ON CONTINUOUS-TIME MARKOV PROCESSES WITH REWARDS, I
By Hironisa HATORI

1. In the previous paper [1] we have discussed Markov chains with rewards.
In this paper we shall extend our previous work to continuous-time Markov processes
with rewards.

2. As the preparation of the following sections, we shall state some well-
known properties of Markov processes. Let X, #=0 be a continuous-time Markov
process with the state space §={1,2, ---, N}. The quantity «;; is defined as follows:
In a short time interval df, the process that is now in state jeS will make a trans-
ition to state keS with probability axdt+o(df) (j=k). The probability of two or
more state transitions is o(d?). Then, this Markov process is described by the
transition-rate matrix A=(a@;x) with elements a; where the diagonal elements of A
are defined by aj;j=— X, @ix (7=1,2,---,N). The probability that the system
occupies state j at time ¢ after the start of the process is the state probability

nj(i)d;fP{Xt:j} and we have
d N
(1) B?ﬂk(f): Zlﬂj(l)ﬂﬂ: (k=1,2,---,N).
=
In vector-form we may write (1) as
d
(2) Zt—n(l)fn(l)'/l,

def
where wm(f)=[r,(?), ---, =n(f)] is the vector with the components z;(#). Let us desig-
nate by II(s) the Laplace transform of the state-probability vector =(f). If we take
the Laplace transform of (2), we obtain

sH(s)—w(0)=1M(s)-A
and so
(3) I (s)=n(0)[s[—-A] ™,
where I is the identity matrix. Under a certain weak condition, the equation
det (sI—A)=0 has a simple root s=0 and, «y, ---, % being its remaining roots, the
real parts R(a;) of «; (I=1,2,--, k) are negative. Each element of [s/—A] is a
function of s with a factorable denominator s(s—a,)™ --- (s—ax)™, where my, -, M,

are the multiplicities of aj, ---, ax, respectively. By partial-fraction expansion we
can express each element as the sum of the fractions whose forms are const./s and
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const./(s—a;)” (v=1,---,my; [=1,2,---, k). Expressing this fact in matrix-form, we
have
. my 1

=101 (S—an)”

[s]—-A]"'= %S—l— 1.,

where S and T, (v=1,---,my; [=1,2,---, k) are NXN matrices independent of s,
which implies that [s/—A]-! is the Laplace transform of

def k. my Z~V~1
[[(t):S+Z Z —y—_—l—)re""tTlu;

=1 y=1

that is,
[sI—A]-‘zng(t)e—“dt, (s>0).
0

Therefore, we have
I(H—S  (t—o0),
which implies with (3)
(4) #()=n0)H)—=0)S  ({—o0).
S is a stochastic matrix and its j-th row is the limiting-state-probability vector of

the process if it starts in the j-th state.

Remark 1. If the matrix A is indecomposable, then the equation det (s7—A)=0
has a simple root s=0 and a;, -+, a; being its remaining roots, the real parts R(a:)
of @ (I=1,2,---, k) are strictly negative. In what follows, we shall prove this fact.

Z1
For a root a of det (sI—A)=0, there exists a non-zero vector { :

2N
21 21
(5) A{E:l:c{i}
ZN ZN

Taking joeS such that Max,—,»,...v |2,/ =12,/ >0, we may assume without loss of
generality z,,=1 and |z;]=1 (j=1,2, -, N), because (5) holds again by replacing
zjlz,, for z, (=1,2, .-, N). Then, we have from (5)

} such that

01=a210=j§00wz;‘+ﬂm:0

and so

ER(C[’) = Z a]o]'ER(Z]') +a]0]0 § Z a]()f+a.70]0 :0)
J*J0 J*J0

because R(z)=<zi1=1, @;,,=0 (F=jo) and @y;0=—21jxs, @5y- Therefore we get
Rla)=0 (=1,2,---,k). Now, the matrix A+21I, where A=Max,-;, ..~ |a,;;|, has
A, Atay, -+, A+ay as its eigen values. Since A-+27 is an indecomposable matrix with
non-negative elements, we have by the well-known theorem on matrices with non-
negative elements that s=2 is a simple root of det (sI—A—2A)=0 and |A+a;|=2
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(=1,2,---,k). Hence we know that s=0 is a simple root of det(s/—A)=0 and
R(a) <0, ((=1,2,:-, k).

3. To simplify the explanation of our method in this section, we assume that
the equation det (s/—A)=0 has the simple roots 0, @y, -+, ax—1, that is, k=N—1 and
my=my=---=my=1. Let us suppose that the system earns a reward at the rate of
7;; dollars per unit time during all the time that it occupies state j. Suppose
further that when the system makes a transition from state j to state £ (jxk), it
receives a reward of 7; dollars. Then, the characteristic function of the distri-
bution of the total reward R(#) that the system will earn in a time ¢ if it starts in
state j is

def
(6) @i(0)=E{e"* | Xy =7},

where i=o/—1 and @ is a real variable. Here, dt¢ representing, as before, a very
short time interval, we have

@it d;(ﬁ) = (1 +lljjdl‘)8wrffdt§0ﬂ(0) "}‘kg [ljk(l[eihf’ﬂ(/?kg(ﬂ) + 0((1[)
]

and so
a 7 PP .
(7) 57 010) =@y +07i)0i0) + 3 aneFou(®)  (G=1,2,, N).
*7
Introducing the NXN matrix
an+i0r,  @;pet?™ o @yetninv
] e it e duet
an e’ m  aneme - ayy+i0ryy
and the vector
aet [ 91:(0)
p@)=| |
oni(0)
we may write (7) as
0
(8) ¥ @i(0)=A0)¢p.(0).

If we take the Laplace transform of (8), we obtain
s@(0, s)—e=AD, s)

and so

(9) D0, s)=[s[—A()] e

for s>0 and @ in a neighborhood of =0, where
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def (oo 1
¢(0,S)ZS u(Destdl and e=| : |.
0
1

The equation det (s/—A(#))=0 in s has the N roots (), Li(0), ---, Exv—1(0) such that
RECWO)=0 (/=0,1,---, N—1) and

Lu(0)—0, Lu(O)—ay, -, Exa(B)—an_,
as 8—0. Then, there exist positive constants ¢ and #, such that
(10 —e<REG@=0 and RCON<—-2¢ (=1,2,---,N-1)

for 6| <8, because R(a))<0 (!=1,---, N—1). The consideration similar to the one
in the preceeding section give

D0, s)= C @ ————a(0) ZZ:I - C @ 0
(11) had N—1
:S [3C0(0)50(0)+ P ch(a)Ln(o)’e_“a,t

0 i=1

and so
() =e"D g () NZ_le”(Mfz(ﬁ)
=1

(12)

N-1
:eCO(ﬂ)t{a(())_l_ Z e“L(ﬂ)—CO("))tn((})}’
i=1

where a(0), 7:(0), -+, Tw-1(0) are N-dimensional vectors analytic on ¢ for |0]<6,.
Since ¢:.(0)=e, we have g(0)=e. From (12), we have

aa—gSot(ﬁ):Cé(ﬂ)l‘e“(")‘a(ﬁ)—{—e‘:"(””g'(ﬁ)
9 N-1
+lZ L) tes 1@ty (0) 4¢Pt y(0) }
=1
and so
v(t)——{Co(O)te—l—a/(O) Z}_ (20(0)tetizy(0)+etiz)(0))}
(14)

= —i5(0)te—ia’(0) as t—oo,

def vl(t)
where v(f) = : is the vector with the components
Uzv(f)
def . 170
vj<t>=E{R<t>1X0=;}=—.[—wﬂ(w] ,
1106 9=0

def
which implies that ¢g=—i{;(0) is a real number. In the similar way, we have
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E{RW?| Xo=j} = =03 E—[570)+200) i —0)  as (oo,
where ¢} and ¢}’ are the j-th component of ¢’(0) and ¢’/(0), and

E{R@®| Xo=7} —[E{R@®)| Xo=j}F=—{'(0)—0} +07*  as [—oo,

which implies —£;’(0) is positive in general. Now, we shall consider the asymptotic
behavior of R(¢) as ¢—oo. ;l“he characteristic function of the distribution of the
random variable [R(t)—gt]/M ¢ under the condition X,=j is

de: ~
¢jz(a) :fE{ew[R(t)~gt_‘| /vt ]Xo :j}
- /)
(15) —e~Y s/w(pﬂ<:/7>
N—1

_ _ 0 0
— =19 VE0 ploce/ Vit (-:) 240/ Y1) ~LoCo/ VL .<~—:
=g ~W"lle g = |+ et T
{ Wt z§ Y\t

where ¢;(0) and 7,;0) (/=1,---, N—1) are the j-th components of the vectors a(0)
and 7.0) (/=1,---, N—1), respectively. TFor fixed 0, we have |0// t!<0, for all
sufficiently large ¢ so that by (10)

W 7e) ~a(/))<e0
and

(16) L/ V=200 YL _() s f—co.

On the other hand, we have

o1 VT0pt00/ Vi3t

an

, - " - Sros e
— =g V0 + {C000) V10 + (/DL (0302 10/ VD) _, p(1/2) 5 (030 as ¢#—oo,

because {,(0)=0 and g=—i{j(0). From (15), (16) and (17), we get

Pju(0)—eVPE O g5 {00

and so
def -
Sl’t(ﬁ):E{e“ER(t)-gt]/w}
N
= 21 1(0)u(0)—e /D @6 a8 ts00,
J=1

which implies that [R({)—gt]/a’ ¢ converges in distribution to the normal distri-
bution N, —4/(0)).

ReMmArk 2. It follows from (8) that
0? , )
(13) Erev @u(0)=N(D)p:(0) +A0)- 0 o).

Since [5‘% gm(ﬁ)] —iv(t), A0)=A and
0

9=
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i Tu@ie o Nivdiy
%—A’(O):Qld;f V21021 Yoz st VanQan ’
Yn@N, TNy, © VNN
we have, by setting 0—=0 in (18),
(19) 7;]; v()= Qe+ Av(),

which has been shown by Howard [2]. He has given from (19) the asymptotic
form of wv(#) as #—oo, which is essentially equivalent to (14). By differentiating
the both sides of (18) w.r.t. 0 and setting 0=0, we have

d

(20) ~%w(l‘):Qze—i“leU(l‘)‘l’Aw(t‘),

aor [ W1(D) dof
where w(f)=| : is the vector with components w;($)=FE{R(#)?* X,=7} and
WN(t)

0 Viad1z e Vi

dot| V31021 0 s ViNGan
=

Yaan, Viln, o 0

By taking Laplace transform of (20) and using the method similar to the one in
[1], we can find the asymptotic forms that w,(f) and Var (R(#)) assume for large .

RemaRrk 3. Let f be any real valued function defined on S. In the case where
riy=/f(7) and r4=0 (F%k), we have that

R()— S:f(X,)dr

and the random variable [[¢A(X.)dc—gt]/~/t converges in distribution to a normal
distribution as #—oco. Therefore we have the central limit theorem for continuous-
time Markov processes.

ReEMARK 4. Although R((?)=0 is derived from the analyticity of @, s), wc
shall give a proof similar to the one in Remark 1. Since there exist a non-zero

21
vector :

ZN
and z,,=1, we have

WO=El0)zz, :fﬁszy:o @505€77901 25+ (@ go30+ 107 3050)

21 21
} and a state j, such that A(O)[ : }:Co(ﬁ)[: :!, lz,) =1 (j=1,2,--,N)

2N 2N
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and so
R(&o(0))= ; Rl@g5€8730125) 4 1054
J*Jo

= X ayle 10z +dy = X ity =0.
JxJ0 JxJjo

Therefore, we have R(¢,(8))=0.

4. In this section, we shall outline the case with the discounting. Let us
define a discount rate 0<a<co in such a way that a unit quantity of money
received after a very short time interval d¢ is now worth 1—adt. Then, for the
characteristic function ¢;,(6) of the present value R(#) of the total reward of the
system in time ¢ under the condition X,=7, we have

0101 ae(0) = (Lt-ayydt)er -0 33010 (1 —adt)0) + 3 apdt e’ =<0 o (1—adl)))
v¥]
and so

o ‘ 0 »
or PO =@ i07:9) pa0) a5 0 0) T 20 diee™ Foul0),
kg

which is expressed in the vector-form
0 )
(21) _51‘— ;05(0)4-0(0 E‘T got(ﬁ) = A(a)goa(ﬁ)-
By differentiating the both sides of (21) w.r. £ 0 and setting 0=0, we have
d
(22 T v(D)+av(t)=Q.e+ Av(?)

which has been shown by Howard [2]. He has shown from (22) v=Ilim;—. v(?)
=[al—A]'Q.e. By differentiating twice the both sides of (21) w.r.¢ 0 and setting
0=0, we have

d
(23) —F W+ 2aw(®) =Q:e+2Q,v()+ Aw(?),
from which we can find without difficulty w=Ilim e~ w() in terms of «a, A, Q, and

def[wl.(t)

Q,, where w()= } is the vector with the components

wn(?)
WA= ERO Y=} =] 5 010)

=0
The author expresses his sincerest thanks to Prof. Y. Kawahara who has given
valuable advices.
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