f-STRUCTURES INDUCED ON SUBMANIFOLDS IN SPACES,
ALMOST HERMITIAN OR KAEHLERIAN

By Hisao Naxacawa

Introduction.

It is known that, if the tangent space of a submanifold of an almost complex
space is invariant by the almost complex structure, the submanifold admits an
almost complex structure. As a generalization of an almost complex structure,
Yano [14] has introduced the concept of an f-structure in a differentiable manifold.

The purpose of this paper is to show that a submanifold of an almost complex
space admits an f-structure under certain conditions and to study the induced f-
structure.

The author wishes to express here his hearty thanks to Prof. K. Yano, Prof.
S. Ishihara and Prof. I. Mogi for their valuable suggestions and guidance.

1. fF-structures [14], [15], [17].

Let M™ be an #n-dimensional connected differentiable manifold of class C* and
{n¢} local coordinates. If there exists a non-vanishing tensor field f of type (1, 1)
and of class C> satisfying

a1 Fi+r=0,

and the rank of f is constant everywhere and is equal to s, then we call® such a
structure an f-structure of rank s. We put

1.2 I=—f% m=f"+1,
where 1 denotes the unit tensor, then we have
1.3) I+m=1, 2=l mi=m, Im=ml=0.

These equations mean that the operators / and s applied to the tangent space at
each point of the manifold are complementary projection operators and there exist
complementary distributions L and M corresponding to the operators / and m
respectively. Then the distribution L is s-dimensional and M is (z—s)-dimensional.
Further we get

S=l=f,  fm=mf=0,
fH=—I, fPm=0.

Received November 1, 1965.
1) Yano [14].
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It is known that a manifold admitting an f-structure of rank s induces a positive
definite Riemannian metric tensor ¢ satisfying
(1.5) Geaf S s+ mMeas=0cs.

Then the structure is said to be an (f, g)-structure.
The Nijenhuis tensor N(X, Y)® of an f-structure f of rank s is given by

(1. 6) NX, V)=IrX, fY1-fIfX, Y]-fIX, FY]-I[X, Y],

where X and Y are any two vector fields on M*. Denoting by N.* the components
of the Nijenhuis tensor N(X, Y), we have in terms of components as follows:

(1 6)/ Ncba'_—'fceaefba"‘fbeaefca—(acfbc_abfce)feay

where 0,=0/d7°.
Taking account of the integrability conditions given by Yano and Ishihara [17],

we see that the following results are valid;

THEOREM A. It is necessary and sufficient for the distribution M to be in-
tegrable that
1.7 NmX, mY)=0,

and for L 1o be integrable thal
1.8 mN(X, [Y)=0
for any two vector fields X and Y.

If the distribution L is integrable and takes an arbitrary vector field » which
is tangent to an integral manifold of L, then the vector field f» belongs to the
same integral manifold. If we define an operator f’/ by

flo=fv

in each tangent space of each integral manifold of L, then it is seen that y/ is an
almost complex structure in each integral manifold of L. When the distribution L
is integrable and the almost complex structure f’ induced from the f-structure on
each integral manifold of L is also integrable, then the f-structure is said to be
partially integrable. Concerning the partial integrability, we have proved in [17]

THEOREM B. It is necessary and sufficient for the structure f to be partially
integrable that
1.9 N{UX, 1Y)=0
for any two vector fields X and Y.

We suppose now that there exists in each coordinate neighbourhood a coordinate
system in which an f-structure f has numerical components

2) Nijenhuis [4] and Yano and Ishihara [17].
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0 -1, 0
(o= L. 0 0 |
0 0 0

where 1; denotes the ¢#X¢ unit matrix, s=2¢ being the rank of f. In this case, the
Sf-structure is said to be integrable. Yano and Ishihara have proved also in [17] the
following

THEOREM C. It is necessary and sufficient for the f-structure to be integrable
that
NX, YV)=0

for any two vector fields X and Y.

Let U be a coordinate neighbourhood of a differentiable manifold admitting an
f-structure of rank n—r. There exist n—r vector fields f,’ spanning the distribu-

tion L and 7 vector fields f,’ spanning the distribution M.» If we denote by <f p‘)
. . bt
the inverse image of (fy, /), we have
1.10) mi?=fV. [y, oty =aj,
from which we get
S == +-1y" v,

S fP=0,  fofi=0.

The ordered set {f,’} is called an 7-frame in U and the ordered set {f%.} is called
an r-coframe in U. The set (fi?, {f,}, {f%}) of the structure f, an »-frame in U
and an 7-coframe in U is called a local f-structure with complementary frame. We
simply denote it by (f, fy, .

We assume now that, in a differentiable manifold admitting an f-structure of
rank 7, there exist globally an (z—7)-frame and an (#—7)-coframe. The set (f, fy,
f%) is called an f-structure with complementary frame, which satisfies (1. 10) and
1. 11).

We suppose that there exist given two r-frames {f,’} and {f.’} in the given
f-manifold M™. If we have
(1. 12) fw]:Cwyfy]
everywhere, with constant c.?, we say that the two frames {f,’} and {f.’} are
equivalent to each other and that the two f-manifold (M", {f,’}) and (M*, {f.’})
with complementary frame are equivalent to each other.

We take two f-structurf, (f, fo, % and (f, fw, %) with complementary frame
so that r-frames {f,’} and {f.’} are equivalent to each other. Then, the following

equations about the covariant vector fields must be satisfied:

(1.11)

3) The indices p, ¢, --- run over the range 1, 2, ---, »—7 and the indices x, y, .-+ run over

the range n—7+1, -, n.
4) We use the summation convention.
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(1.13) Fra=d/fv,

d,? being constant. From the last equation of (1.11), (1. 12) and (1. 13), it follows
that

1. 14) cy*d.Y =0%.

Since the projection operator m of the structure f depends only on f, the given two
f-structures have the same operator m. Consequently we have

milzf_yzf_ylzlele_
Substituting (1. 12) and (1. 13) into the equation above and then transvecting with
¥, fut, we have
(1. 15) Cutd =0,

2. The Nijenhuis tensor of the product space M x E".

Let M be an n-dimensional differentiable manifold admitting an f-structure
with complementary frames. We consider the product space M»x E”, where E™ is
an 7-dimensional Euclidean space. We take a sufficiently small open covering {U.,}
of Mm by coordinate neighbourhoods. If we denote by {%*} a coordinate system of
U, in {U,} and by {7°} a cartesian coordinate of E”, then {7% %*} can be con-
sidered a set of coordinates of U.,XE™ and {U.XxE"} constitutes an open covering
of M*xE™ by coordinate neighbourhoods. ~We take local coordinate systems {U,,
»*} and {U,, y*}, where U, and U, belong to {U,} and U,N U.x¢. Let

@. 1) 77(1’:770.'(771’ ) 77‘”')

be the coordinate transformation in U.N U,. We define the coordinate transforma-

tion in (U, xE")N(U, XE") by
7Y =90 "),
(2.2)
¥ =n* for any .

For the f-structure with complementary frames (f; fy, /%), we put
~ ( 5= fy >
F=
e 0
in every coordinate neighbourhood {U.XE7"}. As the Jacobian matrix of the co-
ordinate transformation (2. 2) is given by

( oylo 0 >
0 1 /

it is easily secn that F defines a tensor field on the product manifold M»x E™ and
is denoted by Fz4 in terms of components (A, B, ---=1, 2, ---, n+7).
Making use of (1.12), we have

~ o~
FpAF p¥=—04%,
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that is, the tensor F is an almost complex structure on the product manifold
Mrx E7. The Nijenhuis tensor N¢s4 of the almost complex structure F is given by

2. 3) Nept=FcPogh sA—F 520 p ot — (96 F 5E —05F oE)F 5A.

If we calculate the components of this tensor by grouping the indices in two groups
(@, b, --+) and (=, v, ---), denoting by f,* and f*, the components of the vector fields
fy and f* respectively, we get

Sep®= Nep®+(0cf s — 00 "c) fu"
Sev?=Ffc 0 f “o—fo?0ef “e—(0c o' —0b [ ") [ e,
2. 4) Sey®=—Ffc0cfy*+ [y 0cfc“+0c Sy fe%,
Sey® =y 0ef Tot0cfy* [ Te,
Say*=F20cfy*—fy*0cf 2"

We assume now that an affine connection /'.% is given on the manifold M™.
We denote by Teoo=(".%—13%)/2 the torsion tensor of the affine connection and
by FV the covariant derivation with respect to the affine connection, then the five
sets of the components Secv%, Scv®, Sey? Sey® and S;,® can be rewritten as follows:

Sev=feV efo?—foW ef *—V efs*—Vofe) o

FTef =V f7) fo"+ 2T — Tea®S e fo" +f o Tev S o+ a Tee fo%)s
Se®=feV of “s—fvV of o=V of o=V o) %

22 a T e+ *aTee fo%),
Sey?=—FfoV ef s+ vV ef Ve v [

2 Teaff y* =S Tea’fy*),
Ser®=fy T ef 2tV ef - Fe=2f 2aTuc'f ",
Sey®=FoVefy*—fyVef2*—2Tea"ff ",

where the covariant derivative of the vector fields f, and f* along the submanifold
Mm with respect to the affine connection are define by

Vefyo=0cfy2+ 12 fy° Veofoy=0cf%s—1 o[ .

From (2. 5) it is seen that S’s are tensors defined on the submanifold M™.

In particular, when the connection I".% is symmetric, we get (2. 5) with vanish-
ing torsion tensor 7.

In the rest of this section, we shall investigate the properties of the tensors S.
First we take the Lie derivative of f*, f, and f with respect to the vector f,.
Then, taking account of the third, the fourth and the last equations of (2. 4) we get

2. 6) LTS “e=Sey" LU= "Szz/a»

(2.5)
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and
2.7 LU fe*=Se",

where L(f;) denotes the Lie derivative with respect to the vector field f,. Thus
we have

THEOREM 2. 1. It is mecessary and sufficient for the tensor Se°, Sw® and Sy
to vanish identically that L(fy)f®.=0, L(f)f:*=0 and L(fy)f:*=0, respectively.

As is Nwell known, the Nijenhuis tensor Ngg? of the induced almost complex
structure F is hybrid with respect to the indices A and C, and pure with respect
to B and C. Since hybridness of N4 is expressed by

~ ~
NgsAF ¢ =— NgpPF 34,

we find
Sesf ot +Swpf YotfeSer® —fuSer® =0,
—Seo® fo?+fe"Sa® —f1 S =0,
Ser™f Sy S PerHf i8S~ Sey” =0,
2.8 Sev™f "+ Suwn™f “e+f 7eSer* =0,

—Ses”f 2+ S *eSa° =0,
Sey™f et Ff FeSey* =0,

—Seyfs*+fe*Sz=0,
—~Sey™f e+ eSuy®=0.

Since purity of Nep4 is expressed by

NgpAF ¢¥ = NguAF ¥,

we find
Sev®f *+Sws™f Ve~ See® fo° —Sew ¥s=0,
— s —Ssef st —Sswf s =0,
Sey®fe*+Suwy® e+ Seef°=0,

2.9 Sev? fe* +Suws”f e—See™ " —Sew™f Yo =0,

_Sebwf 2 _Szezf v*=0,
Sey*f e +See”fy* =0,

—SeyS 24+ Szefy* =0,
—Sey®f o+ Sze"fy*=0.
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Transvecting f,¢ and f*, to the first equation of (2. 8), we get

(2. 10) Szba‘: ‘—fea'Schfzc 'I"fwaScbwfzcy
and
(2 ].].) Scbx foasebafce‘l“fxuswbafwc;

respectively. On the other hand, transvecting f,* and f<¢, to the second equations
of (2.9) and (2. 8), we have

2.12) Say®=—Seaf*f4%  Sa®=—faSe®f2",
respectively. It follows from the fifth equations of (2. 8) and (2. 9) that
2.13) S S =—Sz"fv".

Similarly it follows from the third equations of (2.8) and (2. 9) that
2.14) Je®Sey® —fwSey™ = See® S 4"

Making use of the equations from (2. 11) to (2. 14), we have
THEOREM 2. 2. If the tensor Se® vanishes identically, then so do the other S’s.
By virtue of the sixth, the seventh and the last equations of (2. 8), we have

THEOREM 2. 3. If the tensors Scy® and Scy® vanish identically, then so does Sy°.
If the temsors Sey® and Sxu® vanish identically, then so does Scy®.

Making use of the Nijenhuis tensor Ngz? of the almost complex structure F on
the product space M™XE" and taking account of Theorem 2.2, we can prove the
following

THEOREM 2.4. In a differentiable manifold M admitting an f-structure with
complgmentary frame, it is necessary and sufficient for ihe almost complex struc-
ture F defined on the product space M"XE" to be complex that the tensor Scv*
vanishes identically.

We suppose now that a manifold M admits two equivalent f-structures
(f, fu % and (f, fuw, f7) with complementary frames. Let N¢z* and N¢s? be the
Nijenhuis tensors of almost complex structures induced on M"XE™ by given f-
structures, respectively. Making use of (1.13) and (1. 14), and taking account of
2. 4), we get
Scbazscbay Scbizdziscbx,
(2. 15) Scy“=cgy5cy“, Scy‘i‘:ngdzEScy”",
Szg“ =¢z%c5¥Su%
S’ being components of the Nijenhuis tensor Nez4. Thus we get
TueoreM 2. 5. In a diffeventiable manifold M™ admilting equivalent [-structures

i fn £ and (f, fw, [?) with complementary frames, Sw*=0 and Sp*=0 are
equivalent to each other.
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3. f-submanifolds of almost complex and almost Hermitian spaces.

Let M™ be an m-dimensional almost complex space with local coordinate system
{e*} and F be an almost complex structure defined on M™. Let M™ be an n-dimen-
sional submanifold of M™ represented by &*=&"(»*) for a local coordinate {7*} in
M». We put

(3. 1) Bbh___ash/avb)

which span the tangent space of M™ at each point.
We assume that the tangent space T(M™), of M™ at each point p satisfies

3.2 dim (T(M™), N F(T(M™)p)=n—r>0
everywhere on M7». Then we can choose locally linearly independent unit vector
fields #n41, *+*y #ner normal to the submanifold M® such that F #ai1, -+ F #n,> are

tangent to M™ and m—n—r mutually orthogonal vector fields Cpiri1, <+, Cm belong-
ing the complement of the tangent subspace T'(M™),+F(T(M"),) at each point in
Mmn. If this is the case, we say that M™ is locally framed in M™ Let v, be an
inverse image of #, under the transformation F. Then the vector field vy is given
by Fvy=uy, from which we see that v, is a tangent vector of M» Let #* be a
covariant vector field such that #*(v,)=07 and #® be an inverse image of #* under
the transformation F, that is, #*F=9*. Consequently, we have

Fvy:uy, Fuy='_"vy,
(3.3)
W F=p*, PP F=—®.
Summing up, we have

LemMA 3. 1. If a submanifold M™ is locally framed in an almost complex space
M™, then the tangent subspace T(M™), N F(T(M™),) and T(M™)p+F(T(M™),) for any
point p on the submanifold M™ are invaviant under the transformation F.

We denote by B, # and C the matrices (By"), (#y") and (C4"), respectively. A
matrix (B, #, C) is of maximal rank, and hence there exists an inverse matrix,

which is denoted by
B* B;
( u" ) - (dwz )‘
C* C=;

5) Throughout this paper, indices run over the ranges as [ollows:

i, j, 1, 2’ e, m,
a, b, --: 1’ 2, ey 7,
%9, 1 ntl, ceey Ht-7,
A B, 1 1,2, vy N7,
ay By ot mArl, e, om,
2 7R n_l_l, ey, om,

unless otherwise stated.
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The vggktor fields B*; span the cotangent space of M” We put A=(B, ) and
A*=< i ) It follows from the construction that we get the equations

BBy =0¢, Wity =0y,
3. 4) {

Baiuylz y ﬁx'LByzz .

If, in a submanifold M» framed in an almost complex space M™, a tangent
field 7, say Ty", has components of the form

3. 5) TjihzcajPaih"‘Cainah—l_CﬂhRjiﬁ

with certain tensor fields P, @ and R, then the relation (3.5) is expressed in a
simplified form as

(3. 6) Ty =0,
and U;"— V;»=0, as U;*=V;*. Using this notations, we get
@D BJBY=8— i,

B *

because a matrix (u ) is an inverse of (B, u, C).
C*
Now we put
3. 8) fo*=B*;Fi/By, fye=B%v,, f2=0%Bv,

which define a tensor field of type (1, 1), a contravariant vector field and a covariant
vector field on Mn". Making use of (3. 8) and the properties of the tangent vector
vy, We obtain

3.9 Svf Fa=0j.

We put

(3. 10) F=A*FA,

then we get

3. 11) (ﬁBA)=< o )

S 0

From the definition (3. 10) of F it follows that

3.12) Fe=—1.

We express the equation above in terms of components, then we have
Ferfvt—fof =0,
{ —fefy'=0,  frfe'=0,  [fyfTe=07.
This implies that the following equation is valid:
Feafot forfa=0,
that is, the tensor field f on the submanifold M” satisfies f*+f=0 and f2=—1

(3.13)
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+71¥®fy. This means that the submanifold M=» admits an f-structure f with
complementary frames. Thus we find

THEOREM 3. 2. If the submanifold M™ is locally framed in an almost complex
space M™, then M admits an f-structure of vank n—r with complementary frames.

We call the f-structure the induced f-structure with complementary frames
and the submanifold M™ admitting an f-structure the f-submanifold.

Next, let M™ be an almost Hermitian space and (F, G) be an almost Hermitian
structure. We put

(3. 14) G=A'GA.

We denote by Gj; the components of the Riemannian metric tensor G of the
almost Hermitian structure. If we write down the components of both sides of

(3. 14), we get

(.14 Genr=GuAdAs.
By grouping their indices in two groups (e, b, ---) and (z, v, ---), we get
~ Jeb 0 ~ q 0
(3.15) GCB=( )1 G=< >,
0 g’z'y 0 g'

where ga=G;iB/ By and ¢’.y=Gjiu’uy* define a tensor field of type (0, 2).
It follows from (3. 14) and (3. 15) that we have

(3. 16) G=(B*)'gB*+tu-g'-i.

We express both sides of the equation above in terms of the components, then
we get

3. 16y’ G =gBI By 9"V 1.
Making use of (3. 8) and (3. 14), we get
G=FGF,

which means that we get

3.17) Gev=4gea S S+ yzf Ve [ 0.

This shows that the tensor fields f and ¢ defined on the submanifold M» satisfy
(1.5). Thus we find

THuEOREM 3. 3. If the f-submanifold M™ is locally framed in an almost Her-
mitian space M™, then M™ admits an (f, g)-structure of rank n—r with comple-
mentary frames.

If, in particular, »=0, then the submanifold M™" is invariant.® Tashiro [11]
has treated of the case that r=1.

6) Yano and Schouten [20].
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4. f-submanifolds of almost Kaehlerian and Kaehlerian spaces.

In this section, let M™ be an almost Kaehlerian space and (F, G) be an almost
Kaehlerian structure. Let M™ be an f-submanifold of M™. We can choose locally
m—n unit vector fields Cuyy, -+, Cn along M7, which are perpendicular to M and
linearly independent at each point of M». The Riemannian connection { &} induced
on the submanifold from the given Riemannian connection {%} is by definition
given by

{&}=(3.Bs" 4B By {};}) B.
We define the van der Waerden-Bortolotti covariant derivative of B,"* along the
submanifold by
VeBy*=0.By*+ BBy {};} —Ba"{ & }.

We put

(4. 1) VCBH:/I,C(;]C#,

where A? are second fundamental tensors of M». Concerning the second funda-
mental tensor, it is known that the following result is valid:

4.2 he*=hy  for any A

We put

4.3) R =g N2,

then we have

4.4 Vefv®=—he*p1*+he** P+ BV Fi? - BBy,
where p;2=—B%F;Cy* and paw=g.:0:*. From which we get
4.5) Fera P o frat- Vo fuetV afor=0.

Thus we find

LEMMA 4. 1. In an f-submanifold M of an almost Kaehlerian space M™ the
exlerior differential form fodxtNdx® is closed.

Making use of Lemma 4.1, we can prove

THEOREM 4. 2. In an f-submanifold M™ of an almost Kaehlevian space M™ the
distribution M corresponding to the projection operator m given by the f-structure is
integrable.

Hereafter we call such distributions L and M the induced distributions.

Proof. Since it follows from (1. 6)’ that the components of the Nijenhuis tensor
of the structure f satisfy

(4. 6) Ncba: ceVefba _fbeyefca—(chbe—beCe)fear
we get
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Nev*metma®=— o for+Vsfre) f70mema?,

from which, by virtue of Lemma 4.1, we obtain N.%m.m.’=0. The equation
means that NomX, mY) vanishes identically. Because of Theorem A, this com-

pletes the proof.
Next we consider the case that M™ is a Kaehlerian space. Let M™ be an -

submanifold of M™. Substituting (4. 4) into the components (4. 6) of the Nijenhuis
tensor of the f-structure, we have

{ Nep® =fce(—]leblpla + 1) — o (—hec*Dr®+ e Dic)
- (/lc“sz - hb“ﬁxc)fe“-

We assume that the vector fields p; belong to the distribution M. Then, trans-
vecting mq”’l°l;? and l./1.0s° to this, we get

4.7

(4. 8) ma,chbalccldb: _hcbszffecldb+hcbzplflecfdb,
and
(4. 9) lachbalecldb':O;

respectively. Since we see that the left hand side of the equation (4. 8) is the com-
ponents of the tensor mN(X, !Y), it follows from Theorem A that we have

LemMA 4. 3. If in an f-submanifold M» of a Kaehlerian space M™ the vector
fields p: belong to the distribution M, then it is necessary and sufficient for the
induced distribution L to be integrable that

fbefad(fechcdz _fdchcel) =0

The equation (4.9) means that /N(X, [Y)=0 for any two vector fields X and
Y, and therefore, making use of this result and Theorem 4.2 we can obtain the
following

LEMMA 4. 4. If in an f-submanifold M of a Kaehlerian space M™ the vector
fields p. belong to the distribution M, then we have

NX, Y)=mN(UX, IY)+N(UX, mY)+NmX, 1Y)

for any two vector fields X and Y.

Lemma 4.4 implies that we get N(UX, [Y)=mN(X,[Y) and this means that
the integrability of the distribution L is equivalent to the partial integrability of
the structure f. Thus we find

THEOREM 4. 5. If in an f-submanifold M" of a Kaehlevian space M™, the
vector fields p: belong to the distrvibution M, then it is necessary and sufficient for
the structure f to be partially integrable that the distribution L is integrable.

Now, suppose that the f-submanifold M™ is totally umbilical. From the hypo-
thesis Zpt=A%c for any 2 and (4. 8), we get

machbalecldb = Zfe(lAlplf~
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Therefore, if the induced distribution L is integrable, then A*=0 for any 4. Thus
we find

COROLLARY 4. 6. If in a totally umbilical f-submanifold M™ of a Kaehlevian
space M™ the induced distribution L is integrable und the vector fields p: belong to
the distribution M, then the submanifold is totally geodesic.

In particular, we assume that the f-submanifold M" of a Kaehlerian space M™
is totally geodesic. It follows from (4.5) that V.f;,2=0, and this implies that the
Nijenhuis tensor N.* vanishes identically. Consequently the (f, ¢)-structure j is
integrable.

5. f-submanifolds framed in a Kaehlerian space.

Let M™ be a, Kaehlerian space and (F, G) a Kaehlerian structure. Let M” be
a submanifold of M™ We denote by N(M") an orthogonal complementary sub-
bundle of T(M») in T(M™)+F(T(M™)).

In this section, we assume that the normal bundle to M* is the product of
N(M™) and its complement N(M™. Then, there exist » globally vector fields #, of
Mm™ defined on M, which belong to the subbundle N(™) and are lineary in-
dependent, and moreover m—n—r mutually orthogonal vector fields C; belonging
the complement of N(M™) in the normal bundle. We call such a submanifold M~
the submanifold framed in M™.

Taking account of the vector fields #, and C; introduced above in the sub-
manifold M™ in a Kaehlerian space, as discussed in the section 3, the submanifold
Mn admits an (f, g)-structure {f, fy} of rank n—7 with complementary frames.
Hence M™ is an f-submanifold and the induced f-structure {f, f,} satisfies (1. 5).

In an f-submanifold M= framed in a Kaehlerian space, we put

(5. 1) VcBb]:hcbxux]+hcbaCa],
where /%c,® and % are second fundamental tensors of M™, then we get
(5 2) chba: _hcbxfxa"‘hcaxfzby

where f,*=B*Fyu, and fzy=f2°¢es, from which we have
{ Ncba: ce(_hebxfza‘f‘heaffxb) _fbe(“hec‘tfza‘[“heaxfxc)
- (hcexfxb_hberfxc)fea'-

By the similar method as the section 3, we obtain the following properties:

(5.3)

LEMMA 5. 1. In an f-submanifold M™ framed in a Kaehlerian space M™ it is
necessary and sufficient for the induced distribution L to be integrable that

fbefad(fechcdx ‘fdchcex) =0~
LEMMA 5. 2. In an f-submanifold M™ framed in a Kaehlerian space M™ we have
NX, V)=mN(X, Y)+N(IX, mY)+NimX, 1Y)
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for any two vector fields X and Y.

THEOREM 5. 3. In an f-submanifold M framed in a Kaehlevian space M™, il
is mecessary and sufficient for the structure f to be partially integvable that the dis-
tribution L is integrable.

Since an f-submanifold M» framed in a Kaehlerian space M™ admits an f-
structure with complementary frames {f, fy}, it follows that the product space
Mm"x E" admits an almost complex structure F induced from the f-structure with
complementary frames. We denote the five sets of the components of the Nijenhuis
tensor of the almost complex structure F by Sw% Sev?, Sey® Sey® and S,y% and then
we have (2. 5) with vanishing 7.

Suppose that S.*=0. By making use of Theorem 2.1, this implies that the
structure f is invariant under the transformations generated by the infinitesimal
transformation f,. On the other hand, when we write down the components of
LmY)f) for any vector field Y, we get l(L(msY/) ¥l Consequently, we
show, under the assumption that S.,*=0, that (L(mY)f)/=0. Since it is known?
that the last equation is valid if and only if N(X, mY)=0, it follows from Lemma
5.2 that

(5.4 NX, Y)=mN(X, 1Y)
for any two vector fields X and Y. Thus we have

LemMA 5.4. If in an f-submanifold M framed in a Kaehlerian space M™ the
tensor Scy® vanishes identically, then we get (5. 4).

Taking account of the property of the induced distribution L and the condition
for the f-structure to be integrable and making use of Lemma 5. 4, we get

THEOREM 5. 5. If in an f-submanifold M™ framed in a Kaehlerian space M™
the tensor Sqy* vanishes identically, then it is necessary and sufficient for the induced
f-structure to be integrable that so does the induced distvibution L.

Next, in an f-submanifold M" framed in a Kaehlerian space M™, we shall
investigate the relation between the tensors S.® and S.,*. We first assume that
Sey®=0 and S¢;*=0 (S¢y*=0 and S,;,*=0). Then it follows from Theorem 2. 3 that
Sx?=0 (and S.*=0), respectively. Making use of (4. 8) and (5. 4) and the defini-
tion of the tensor S.% we have
(5. 5) Scba': —(fcelbd"fbelcd)hedxfza‘l‘(chzb_bexc)fta"

On the other hand, we get from the fourth equation of (2. 8)

Sebzfce"’frescbe:()-
Substituting the second equation of (2.5) and (5.5) into the equation above and
then transvecting fa‘f«?, we have

“(Vdfxa—‘Vafxd)_‘(fabldC —fdblac)hbcx—: y

7) Yano and Ishihara [17].
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from which it implies that
chxb_bexcz(fcelbd —fbelcd)hedx-
By substituting this equation into (5. 5), it is seen that S.*=0. Thus we find

THEOREM 5. 6. If in an f-submanifold M™ framed in a Kaehlerian space M™
the tensors Secy® and Scy® (Sey® and S,y%) vanish identically, then so does the tensor Sep®.

Next, we prove the following

THEOREM 5. 7. If in an f-submanifold M framed in a Kaehlervian space M™
the induced structure f is integrable and the temsor Sc® vanishes identically, then
the tensor Scv® vanishes identically and each of exierior differential forms f*.dx‘ is
closed.

Proof. Since the induced structure f is integrable, we get N(/X, mY)=0. This
means (L (mY)f)[=0, that is,

(5 6) lad(.ﬁ(fz)fba)lcbzo
By virtue of the fifth equation of (2.5), (2. 6) and Lemma 4. 1, we get

(LT[ o= —Fo%Su® = —0%°f° becfeb:O,

and
fxa(£ (fZ)fba) :Szuxfba =U.

Substituting these equations into (56), we have £(f.)f»*=0, which implies from
Theorem 2.1 that S;;¢=0. By virtue of Theorem 5. 6, it is seen that S.*=0.

From Sc,2=0 and the first equation of (2. 5), it is easily seen that V.f*—Vyf*.=
for any =.

Hence we prove Theorem 5. 7.

In particular, we consider the case »=1, then the induced (f, g)-structure is
almost contact metric.®” If we assume that the induced almost contact metric
structure is integrable and S,=0, then, taking account of Theorem 5.7, we get

chb_becZO.

On the other hand, when, for an almost contact metric structure, both 1-form
0,=fcdx® and 2-form 0.=(1/2)fcsdx® Ndx® are closed, the structure is said® to be of
Ki-type. When the tensor f»* and the vector f¢ defining the almost contact metric
structure are both covariant constant, the structure is said!® to be of Ki-type.
Since it is seen!® that a normal almost contact metric structure of K;-type is of
K,-type, we get

COROLLARY 5. 8. If in an f-submanifold (r=1) framed in a Kaehlerian space
Mm™ the induced almost contact metric structure is integrable and the tensor S,
vanishes identically, then the structuve is normal and moreover of Ki-type.

8) Concerning the almost contact metric structure, see Sasaki and Hatakeyama [8]
and [9].
9), 10), 11) Nakagawa [3].
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6. Weingarten’s formula.

Let M™ be a Kaehlerian space and (F, G) be a Kaehlerian structure. Let M”
be the f-submanifold of AM™ Then n vector fields B, are tangent to the sub-
manifold M” and there exist m—n local vector fields C; in M™ defined on M™
such that the vector fields are orthogonal to M= Therefore we get G;;ByCp=0.
If we put

9ev=G;: B By, 02,=G;CIC,Y,

then ge is a Riemannian metric in M” and ¢, is a metric tensor. Differentiating
this covariantly along the submanifold AM” and using the second fundamental
tensor, we get

Gapher+G BV Cp=0,
where
VCr=0.Cor+ B {j}Ck—I' e, Cr,  I'ety=Crn(0.C*+{}}Cr? BeY).
For the induced (f, g)-structure in the f-submanifold M", transvecting B¢ to
the equation above, we have
91, Ba" b4V Cit — G CriG 13 C* - C 2 =0.
We put G;if.Ci7-C,t=l,, which are the third fundamental tensors of the sub-
manifold M». Thus we get
6. 1) Vo Cir=—g,3,Beh o+ Loz, Ct, G,

which is a generalization of well known Weingarten’s formula in the theory of
surfaces.

It is easily seen that the third fundamental tensor /. is skew-symmetric in 1
and p, that is,

6.2 Leag-t-les=0.

In this section, we assume that the f-submanifold M" is framed in M™. Accord-
ingly there exist linearly independent vector fields By, #, and Cs, and taking account
of (6.1) we get

6. 1) Votty = —gyaBehe T+ leystt® ;G 4 Loy C45GI*,

where ¢,,=Guuu, and ¢,,=G;C,Cst, which are metric tensors in the vector
bundles N(M™) and N(M®). Making use of Gauss and Weingarten equations, we
see that the following identities are valid:

(6. 3) chxb = —fbehcez"i‘gxylc?/zfzb
and
6. 4) Ve fut=0uyfehet* 4 *%leys,

where ¢*v is defined by g¢*%g,,=05. Substituting (4.5), (6. 3) and (6. 4) into (2. 5)
without 7, we have
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Sev=(—fe he™ +fehe) fuo+(—Fohe™ + oo™ fuwe
Flezw [0—lozw [e) [,
Seb” = — (e fuws— 6" we) [ 70" (febezw o —Fs bz [ P0),
(6.5) Sey = fo e fwe— Gay(he™ 4o fahe ) — [ * ey
— Sy hec™ fo+ 9oy fof Ve,
Sev®=—fy*fe?hea®+ 97 (fy lesw ] Vet Leys),
2 =Fa Gy 1™ — Juwe [y Re) L S ol ey —Fy Leaw)-

Suppose that the tensors S.,* and S.,* vanish identically. Then, transvecting
fza to the last equation of (6.5), we get

(6 6) fzeleyx :fyclezx-

It follows from (6. 2) that we have f,°leyo=—Fy%less» Making use of (6. 6), we see
that the right hand side is symmetric in ¥ and x and furthermore the left hand
side is skew-symmetric in ¥ and x. Accordingly we get

(6 7) fzelcyx:O’
from which we have
(6 8) fadhedx(gryfze_gmfye) =0.

Thus it follows from the fourth equation of (6.5), (6. 7) and (6. 8) that
-gzwfyefcd]ledz+lcyz 20)

and the first term of this equation is symmetric in # and y. Consequently the
third fundamental tensor /y, must vanish. Thus we find

THEOREM 6. 1. If in an f-submanifold M™ framed in a Kaehlerian space M™
the temsor S® and Su* vanish identically, then so does the third fundamental

tensor leyas.
Under the assumption of Theorem 6. 1, (6.5) can be simplified as follows:
St =(—f e+ Fo R foset (—f RS+ F D) f ey
6.9) Ser® =~ (he*™ fron— 15 frwe) [ e,
Sey®=Fy°he™ fre—gay(he* 1 e *) = [y hec” o + Gy o W ehe®.
Next, we prove the following

THEOREM 6. 2. If in an f-submanifold M™ framed in a Kaehlerian space M™
the tensor Sa® vanishes identically, then any vector field fy is Killing.

Proof. By virtue of Theorem 2.3, we see that the other tensors S vanish
identically. Therefore, transvecting f,. to the third equation of (6.9) and taking
account of fy%fc%heaz=0, we have
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Jothee® +fethue" =0,
{from which we have
Vefeo+Vof*.=0 for any z.
This completes the proof.

COROLLARY 6. 3. If in an f-submanifold M™ framed in a Kaehlerian space M™
the induced f-structure is integrable and if the temsor Scy,® vanishes identically, then
the f-structure {f, fy} with complementary frames is covariant constant.

Proof. Making use of Theorem 5.7 and Theorem 6. 2, we see that the vector
fv is covariant constant. This implies from (6. 3) that f34..*=0. Since the tensor
Ses® vanishes identically, we have /.**fuws—/:*"fuwe=0. This means from (4. 4) that
the tensor f5* is covariant constant. Thus the f-structure {f, fy} is covariant constant.

7. Kaehlerian spaces of constant holomorphic curvature.

A Kaehlerian space M™ is said® to be of constant holomorphic curvature if
the holomorphic sectional curvature is always constant with respect to any plane
section at each point on the manifold A/™ and its curvature tensor is given by

7. 1) Kijin=E[GinG ji— GriGjn~+FinFji— FeiF jn—2F;F ],

k being constant. In this section, we consider the f-submanifold M* of a Kaehlerian
space M™ of constant holomorphic curvature.
Substituting (7. 1) into the Gauss and Codazzi equations

7.2) Kacva=Kujin B+ (Raa hreva— hav*icas),
where B%i,=B%BIB}B", and
(7.3) Kiejin BEHC =V ahev,—V chavut+ Navlepn— hev'las,

which are obtained by using Weingarten equation (6. 1), we have

(7. 4) Kaeva=FR[Gaager—9ardeatTaa]co—FavSea—2f acfoalA-(Raa* heva—Nav*ficas),
and

(7.5) Elpuafes—Ducfao—2f achus) =V altcr,—V chasu~+ hav*leur— lev*lapm,

where p.o=—B%FJC, and po=09scp,"
We now assume that the second fundamental tensor /4.,* satisfies

(7. 6) hev'= A*ger+Bime'®  for any 4,

where A? and B* are scalar functions. Substituting (7. 6) into (7. 4) and (7. 5), we
get

12) Yano and Mogi [19].
13) As is well known [11], if m the pseudo-invariant submanifold of a Kaehlerian
manifold the induced almost contact metric structure is Sasakian, then the second funda-

mental tensor has the form (7. 6).
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Kacva= (k4 A1A%) (Gaa8ecs—9asdea) +E(faafeo—Favfea
() —2f acfva) + A*Ba(gaamer— JavMea+ gevMaa— eaMan)
+ B*By(1aates — MasMica),
and
k(ppafeo—Ducfar—2Fachum)
=VaAy 9es—V Ay gas+VaBu Mey—V By may
+ B,V atier—V cman) +havleps— heslaa

We assume that the vector fields p,. belong to the distribution M. Then, trans-
vecting f4p;? to the last equation, we get

7.8 (m—1)kp 2 =BV amp® - fop.
Because, provided that we substitute (7.6) into Za*le.:- %1%, this term vanishes
identically.

From now on, we assume that an f-submanifold M» is framed in a Kaehlerian
space of constant holomorphic curvature.
Then (7. 8) is simplified as follows:

7.8 (n—n)kgay=BlV afy*- et
Substituting (6. 4) into Faf,°-fe%, we get

(7.9 Vafye-fet=—m—ny,
and hence, from (7. 8)’ and (7. 9), we have

(7. 10) kgy=—Ay B

On the other hand, making use of the property of the induced f-structure, we
show that

(7. 11 A+ B,=0 for any =z,
where »=2. In fact, it follows from (5. 2) that
Vdfye‘fed= —‘(ﬂ‘— 1)Ay*‘(7’— 1)By

Taking account of this equation and (7. 9), we see that (7. 11) is valid.
By virtue of (7.10) and (7. 11), we state the following

THEOREM 7. 1. If, in an f-submanifold M framed in a Kaehlerian space M™
of constant holomorphic curvaturve, all second fundamenial tensors he? satisfy

her* = A*ger+ B for any A4,

then the holomorphic sectional curvature k is non-negative constant, wheve r=2.
Especially, if the space M™ is Fuclidean, then he*=0 for any x, and if k is
negative them there exists at least an index x such thatl he' 2 AGe -+ Bme,.

In particular, it follows from (7. 10) that the following result is valid:



180 HISAO NAKAGAWA

THEOREM 7. 2. In a non-Euclidean Kaehlervian space M™ of constant holomor-
phic curvature, there exists no lotally umbilical f-submanifold framed in M™.

Suppose that £=0 and r=m—n=2. Then, making usc of Theorem 7.1, we
get A*=0 and B*=0 for any 4 Thus we find

COROLLARY 7.3. Under the assumption of Theorem 7.1 if a space M™ is
FEuclidean with a natural Kaehlerian structure and r=m—n=2, then the f-subman-
fold is locally Euclidean also.

Finally, we assume that »=1. Then, we get mqatcs—masmea=0, that is,
the last term of the right hand side in (7. 7) vanishes identically. On the other
hand, as mentioned in the previous section, the condition =1 means that the
submanifold admits an almost contact metric structure. An almost contact metric
space which has the curvature tensor of the form (7.7) without the last term is
called'® a locally C-Fubinian space. Thus we have

COROLLARY 7.4. Under the assumption of Theorem 7.1, if r=1, then the sub-
manifold is locally C-Fubinian.

8. Flat distributions.

In this section, let A™ be a Kaehlerian space and M" be the f-submanifold
framed in Mm™. If a distribution of M" is parallel when we displace in any
direction contained in M, the distribution is said to be parallel along M. When
we translate a vector contained in the distribution M parallelly along itself, if the
translated vector is always belonged in M, the distribution M is said'® to be flat.
It is known that the condition for the distribution M to be flat is

(8. ].) mceVeMba:().
Now, taking account of the definition (1. 2) of the projection operator m, we get
P =[ e fr° 'fba‘f'fbﬂchca-
Making use of (5.2), we easily get
8. 2) Vemy®*=—hee* (f3° fo*+ e S ).

Suppose that S¢,* and S.,* vanish identically. Under this assumption, Theorem 6. 1
and the fourth equation of (6.5) mean that f,¢f.%%.4*=0. The last equation shows
that the right hand side of (8.2) vanishes identically. This implies that (8. 1) is
valid. Thus we find

THEOREM 8. 1. If in an f-submanifold M* framed in a Kaehlerian space M™
the tensors Sey® and S.,* vanish identically, then the induced distribution M is flat.

14) Okumura [7].
15) Concerning flat distributions, see Koto [2], Walker [12] and Yano [16].
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9. Hypersurfaces of a Kaehlerian space.

As is well known, an odd dimensional almost contact metric manifold is similar
to an almost Hermitian space in formal aspect. Giving attention to this fact, the
present author has defined several structures in an almost contact metric manifold
which correspond to restricted almost Hermitian structures in the previous paper
[3] and investigated the mutual relations among these structures. In this section,
we shall afford the examples of the new structures defined on the almost contact
metric manifold by studying the structure of the almost contact metric hypersur-
face of a Kaehlerian space, whose hypersurface is one of the important examples
about the almost contact metric structure it is possible for us to give.

Let Mm™-! be an almost contact metric manifold and (¢c?, &2, 7., ges) be an almost
contact metric structure. If in the almost contact metric manifold M™! a tensor
field ¢ satisfies V.¢,°=0 and the divergence of a vector field £ vanishes identically,
then the structure is said'® to be of A-type. As mentioned already in the previous
sections, if the 1-form #, and 2-form 6, are both closed, then the structure is said'”
to be of Kj-type. In the last, the almost contact metric structure is said to be of
Ki-type, if the given tensor field ¢ and the vector field 5 are both covariantly
constant.

Now, let M™ be a Kaehlerian space. Let M™! be the almost contact metric
hypersurface of M™ and (fo% 2 fo, 96)*® be the induced almost contact metric
structure. Making use of Gauss and Weingarten equations of the hypersurface,
we see'® that the following equations

(9° 1) Vefo=—hee fo°
and
(9 2) chba: ‘hcbfa‘l‘/icafb

are always valid, where /4. is the second fundamental tensor of the hypersurface.
In an almost contact metric hypersurface A™-! of a Kaehlerian manifold M™, the
four tensor Sev?, Sp% Se» and S, introduced by Sasaki and Hatakeyama [9] are useful.
From now on, we assume that the tensor S, vanish identically, that is, the
vector field f* defines a principal direction of the second fundamental tensor % of
the hypersurface. Let a be a characteristic root of the second fundamental tensor
hey with respect to the principal direction fe. Contracting with respect to ¢ and ¢
in (9. 2), in the almost contact metric hypersurface under the assumption we get

9. 3) Vefoo=(he—a) [,
from which we have

THEOREM 9. 1. If in the almost contact metvic hypersurface M™* of a Kaeli-

16) Concerning the structure of each type, see Nakagawa [3].

17) The structure of Kj-type is studied by Okumura [6] and Takizawa [10].
18) In this section, indices @, b, --- run over the range 1,2, ---, m—1.

19) Okumura [5].
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evian space M™ the tensor S, vanishes identically, then it is necessary and sufficient
Sfor the induced almost contact metric structure to be of A-type that the first mean
curvature of the hypersurface is equal to a/im—1).

Next we require the condition under which the almost contact metric hypersur-
face of a Kaehlerian space is of K,-type. Suppose that V.a=pf,, where B is a
scalar field. Differentiating V.a=pf. along the hypersurface, we get

Vcha"—‘Vb,B'fc‘}'ﬁbec-
Since the left hand side of the equation above is symmetric in b and ¢, we have
B fo—Vofo)=fFVeB—fiVB. Transvecting f° to this, we have V.f=(f"V5pB) f, from
which we get

ﬁ(VCfb_beC):O-
Thus we find

LEMMA 9. 2. If in the analytic almosl contact metric hypersurface M™* of a
Kaehlerian space M™ the tensor Sy vanishes identically and morveover if V.a=pfe,
then the scalar « is constant orv the induced almost contact metric structure is of
Ki-type.

Taking account of this lemma, we can prove the following

THEOREM 9. 3. If in the analytic almost contact metric hypersurface M™ ' of a

Kaehlerian space M™ of constant holomorphic curvature the tensor S, vanishes
identically and moreover a is non-constant, then the induced almost contact metric

structure is of Ki-type.
Proof. Under the assumption of this theorem, it is seen that we have

9.9 Toa-fe—=Vea-fo)+aWVs fo—V o fo) = —2kfse—2hcehva fo2.

Transvecting f° to this,we show that the equation V.a=p8f. is valid. Consequently
(9. 4) implies that

(9. 5) a(bec—chb): _Zkfbc_‘chehbdfw-

As « is non-constant, Lemma 9. 2 follows that V.f,—V,f.=0. Taking account of
Lemma 4.1, we show that 2-form 0:=(1/2)fewdz¢ Adz® is closed. Thus the induced
almost contact metric structure is Kj-type. This completes the proof.

Finally, we consider the case that the second fundamental tensor 4. is of rank

one, that is,
hcbzafcfb-

About this property, it is known®” that the following theorem is valid:

THEOREM 9. 4. If in the almost contact metric hypersurface M™! of a Kaehl-
erian space M™ the temsor S, vanishes identically, them it is mecessary and suf-
ficient for the induced almost conlacl metric structure to be of Ks-type thal the

20) Yano and Ishihara [18].
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second fundamental tensor is of rank one.

Making use of Theorem 9.3 and Theorem 9. 4 and taking account of (9. 5), we
obtain the following

CoROLLARY 9. 5. If in the almost contact metric hypersurface M™ of a Kaehl-
erian space of constant holomorphic curvature the temsor S, vanishes identically and
a is non-constant, then the hypersurface admits the almost contact metric structure
of Ki-type and not of Ki-type.
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