from (2.1) we have the
following relations:

Si(z)=3/1(z),

(2.3)

Let D(z) be the discriminant of the cubic equation (2. 2). Then we have

(2. 4) D(z) = -21g{z)\f2{zf-f*(zYg(z))\

and from (2. 2)

(2. 5) D(z) = -

Eliminating fx and / 8 or /i and /2 from (2. 3) we see that f2

3g and /3

8g2 are two
roots of a quadratic equation

(2.6) xt-fJ^s&y-jS^Szω+Szizή x+ -^(jS&y-

Let Dχ(z) be the discriminant of the quadratic equation (2. 6). The from (2. 5) we get

(2.7) D1(z) = -~D(z\

§3. Lemmas. For our purpose we need some preparatory lemmas. The
notations T, rn, N, Nλ and N on meromorphic functions are used in the sense
of Nevanlinna [4]. Hiromi and Ozawa [2] proved the following lemma A and
lemma B;



REGULARLY BRANCHED THREE-SHEETED COVERING RIEMANN SURFACES 231

L E M M A A. Let ao(z), aλ(z), •••, an(z) be meromorphic functions and let g^z), •••,
gn{z) be entire functions. Further suppose that

T(r, aj)=o(tm(r, θ ) , J=0, 1, - , n,

holds outside a set of finite measure. If the identity

holds, then we have an identity

where c\, v = l, •••, n, are constants which are not all zero.

L E M M A B. Let ai(z), •••, an(z) be meromorphic functions and let g(z) be an
entire function. Further suppose that

T{r, aj)=o(m(r, e«0), ; = 1, 2, ••-, w,

holds outside a set of finite measure. Then the identity

is impossible unless all ai(z), •••, an(z) are identically zero.

Now we shall prove

L E M M A 1. Let ao(z), aι(z), •••, an(z) be meromorphic functions and let (/i(z), •••,
gn(z) be entire functions. Further suppose that

T(r, aj) =
and

T(r, aj)=o(m(ry eOί-o»))9 j=Q, 1, •••, n; v=k, k+1, •••, n,

outside a set of finite measure. If <Zi(z)̂ έO and the identity

(3.1) Σ^(ΦΰvCz'
v = l

halds, then we have

where Cι=l and cv, v=0, 2, 3, ••-, k—1, are suitable constants.

Proof. Suppose that the identity (3. 1) holds. Then, by virtue of lemma A
we get

(3.2) Σcvav(z)e0v™=0,
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where c\, v=l, •••, n, are constants which are not all zero.
If £i=0, then av(z)eQviz\ v=2, •••, n, are linearly dependent. Hence by eliminat-

ing a suitable term, say an(z)egniz\ from (3.1), we get

where J i = l and the other dv are suitable constants. Here if A ^ O , v-=k, k-\-\, •••,
n—1, then there is nothing to prove. If at least one of dv, v=k, •••, n—1, is not
zero, then by vir tue of lemma A we have

(3.3) nΣd/dva,Xz)egυ^=0,
v~ι

where dλ = l and dj are constants which are not all zero.
If ciφΰ and cv=0, v=k, •••, n, then there is nothing to prove.
If CiφO and at least one of cv, v=k, •••, n, say cn, is not zero, then we have

2 cvav{z)egv™-g*™ = -Cndniz),
v=l

and by applying lemma A to this identity, we get

where cj are constants which are not all zero. Hence we obtain

7 1 - 1

(3.4) Ύ\ cv

/cvaJz)e°u<:z:>=0.

Thus (3. 2) implies (3. 3) or (3. 4). By the repetition of this process, we finally
arrive at the desired result. Q.E.D.

The notations T, m, N on algebroid functions are used in the sense of Selberg
[9]. Let f{z) be an algebroid function. In a neighborhood of a zero z0 of f(z), let
f(z) be expanded:

(3.5) f(z)=aτ(z—zo)
τ/λJ[—, (aτΦO).

Let iVi*(r, 0,/) and N2*(r,0,f) be the counting functions of zeros of f{z) with τ>λ
and τ£λ in (3. 5), respectively. Let N(r,Xf) and N(r,gf) be the quantities denned
by Selberg [9].

LEMMA 2. Let H{z) be an entire function and h(z) be a k-valued entire algebroid
function. If

m(r, h) = o(m(r, eH))

holds outside a set of finite measure, then we have

N1*(r,0,eII—h) = o(?n(r,e11)) and N2*(r,0,err~h)~m(r,crr)

outside a set of finite measure.
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Proof. We set

elί-h

Then / is a ^-valued algebroid function regular on #/t. Using ramification theorem
(cf. Ullrich [10], Selberg [9]), we get

N(r, oo, f)=N(r, 0, h)^m(r, h)+OQ.)=o(m(r, e11)),

N(r,l,f)=N(r,0,eH)=0,

N(r, oo, ff)^2N(r, 0, h)+N(r, 36/0

^2N(r, 0, h)+(2k-2)T(r, h)+O(l) = o(m(r, e11)),

T(r,f)^T(χ, eH)-\- T(χ, h)+ T(r, Vh)+O(X)^m(r, eH)+o(tn(r, e11))
and

m{χ, eH)^m(r, eH-h)+rn(r, h)+O(X)^T(r,f)+o(m(r, e11))

outside a set of finite measure. Nevanlinna-Selberg's second fundamental theorem
applied to / gives

T(χ,f)^N(χ, 0,f)+N(r, oo, f)+N(χ, l,f)-N(χ, 3r)+N(χ, ae/)+O(log rT(r,f))

outside a set of finite measure. Since

N(χ, 3f)~N(r, *f)=2N{r, oo, f)+N(r, Q,f')-N(χ, oo,/0

=N(r,0,f')+o(nι(r,eH))
and

N(χ, Xf)=N(χ, 3eΛ)^(2A-2)Γ(r, h)+O(X) = o(m(χ, e11))

outside a set of finite measure, we have

T(r,f)^N(r, 0,f)-N(χ, 0,f')+o(m(r, e11))

^N2*(r, 09f)+Ni*(χ9 0,f)+N(χ, Xf)+o(m(r, e»))

=N2*(χ, 0, eH-h)+N!*(r, 0, eH-h)+o(m(χ, eH))

outside a set of finite measure. On the other hand we have

N2*(r, 0, e7/-A)+iVi*(r, 0, eH-h)-Ni*(r, 0, eH-h)+N1*(χ, 0, eH-h)

=N(χ, 0, eH-h)=N(χ, 0,/)g Γ(r,

^N2*(r, 0, eH-h)+NΛr, 0, ^ -

outside a set of finite measure. Thus we obtain

iVi*(r, 0, eH~-h)^N^(rf 0, eH-h)-N^(r} 0, eJI-h)^-o(m(r, β11)),

and hence

iVi*(r, 0, eH-h) = o(χn(χ, eH)),

and by means of T(r,f)=m(r,eH)+o(m(r,eH))} we finally have
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N2*(r, 0, eπ-h)=m(r, eπ)+o(m(r, e11))

outside a set of finite measure. Thus lemma 2 has been proved.

Let f(z) be an algebroid function. Let 2V"2*(r, 0,/) be the counting function of
zeros of f(z) with τ=λ=l in (3. 5) whose projections do not coincide with projec-
tions of all the branch points of Xf.

LEMMA 3. Under the hypotheses of lemma 2, we have

#2*0,0, eH-h)~m(r, eH)

outside a set of finite measure.

Proof, By virtue of ramification theorem we have clearly

N2*(r, 0, eH-h)-NΛr, 0, eπ-k)^N(r, Xh)+(k+l)N(r, Xh)

^(&+2) (2k-2)T(r, h)+OQ)=o(m(r, e11))

outside a set of finite measure. Therefore lemma 2 gives our desired result. Q.E.D.

Let f[z) be a meromorphic function. Let N2(r,0,f) be the counting function
of simple zeros of f(z).

L E M M A 4. Let H(z) and ψ3{z) O '=l , •• ,μ) be entire functions satisfying

m(r, <pj) = o(rn(r, eH)\ ; = 1, •••, μ,

outside a set of finite measure. If the algebraic equation

(3.6) Qμ(h)Έ=ht'+φi(z)hi'-1+ ~+φμ(z)=0

is irreducible, then we have

N2(r, 0, Qμ(eH))~μm(r, e11) and N^r, 0, Qμ(eIι))=-υ{m(r, eH))

outside a set of finite measure.

Proof. Let h{z) be //-valued entire algebroid function defined by the equation
(3.6) and hj(z)(j=l, •••,//) its μ determinations. Then we have

Σ N**(r, 0, eH-hj)^N2(r, 0, Q(eH))^ Σ ^ * ( r , 0, eH-hj)
J = l J = l

and

r, 0, Q(eH))^ Σ Ni*(r, 0, eu-h3).

Therefore lemma 4 follows from lemma 2 and lemma 3.

REMARK. If h{z) in lemma 2 reduces to an entire function or if μ=l in
lemma 4, then these lemmas reduce to that of Hiromi and Ozawa [2], that is,

LEMMA C. Let H{z) be an entire function and let g(z) be an entire function
satisfying m(r, g)=o(m(r, eH)) outside a set of finite measure. Then we have

N2(r,0,eH-g)~m(r,eH) and N1(r,0,eII-g)=o(m(r,eH))
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outside a set of finite measure.

Let /iθ) and fz(z) be two meromorphic functions. Let N0(r, 0; fi,f2) be the

counting function of common zeros of fλ(z) and f2(z).

L E M M A 5. Let H{z)iψj{z){j=li •••,//) and φt(z){k=l, • • ,y) be entire functions

satisfying

', ψj)~o(m(r, eH))y i = l , 2, •••, /J,

and

m(fi ψt)=o(m(r> e11)), ^ = 1 , 2 , , y,

outside a set of finite measure. If the equations

and

are irreducible, respectively, and Qμ(eH)^ΞQ*(eH)y then we have

No(r,O; Qμ(eH), Qf(eII))=o(m(r, e11))

outside a set of finite measure.

Proof. We denote the resultant of Qμ{h) and Q*(A) by J(z), that is,

1 ψl ••• ψμ

1 ψl ••• ψμ

1 φf

1 £>f ••• φf

Then by means of hypotheses of the lemma, we have

outside a set of finite measure. Hence we have

N0(r, 0; Qμ{eH), Q*(eH))^N(r, 0, J)+o(m(r, eH))=o(m(r, eH))

outside a set of finite measure, which proves lemma 5.

Finally, we need
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LEMMΛ D.υ Let g(z) be a transcendental entire function and let P{z) and Q(z)
be two polynomials. If the equation

goh{z)=P(z)g{z)+Q{z)

holds, then h{z) must be of the form az+b.

% 4. Now we shall consider to give a characterization of Riemann surfaces
with P(R)=i under an additional condition.

Let R be a regularly branched three-sheeted covering Riemann surface denned
by the equation (1.1) and suppose that P(R)=A. Then there exists a meromorphic
function f^Tl(R) with P ( / ) = 4 . Further we may assume that its four Picard's
exceptional values are 0, ai, a2 and oo. Then / becomes a three-valued entire alge-
broid function of z which is regular on R and satisfies (2.2) and (2. 3). By
Remoundos' reasoning [8] of his celebrated generalization of Picard's theorem, it is
sufficient to consider the following five cases:

F(z,O) ,

F(z, Ol) = O)
1Cl

c2

\ βeH

1
, (ϋ)

\

Be1

Cι

c2

(iϋ) (v)

where c, ci, c2, β, βi, β* and βz are non-zero constants and H(z), Hi(z), H2(z) and Hz(z)
are non-constant entire functions satisfying H(0)=H1(Q)=H2(Q)=Ha(0)=0.

After calculation we obtain

(4.1)

a2(ai—a2)
oil—.

Sz=-C

in the case (i), and

(4.2)

-βe11-

aλa2

a2

-Ci —
a2

aι{flχ—aύ

1
a2(ax—a2)

in the case (ii), and

1) This lemma has been proved by considering the growth of goh(z) in contrast with
that of g(z) or P{z)g(z) in Ozawa's note which is yet unpublished.



REGULARLY BRANCHED THREE-SHEETED COVERING RIEMANN SURFACES 237

(4.3) a2

a1(a1—a2)

\ S 3 =— c

in the case (Hi), and

1
a2{aλ—a2)

a2{aλ—a2)

pΠϊ —

axa2

(4.4)

S i = - -
a2iβχ—a2)

a2(aλ—L
a2

in the case (iv), and

(4.5)

axa2
a2iβλ—a2)

2=z_a1±a2_ Π\_ . a2

a2{a1—a2)

in the case (v).
Cases (i) and (ii). These cases are similar to the cases (i) and (ii) of § 5 in

Hiromi and the author [1]. Hence the discriminant J9(2) of the cubic equation
(2. 2) is a polynomial of degree 4 of eH. From the same reasoning of § 5 in [1]
there exists a meromorphic function f&ΰl(R) with P(f)=6, if the constant term2)

of D(z) does not vanish or if the constant term of D{z) vanishes but the constant
term of

S(z)= -

in (2. 6) does not vanish. Hence the constant terms of D(z) and S(z) must be zero.
Therefore from the quadratic equation (2. 6) we obtain the equations

f2*g=AeH(eH-r) (eH-δ),

eH-f) (eH-δf\

(4.6)

(4.7)

From (4. 6) we see that γ and δ do not vanish simultaneously. Hence we may
assume that - is not zero.

First we assume that γφδ. Since a simple zero point zx of eH—γ is a simple
zero point of the right hand term of (4. 6), zx is a simple zero point of g(z). Hence

2) Here we say "constant term" when we take D{z) for a polinomial of
we use the term "constant term" in this sense also for S(z).

And
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the equation (4. 7) gives γ=γf or γ=δf, say γ=γr. Besides, since Zι is a double zero
point of /3

3g2, we get γ—γ''=δ''. Therefore if δΦO, then similarly we have δ—γ'=δ',
which contradicts γφδ. Thus we obtain γ=γ'=δ' and <5—0, that is,

f2*g=Ae2H(eH-r) and f<?g2=AeH(eH-γ)2, ΛγΦO.

Next we assume that γ=δ. Then similarly we get γ=γf or γ=δ', say γ=γ\
If γ'=δr

f then from (4. 6) a simple zero point ^ of eH—γf is a double zero point
of g(z) and from (4. 7) 2! is not a double zero point of g(z), which is a contradic-
tion. If fφδ' and δ'Φθf then, by virtue of (4. 7) and the properties of fs(z), a
simple zero point z2 of eH—δί is a double zero point of g(z). Therefore we get
γ=δ', which contradicts γ=γ'Φδ'. Thus we obtain γ=δ=γ' and <5'=0, that is,

f2

3g=AeH(eH-γ)2 and

After all in the cases (i) and (ii), we have

(4.8) f*(z)*g(z)=eH™-γ

or

(4.9) ϊ*{

where f*(z)=f2(z)e-2H™'*l' ty~A and ϊ*(z)=f2(z)e-H™nl%ΓA are two entire functions
and γ is a non-zero constant.

Conversely, let R be a regularly branched three-sheeted covering Riemann
surface defined by the equation (1. 1) with g(z) satisfying (4. 8). Then the function
fo = fyeH—r belong to 3Jl(R) and P(/ 0 )=4. Hence we have P(2?)^4. In order to
prove P(i?)=4, by virtue of theorem 1 and theorem 2 in [1], it suffices to show
the impossibility of an identity of the form

(4. 10) f(z)\eH^-γ) = (eL^-ά) (eL^-β)2, aβ(a-β)Φθ,

where L(z) is a non-constant entire function with L(0)=0, a and β are two con-
stants and f(z) is a meromorphic function which has zeros and poles possibly at
the zeros of order at least 3 of (eL—a) (eL—β)2 and eH—γ, respectively.

Now we shall show the impossibility of the identity (4. 10) using lemma C.
Let Ns be the counting function of double zeros of the refered meromorphic func-
tion. Then we have

r, 0, eπ-γ)^Nώr, 0, f\eH-γ))^N2(r, 0, e*- r)+iVi(r, 0, eπ~γ\

N2(r, 0, (eL-a) (eL-β)2)=N2(r, 0, eL-a),

and thus

m(r, eL)~rn(r, eH)

outside a set of finite measure. On the other hand we have

N*(r, 0, /8(eH-r))^2iV1(r, 0, eH-γ)>

2N2(r, 0, eL-β)^Ns(r, 0, (eL~ά) (eL-β)2)^2N2(r, 0, eL-β)+2N1{r1 0, eL~a\

and thus
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2m(rfe
L)=o(m(r,eH))

outside a set of finite measure. This is a contradiction. Thus we have shown the
impossibility of the identity (4.10), that is, P(R)=4.

Secondly let Rf be a regularly branched three-sheeted covering Riemann
surface defined by the equation (1.1) with g(z) staisfying (4. 9). Then the function
fo=l/fyea—r belongs to Wl(R') and J P ( / 0 ) = 4 . Hence P(R')^L However we can
similarly show the impossibility of the identity of the form

f(z)3(eH^-ry = (eL^-a) (e™-β)\ aβ(a-β)Φθ,

where L(z) is a non-constant entire function with L(0)=0, a and β are two constants
and f(z) is a meromorphic function which has zeros and poles possibly at the zeros
of order at least 3 of (eL—a)(eL—β)2 and (eH—γ)2, respectively. Hence we have also
P(R')=L

Therefore we obtain a perfect characterization of R with P(i?)=4 in the cases
(i) and (ii).

Now, we shall discuss the cases (iii), (iv) and (v). Let us suppose that one of
the growth of eHl, eHl and em in (4. 3), (4. 4) and (4. 5) is more rapid than the others.
We denote by eH the function having the above property. Then substituting (4. 3),
(4.4) and (4. 5) into (2. 5), respectively, we get an equation of the form

(4.11) D(z)=A(eiH^+ζ1(z)e"H^^ζ2(z)e2H^+ζ,(z)eH^+ζ,(z))f

where A is a non-zero constant and all ζj(z)(j=l, •••,4) are polynomials of eITι or

em in the cases (iii) and (iv), or all are polynomials of two of eIJ\ eIT2 and eTT3 in

the case (v). Hence we have, in these cases,

m(rf ζj)=o(m(r, e*)), i = l , 2,3,4,

outside a set of finite measure. On the other hand from (2.4) we have

(4.12) -27g 2(/ 2

3-/3 3g) 2=^

If the equation

is irreducible, then, by virtue of lemma 4, the right hand side of (4.12) has simple
zeros, while the left hand side has not any simple zero. This is a contradiction.
Hence the equation, Qi(h)=0, is not irreducible. According to the similar discus-
sion as the above using lemma 4 and lemma 5, we finally get

(4. 13) D(z) = A(e2H+£(z)eH™+t3(z))\

Then (4.11) and (4.13) yield

(4. 14) ζ1(z)=2ζ*(z), ζ2(z) = ζ*(z)2+2ζf(z), ζ*(z)=2ζf(z)ζt(z), Uz)=Q(z)\

Case (iii). First let us suppose that in (4. 3)

m(r,em)=o(m(r,eH2))

outside a set of finite measure. Then by substituting (4. 3) into (2. 5) and taking
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eH=β2e
H2 in (4.11) and (4.13) into account, we have

2

[ai(a1+a2)βieHl+(a1 —a2) (2ax—a2)c-\-ax

2a2(ax—a2) {ax—2a2)\

=(CΪ - Cf 2)/2 = - V laiaSβiV*ι+α2(αi - «») {(tf i2 - 2α,ύti+2«2

2)c
#1

and

^ l-^2)M(^l2 +

— a ι2 (a i2—Zaxa2+<22

2)c—ax

5a2(aι—a2)} ]=0.

From lemma B we have

c—<2i2β2=0 and A/ = (<21

24-^1<22—a2

2)c2—ax\aλ—a2) {ax

2+a2

2)c-\-af

By substituting c=ax

2a2 into ^4', however, we have Ar=a\a2(a\— a2)Φθ, which
contradicts A'=0.

Next let us suppose that in (4. 3)

m(r, eH2)=o(m(r, eHι))

outside a set of finite measure. Then we have similarly a contradiction.
Therefore the case (iii) does not occur under a condition that one of the growth

of eHl and em is more rapid than the other.
Case (iv). First let us suppose that in (4.4)

m(χ, eHl)=o(m(r, em))

outside a set of finite measure. Then by substituting (4. 4) into (2. 5) and taking
eπ = β2e

112 in (4.11) and (4.13) into account, we have, similarly as in the case' (iii),

^ [ * i t f 2 8 ( t f i - t f 2 ) M ^

-a2

2)c2+ax

2a2(2ax

2-2axa2+tf2

2)c-ax\ax-a2) iax

2-3axa2

-ax%ax

2-2axa2

Jr2a2

2)c-ax

ηa2(ax-a2)
2}βxe

H'-ax

za2\aλ

—a2)
sc{a2c

2—ax

2(ax

2—aίa2—a2

2)c—ax

5a2(a1—a2)}]=0.

From lemma B we have

c=— ax

2(ax—a2)

and
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By substituting c=—a1

2(a1—a2) into B', however, we have Bf=a1

5a2(a1—a2)Φθ,
which contradicts B'=0.

Next let us suppose that in (4.4)

m(r, em)=o{m{r, em))

outside a set of finite measure. Then by substituting (4.4) into (2. 5) and taking
eH=β1e

Hι in (4.11) and (4.13) into account, we have

^ 2

2 { a 1 - a 2 ) } 2 [ a 1

2 β 2

2 e 2 H 2 - 2 { a 1 a 2 ^ζ 4 = τ ^ { a 1 β 2 e
\β\—a2)

-a2)
2}β2e

H2^-a2

2c2-2a1a2

2(a1-a2)
2c-{-a1

2a2

2(a1-a2)
4]=ζf2.

Hence by means of lemma C, we see that the quantity in the brackets [ ] must
be of the form a1

2(β2e
Il2—γ)2. However, the discriminant of the quadratic equation

aλ

2X2-2{a1a2cΛ-a1

2a2{aλ-a2)
2\X^a2

2c2-2a1a2\ax-a2f

is equal to 16ai3a2

2(a1—a2)
2cφ0. This is a contradiction.

Therefore the case (iv) does not occur under a condition that one of the growth
of eHl and em is more rapid than the other.

Case (v). First let us suppose that in (4. 5)

m(r, em)=o(rn(r, eHι)) and m(r, em)=o(m(r, e111))

outside a set of finite measure. Then by substituting (4. 5) into (2. 5) and taking
eH=βλe

Hι in (4.11) and (4.13) into account, we have, similarly as in the case (iii),

\β\—a2)

^ ( ) ( 2 + ) β β , ^ 2 ( 1 2 ) ( 1

(4. 15)
2a2

2)β2βz

2eH* * 2*3+a2{ax ~ a2)\ax

2 - aλa2 ~ a2

2)β2

2e2H*

a2γβ,eπ"}=0.

Now we shall show the impossibility of the identity (4.15). If 3//2+/Λ^0,
^0, H2+H^0, 3Rs-H2^0 and 2//3-/72^0, then,

by virtue of lemma 1, we have

a1a2

2(a1-a2)
8β2e

Il2-{-da1

2a2(a1-a2)
8βseH3=0,

where d is a constant. Since i72^const., we get dφO and H2—Ά=const. (=0).
Then, writing the identity (4.15) in the form

β2βAa2{ax-a2)β2

2-{aλ

2-3aλa2Λ-a2

2)β2β*-a^

- #2)/32

8 + #l(tf I2 - 2tf !tf 2 + 2tf 2

2 ) / ^

2)Ha2(a1

2-a1a2-a2

2)β2

2+(a1-a2)(aι

2+a2η

ι—a2)
8(a2β2+a^)em=0,
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we obtain, by means of lemma B,

a2β2-\-aφ,=0

and

By substituting βz = —a2β2/a1 into C, however, we have C=a2

2(aι—a2)β2

2φθ. This
is a contradiction.

If 3#2+iJ 3Ξθ or #2+3773 = 0 or 2i72+#3 = 0 or H2+2H3ΞΞ0 or H2^Hs = 0 or
3Hs—H2=0 or 2Hz—H2=0, then the identity (4.15) is impossible by virtue of
lemma B because of a2

2(a1—a2γβ2

sφθ, which is a coefficient of <?3//2 in (4.15).
If 2//3—iί>=0, then the identity (4.15) is also impossible because of

a2fa-a2)β2

3βsΦθ, which is a coefficient of e

3H2+Ha in (4.15).
Secondly let us suppose that in (4. 5)

m(r,eHl)=o(m(r,eH3)) and m(r,eH2)=o(m(r)e
Il2>))

outside a set of finite measure. Then by substituting (4. 5) into (2. 5) and taking
eπ=βzeHz in (4.11) and (4.13) into account, we have, similarly as in the case (iii),

+SH2-j-a1\a1-a2)
2β1

sezm-a1

3a2

2β2V
112

+a1

2a2(2a1

2-2a1a2+a2

2)β1

2β2e
2m+Il2-a1

2fa~a2)(a1

2

(4.16)
Λ-a^βφ^e^^^-a^fa-adfa'-Sa^+a^β^e2^

^a1

5a2fa
2-a1a2-a2

2)β2

2e2H2-a1

6fa2-2a1a2^2a2

2)βφ2e
τn'm

-a1*a2(a1-a2)
2β1e

m+a1W(a1-a2)β2e
II>]=0.

Now we shall show the impossibility of the identity (4.16). By virtue of the
above reasoning, it is sufficient to consider the case Hi(z)=H2(z), because two
coefficients of e3HlhH2 and eSHl in (4.16) are not zero. Then, writing the identity
(4.16) in the form

+a2(2a1

2-2a1a2+a2

2)β1

2β2 - fa -a2) fa2+a2

2)βφ2

2 - a,a2

2β2

3} e3^

-a1

5{fa-a2)fa2-3a1a2+a2

2)β1

2-\-a1fa
2-2a1a2-

ί

Γ2a22)βiβ2

-a2fa
2-a1a2-a22)β2

2}e2Hl-a1

8a2fa-a2){(a1-a2)βi-a2β2}em=0J

we obtain, by means of lemma B,

(a1—a2)β1—a2β2=0

and

D/ = fa-a2)
2β1

2-}-a1fa
2-2a1a2+2a2

2)β1β2-a2fa
2-a1a2-a2

2)β2

2=0.

By substituting β2 = {a1—a2)βιla2 into D', however, we have D/=aι(aί—a2)
2βι

2φ0.
This is a contradiction.
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Finally let us suppose that in (4. 5)

m(r, eHl)=o(m(r, eH2)) and mir, eIlΆ) = o(m(r, e112))

outside a set of finite measure. Then the case is analogous to the last case. Hence
we have similarly a contradiction.

Therefore the case (v) does not occur under a condition that one of the growth
of eH\ em and eHs is more rapid than the others.

By virtue of the above discussion in the cases (i), (ii), (iii), (iv) and (v), we
conclude

THEOREM 1. Let R be a regularly branched three-sheeted covering Riemann
surface defined by the equation (1.1). If P(i?)=4, then there exist an entire func-
tion f2(z) and an analytic function fs(z) single-valued and regular with the exception
of all the double zeros of g(z) at which fό(z) has simple poles, such that f2(z)dg(z)
and fs(zYg(z)2 are two roots of one among the five quadratic equations (2. 6) with the
coefficients (4.1), (4. 2), (4. 3), (4.4) and (4. 5), respectively.

Further in the cases (i) and (ii) we have

(4.8) f*(z)*q(z)=en™-r

or

(4.9) f*(zγg(z) = (eπ^-r)\

where f*(z) and f*{z) are two entire functions and γ is a non-zero constant.
Conversely if g(z) satisfies the equation (4.8) or (4.9), then we have P(i?)=4.

And the cases (iii), (iv) and (v) do not occur under a condition that one of the
growth of eHl, eHl and eHz in (4. 3), (4. 4) and (4. 5) is more rapid than the others.

§5. Now we shall give a criterion for P(i?) 5̂ 4, that is,

THEOREM 2. Let R be a regularly branched three-sheeted covering Riemann
surface defined by the equation (1.1) with an entire function g(z) satisfying

where f(z), H(z), <fi(z), φ2{z) and ψz(z) are entire functions satisfying

m(χ, φj)=oMr, e11)) (/=1, 2, 3)

outside a set of finite measure, and φs(z) has at least one zero. Then we have

Proof. In order to prove P(i?)^4, from theorem 1 and theorem 2 in [1], it is
sufficient to show the impossibility of an identity of the form

(5. 1) f9(eΛH+φ1e
2S+φ2e

H+φύ = (eΣ-a) {eL-β)\ aβ(a-β)Φθ,

where L{z) is a non-constant entire function with L(O)—0, a and β are two con-
stants and f(z) is a meromorphic function which has zeros and poles possibly at
the zeros of order at least 3 of (eL—a) (eL—β)2 and eSHΛ-ψie211-\-ψ2.eH -\-φ^ respec-
tively. If the equation
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is irreducible, then, from lemma 4, we have

(5.2) iV2(r,0,/3Q3(^))-3m(r,^) and Ns(r}0,PQ,(eH))=o(m(r,eH))

outside a set of finite measure. On the other hand we have

(5. 3) N2(r, 0, (eL-a) (eL-β)2)~nι(r, eL) and JV3(r, 0, (eL-a) (eL - β)2)~2rn(r, eL)

outside a set of finite measure. By virtue of the identity (5.1), the comparison of
(5.2) and (5. 3) yields two contradictory facts each other, that is,

m(r, eL)~3m(r, eH) and m(r,eL)=o(m(r,eH))

outside a set of finite measure. Hence the equation Q&(h)=0 is not irreducible. By
the similar discussion as above using lemma 4 and lemma 5, the identity (5.1)
must reduce to an identity

f\eH-φ*) (eH-φiY = {eL-a) (eL-β)\

where φ*(z) and <p*(z) are two entire functions satisfying m(r,φf)=o(m(r,eπ))
(/=1,2) outside a set of finite measure. Hence by means of lemma C we have

(5. 4) m(r, eH)~m(r, eL)

outside a set of finite measure. Further we have

and

N(r, oo, f'/f)^N(r, 0,f)+N(r, oo,/)

^M(r, 0, et-άi+Nύr, 0, e

L-β)+N1(rt 0, et-φft+Nύr, 0, eH-φ*)

=o(m(r, eH)-{-9n(r, eL))

outside a set of finite measure. Thus we obtain

T(rJ'lf)=m(r,f'lf)+N(r, oo,/7/)^0(log rT(r,f))+N(r, oo,/'//)

= o(m(r, eH)+nι(r, eL)),

so that

(5. 5) T(r,f'lf)=o(m(r, e*)+m(r, <?'-))

outside a set of finite measure.

Now we shall prove the impossibility of the identity (5.1) under (5.4) and
(5.5). By differentiating both sides of (5.1) and setting rji=—(μ+2β), η2^
and 7]s=—aβ2, we obtain

eiL+ηie
L)9

and again by using the identity (5.1), we get
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( ^ / 7 / ^ / + ^ 2 / - 3 ^ 2 L 0 £ ^

Here we note from (5.4) that all the functions vH(z)+μL{z), \v\Φ\μ\\ v,μ
= ± 1 , ±2, ±3, are not constants and further satisfy

(5. 7) T(r, ά)=o(m(r, evH ^L))

outside a set of finite measure, where a{z) is a meromorphic function satisfying
T(χ,a) = o{m{r,e11)) outside a set of finite measure.

In the first place assume that a1{z) = ?>{ff(z)lf(z)+H'(z)-L/(z))^O. From (5.4),
(5. 5) and (5.7) we can apply lemma 1 to the identity (5.6). Therefore lemma 1
gives

where c2, c3, c0 are constants and a2(z) = rj1(3φί(
-2ψl{z)U{z)), as{z) = V2{3φ2(z)f/{z)lf{z)+φ2{z)H\z)
•/'(*)//(z)+y>3'(z)). Since T(r, a3)^o(m(χ, eH)) (j=0,1, 2, 3) outside a set of finite
measure, we have

m(r, eIlΛ L) = o(m(r, e11))

outside a set of finite measure. Since ηzΦO, writing the identity (5.6) in the form

^

lemma B gives

f'(z)lf(z)+H'(z)=0, that is, f(z)=de-H'z\

where d is a non-zero constant. Then the identity (5.1) reduces to
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Hence lemma B gives

d*=τ}3 and d*φz(z)=e*H™+*L(i!S\

Since φs(z) has at least one zero, this is impossible.
Next assume that #1(2)=0. Then we get f(z) = deL(z^~II(z\ where d is a non-

zero constant. Here the identity (5.1) reduces to

(5.8) ( l - r f V * 4 8 L + 9 i β 8 H + 2 L + 9 2 e ^ ^

Since ηsφ0, lemma 1 gives

(5.9) ηze
3H^-c2

where c2 and cs are constants. If c2c3(l—dz)φ0, then writing the identity (5.9) in
the form

and using lemma A, we have

c%e*n-*L+c*'c*(l-d*)e*π=0, that is, c1%e-

where c/ and c/ are constants which are not all zero. This contradicts L(z)
Φconst.. If c2=c3=0, then the identity (5.9) is clearly impossible because of η3Φ0.
If c2=0 and c3(l-d3)Φθ, then the identity (5.9) reduces to ?3+c3(l--d8>?3L==0,
which is impossible. If c2φ0 and c3(l—J3)=0, then we have

m(r, eH-L)=o(m(r, eH))

outside a set of finite measure. The identity (5.8) reduces to

Hence lemma B gives

d3=l and

Since φ$(z) has at least one zero, this is impossible.

Thus we have proved the impossibility of the identity (5.1), that is, the
validity of theorem 2.

§ 6. Let R and S be two regularly branched three-sheeted covering Riemann
surfaces defined by two equations y*=G(z) and u*=g(w), respectively, where G(z)
and g(w) are two entire functions having no zero other than an infinite number of
simple or double zeros. Then Mutδ [3] has established the following perfect con-
dition for the existence of analytic mappings from R into S:

THEOREM A. If there exists an analytic mapping φ from R into S, then there
exists an entire function h{z) satisfying f2(z)3G(z)=g°h(z) or fs(z)BG(z)2=g°h(z),
where f2iz) is an entire function and fs(z) is a single-valued regular function
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excepting at most all the double zeros of G(z) at which fά(z) has simple poles. The
converse holds also good.

Suppose that P(R) = P(S)=6. Then by a characterization, which has been
given by Hiromi and the author [1], of R with P(R)=6, we can put

(6.1)
0, aβ(a-β)Φ0,

with two entire functions F(z) and H(z) and two constants a and β, and

(eLM-γ) (eLM-δ)2, L(»ξέconst.,
(6.2)

L(0)=0, rδ(r-δ)Φθ,

with two entire functions f(w) and L(w) and two constants γ and δ.
Now we shall prove the following theorem and its corollary:

THEOREM 3. Let R and S be two regularly branched three-sheeted covering
Riemann surfaces with P(R)=P(S) = 6. Then there exists an analytic mapping φ
from R into S if and only if there exists an entire function h(z) satisfying one of
the conditions

( a ) H(z)=Loh(z)-Loh(0), r=eL°hWa, δ=eL°hWβ,

(a') Π(z)=Loh(z)-Loh(0), r=eLOhWβ, δ=eL°hWa,

( b ) H(z)= -Loh(z)+Loh(0), aγ=eLOfUO\ βδ=eL°h«»,

(b') H(z)=-Loh(z)+Loh(0), aδ=eL°hW, βr-^eL°hW,

where R and S are defined by ys=G(z) and ud=g(w) with G{z) and g(w) satisfying
(6.1) and (6. 2), respectively.

COROLLARY. Let R be a regularly branched three-sheeted covering Riemann
surface with P(R)=6 defined by

y*=f(zγ(βHω_7) (eHω-8)29 rδ(r-δ)Φθ, #(0)=0,

with a non-constant entire function H(z) and a meromorphic function f{z). Let ψ
be an analytic mapping from R into itself. Then ψ is a univalent conformal
mapping from R onto itself and the corresponding entire function h{z) is a linear
function of the form

e2πiVlqz+b

with a suitable rational number p/q.

Proof of Theorem 3. First suppose that there exists an analytic mapping ψ
from R into S. Then from theorem A there exists an entire function h(z)
satisfying either fz(z)zG(z)=goh(z) or Mz)3G(z)2=g°h(z), where f2(z) and /3(z) are
two functions having the properties described in theorem A, respectively.

Case I. f2(z)zG(z)=goh(z). In the case from (6.1) and (6.2) we get an equation
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(6. 3) f*(z)\eH™—a) (eH^~-β)2 = (eL°h^-γ) {eL°h^-δ)\

where f*(z)=f2(z)f°h(z)/F(z) is a meromorphic function having zeros and poles pos-
sibly at the zeros of order at least 3 of (eL°h—γ) {eL°h~δf and (eH~a) (eIι-β)\
respectively. Evaluating similarly as in §5, we have

(6. 4) m(r, eH)

and

(6. 5) Γ(r, /*'//*) = #(w(r, eπ)+m(r,

outside a set of finite measure. Hence this case is similarly treated as in the
process of proof of theorem 2. Therefore from the reasoning of § 5 it is sufficient
to consider the following two cases:

(I. I) nι(r, eH^L°h)=o{m{ry e11)) outside a set of finite measure, and f*(z)=de~inz\
where d is a non-zero constant. Then the identity (6. 3) reduces to

i - τ}2e
H f LOh)e2H+(d%2 - Vle

2H+2L°h)eπ+d%, -eZH ] ZL°h=0,

where ζi=-(α+2 iS), ζ2=2aβ+β\ ζ3=-aβ2, Vl=-(r+2δ), η2 = 2γδ-\-δ2 and η^-yδ\
Hence lemma B gives

d3 = ηs, d%λ=η2e
Hiz^LOhiz\ dsζ2=Vle

2Π^ι2L°hC2> and d3ζi = e*JI<i*:>iSLOhί'\

Therefore the function H(z)-\-L°h(z) must be the constant L°h(fl). Then we have

γδ2(a+2β)=(2rδ+δ2)eLOhW, ϊδ
2(2aβ+β2)=:(ϊ+2δ)e2LOhW and rδ

2aβ2=edLOfU0\

These relations yield aγ=eL°hW and βδ=eL°hC0\ Thus we attain to the case (b) in
our theorem.

(I. II) f*(z)=deL°h(z^-inz\ where d is a non-zero constant, and m(r,eH'L°h)
= o(rn(r,eH)) outside a set of finite measure. Then the identity (6.3) reduces to

We deduce from lemma B that the function L°h(z)—H(z) is the constant
and the following relations hold:

°hW, 2γδ+δ2=(2aβ+β2)e2L°hW and γδ2=aβ2e*L°hC0\

These relations yield γ=eL°hWa and δ=eL°hWβ. Thus we attain to the case (a) in
our theorem.

Case II. fz(zYG(z)2=-g°h(z). In the case from (6.1) and (6.2) we get an
equation

(6. 6) f*(zy(eH^-a)2(eIUz)-β) = (eL°h^-r) (eL°h^-δ)2,

where f*(z)=f*(z) (eH^-β)foh(z)/F(z)2. Here /8(z) has simple poles at most at the
double zeros of G(z), that is, at the simple zeros of eIIiz^—β or at the double zeros
of eHiz^—(χ. However from the equation (6.6) and lemma C we see that f3(z) has
simple poles at almost all simple zeros of eH^—β. Hence f*(z) satisfies the
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condition (6. 5). And in this case the relation (6.4) holds also true. Therefore by
virtue of the case I, we attain to the cases (a') and (b') in our theorem.

Conversely, suppose that there exists an entire function h(z) satisfying (a) or
(b) or (a') or (b') Then we have

if (a) is the case, or

if (b) is the case, or

if (aθ is the case, or

if (b') is the case. Since zeros of G{z) are all simple or double, eL°hmF(z)/f°h(z)
and -eL°hWF(z)l(%/aβreII^foh(z)) are two entire functions and eL°hWF(z)2/((eH^~β)
foh{z)) and -eL°hWF(z)2KψaψeH^\eH^-β)foh(z)) are two single-valued functions
having the properties of fs(z) in theorem A. Therefore from theorem A there
exists an analytic mapping ψ from R into S. Thus we have just proved theorem 3.

Proof of Corollary. By virtue of theorem 3 there exists an entire function h{z)
satisfying either H(z)=Hoh(z)-Hohφ) or H(z)=-H<>h(z)+Hoh(0). Then we have
h{z)=az-\-b by using lemma D if H{z) is a transcendental entire function or
directly if H(z) is a polynomial. This implies the first part of corollary, that is,
ψ is a univalent conformal mapping from R onto itself.

By considering its iteration φn = ψoψn-i as in the proof of theorem 2 in Ozawa
[7], we can say that

with a suitable rational number p/q. Q.E.D.
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