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ALMOST HERMITIAN OR KAEHLERIAN

By HISAO NAKAGAWΛ

Introduction.

It is known that, if the tangent space of a submanifold of an almost complex
space is invariant by the almost complex structure, the submanifold admits an
almost complex structure. As a generalization of an almost complex structure,
Yano [14] has introduced the concept of an /-structure in a differentiable manifold.

The purpose of this paper is to show that a submanifold of an almost complex
space admits an /-structure under certain conditions and to study the induced /-
structure.

The author wishes to express here his hearty thanks to Prof. K. Yano, Prof.
S. Ishihara and Prof. I. Mogi for their valuable suggestions and guidance.

1. /"-structures [14], [15], [17].

Let Mn be an ^-dimensional connected differentiable manifold of class C°° and
{ ηc} local coordinates. If there exists a non-vanishing tensor field / of type (1, 1)
and of class C°° satisfying

(1.1) /3+/-0,

and the rank of / is constant everywhere and is equal to s, then we callυ such a
structure an /-structure of rank s. We put

(1.2) l=~f\ m=fz+l,

where 1 denotes the unit tensor, then we have

(1.3) l+m=l, I2=l, m2=m, lm=ml=0.

These equations mean that the operators / and m applied to the tangent space at
each point of the manifold are complementary projection operators and there exist
complementary distributions L and M corresponding to the operators / and m
respectively. Then the distribution L is s-dimensional and M is (n—s)-dimensional.
Further we get

//=//=/, /w-w/-0,
(1.4)

/2/=-/, f2m=0.

Received November 1, 1965.
1) Yano [14].
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It is known that a manifold admitting an /-structure of rank s induces a positive
definite Riemannian metric tensor g satisfying

(1. 5) Qedfcefbd + mcb = Qcb.

Then the structure is said to be an (/, ^-structure.
The Nijenhuis tensor N(X, F)2) of an /-structure / of rank 5 is given by

(1. 6) N(X, Y)=lfX,fY]-f{fX, Y}-f[X,fY]-l[X, Y],

where X and Y are any two vector fields on Mn. Denoting by Ncb

a the components
of the Nijenhuis tensor N(X, F), we have in terms of components as follows:

(1.6)' Ncb«=fc«defb*-fι>edefc

a-(dcfbe-dbfce}f<1

a',

where dc=d/dηc.
Taking account of the integrability conditions given by Yano and Ishihara [17],

we see that the following results are valid;

THEOREM A. It is necessary and sufficient for the distribution M to be in-
tegrable that

(1.7) N(mX, wF)=0,

and for L to be integrable that

(I. 8) mN(lX, /F)= 0

for any two vector fields X and F.

If the distribution L is integrable and takes an arbitrary vector field v which
is tangent to an integral manifold of L, then the vector field fv belongs to the
same integral manifold. If we define an operator /' by

f'v=fv

in each tangent space of each integral manifold of L, then it is seen that /' is an
almost complex structure in each integral manifold of L. When the distribution L
is integrable and the almost complex structure /' induced from the /-structure on
each integral manifold of L is also integrable, then the /-structure is said to be
partially integrable. Concerning the partial integrability, we have proved in [17]

THEOREM B. It is necessary and sufficient for the structure f to be partially
integrable that

(1.9) N(IX,IY)=Q

for any two vector fields X and Y.

We suppose now that there exists in each coordinate neighbourhood a coordinate
system in which an /-structure / has numerical components

2) Nijenhuis [4] and Yano and Ishihara [17].
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0 -lt 0

1* 0 0

0 0 0

where l j denotes the txt unit matrix, s=2£ being the rank of /. In this case, the
/•structure is said to be integrable. Yano and Ishihara have proved also in [17] the
following

THEOREM C. It is necessary and sufficient for the f-structure to be integrable
that

N(X, F)=0

for any two vector fields X and Y.

Let U be a coordinate neighbourhood of a differentiable manifold admitting an
/-structure of rank n—r. There exist n—r vector fields fq

3 spanning the distribu-

tion L and r vector fields fy

j spanning the distribution M.3) If we denote by ( M

the inverse image of OV,ΛO> we have

(1.10) mij=fylfyjv /Vv*=a?,

from which we get

///i'=
(1. U)

ΛΛΛ'=o, /Vi'=o.
The ordered set { f y

j } is called an r-frame in £7and the ordered set { f x

τ } is called
an r-coframe in U. The set C/V, {//}, { f x ι } ) of the structure /, an r-frame in U
and an r-coframe in U is called a local /-structure with complementary frame. We
simply denote it by ( f , f y , f x ) .

We assume now that, in a differentiable manifold admitting an /-structure of
rank r, there exist globally an (n—r)-frame and an (n—r)-coframe. The set (/,//,
fx) is called an /-structure with complementary frame, which satisfies (1. 10) and

(i. n).
We suppose that there exist given two r-frames {//'} and { f w

3 } in the given
/-manifold Mn. If we have

(1.12) fw3=cwyfy>

everywhere, with constant cw

y, we say that the two frames {//} and { f w

j } are
equivalent to each other and that the two /-manifold (Mn, {//}) and (Mn, {/V})
with complementary frame are equivalent to each other.

We take two /-structure (/, fy, fx) and (/, fw, fz) with complementary frame
so that r-frames {//'} and {/V} are equivalent to each other. Then, the following
equations about the covariant vector fields must be satisfied:

3) The indices p, q, ••• run over the range 1, 2, •••, n—r and the indices x, y, ••• run over

the range n—r+1, •••,«.
4) We use the summation convention.
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(1. 13) fZi = dyZfy^,

dy

z being constant. From the last equation of (1. 11), (1. 12) and (1. 13), it follows
that

(1. 14) cy

xdgv=δ*.

Since the projection operator m of the structure / depends only on /, the given two
/-structures have the same operator m. Consequently we have

Wi'=/Vy'=/V*>.

Substituting (1.12) and (1. 13) into the equation above and then transvecting with
fwjfu\ we have

(1.15) CuzdJ°=(?Z.

2. The Nijenhuis tensor of the product space MnxEr.

Let Mn be an ^-dimensional differentiate manifold admitting an /-structure
with complementary frames. We consider the product space MnxEr, where Er is
an r-dimensional Euclidean space. We take a sufficiently small open covering {Ua}
of Mn by coordinate neighbourhoods. If we denote by { y a } a coordinate system of
Ua in {Ua} and by {ηx} a cartesian coordinate of Er, then (ηa

t ηx] can be con-
sidered a set of coordinates of UaxEr and {UaxEr} constitutes an open covering
of MnxEr by coordinate neighbourhoods. We take local coordinate systems {Ua,
ηa} and {Uβ,, η*'}9 where Ua and Uu, belong to {Ua} and UanUa,^ψ. Let

(2.1) ηΛ' = ηa'(η\-,ηn)

be the coordinate transformation in Uan Ua>. We define the coordinate transforma-
tion in (UaxEr)Π(Ua,χEr) by

(2. 2)
for any x.

For the /-structure with complementary frames (/, fy, /*), we put

/ -fy

fx 0

in every coordinate neighbourhood {UaxEr}. As the Jacobian matrix of the co-
ordinate transformation (2. 2) is given by

1a'/dηb 0

0 lr

it is easily seen that F defines a tensor field on the product manifold MnxEr and
is denoted by FB

A in terms of components (A, B, ••• = !, 2, ••-, n+r).
Making use of (1. 12), we have

Fs*FB

E = -d£,



/-STRUCTURES INDUCED ON SUBMAN1FOLDS 165

that is, the tensor F is an almost complex structure on the product manifold
Mn x Er. The Nί jenhuis tensor NCBA of the almost complex structure F is given by

(2. 3) NcBA=-FcEdEFB

A-Fβ

EdEFcA-(dcFB

E~dsFcEWE

A.

If we calculate the components of this tensor by grouping the indices in two groups
(a, b, •••) and (x, y, •••), denoting by fy

a and fx

b the components of the vector fields
fy and fx respectively, we get

(2. 4)

C x __ y^ efl -fx [ 3 -f G , - f x

C α — /" O / α / eΆ fa,
°zy —J z VeJ y J y VeJ z

We assume now that an affine connection Γc

a

b is given on the manifold Mn.
We denote by Tcb

a=(Γc

a

b—Γb

a

c)/2 the torsion tensor of the affine connection and
by F the covariant derivation with respect to the affine connection, then the five
sets of the components Scb

a, Scb

x, SC2/
α, Scy

x and Ssy

a can be rewritten as follows:

(2.5)

z
a
 + 2( T

cb

a
 - d

a
 T

cb

d
f

c

x

d
 T

eb

d
fc

where the covariant derivative of the vector fields fy and fx along the submanif old
Mn with respect to the affine connection are define by

U f a _ ^ -f a\T a -f e U -fx^ _ Λ -fx. _ Γ e-fxv cjy — Ocjy ~Γl c ejy , v cj b — OCJ δ '*• c bj e

From (2. 5) it is seen that S's are tensors defined on the submanifold Mn.
In particular, when the connection Γc

a

b is symmetric, we get (2. 5) with vanish-
ing torsion tensor T.

In the rest of this section, we shall investigate the properties of the tensors S.
First we take the Lie derivative of fx, fz and / with respect to the vector fy.
Then, taking account of the third, the fourth and the last equations of (2. 4) we get

(2.6)
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and

(2.7)

where <C(/V) denotes the Lie derivative with respect to the vector field fy. Thus
we have

THEOREM 2. 1. It is necessary and sufficient for the tensor Scy

x, Szy

a and Scy

a

to vanish identically that JC(Λ)/ΛJ

C=0, £(Λ)Λα=0 and £(/y)/cα=0, respectively.

As is well known, the Nijenhuis tensor NCBA of the induced almost complex
structure F is hybrid with respect to the indices A and C, and pure with respect
to B and C. Since hybridness of NCBA is expressed by

we find

(2.8)

_ C α / " e _ L / " α Q e _ A^ey y « "rye O^j/ — v/,

Since purity of NCBA is expressed by

we find

(2.9)

>> —δ — v

^xfe i Q .a fn; _ C a?f tc Q a;fw t __ Aδ J c ι*->wb J c Oce y δ ^cw J b — v,
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Transvecting fz

c and fx

a to the first equation of (2. 8), we get

(2. 10) SΛ»= -/βαScδ

cΛc+/w,αScδ-/2

c,

and

respectively. On the other hand, transvecting fy

b and fx

a to the second equations
of (2. 9) and (2. 8), we have

(2. 12) S«,»= -SeffSfJ, SΛ*=-f*aSeffS,

respectively. It follows from the fifth equations of (2. 8) and (2. 9) that

(2.13) /*eS*δ

e=-Sze*/δ

e.

Similarly it follows from the third equations of (2. 8) and (2. 9) that

(2. 14) /eαSc»β-/«,αScy

w=Sce

α/yβ.

Making use of the equations from (2. 11) to (2. 14), we have

THEOREM 2. 2. // ίAe tensor Scδ

α vanishes identically, then so do the other S's.

By virtue of the sixth, the seventh and the last equations of (2. 8), we have

THEOREM 2. 3. If the tensors Scy

a and Scy

x vanish identically, then so does Szy

a.
If the tensors Scy

a and Szy

a vanish identically, then so does Scy

x.

Making use of the Nijenhuis tensor NCBA of the almost complex structure F on
the product space Mn x Er and taking account of Theorem 2. 2, we can prove the
following

THEOREM 2. 4. In a differentiate manifold Mn admitting an f-structure with
complementary frame, it is necessary and sufficient for the almost complex struc-
ture F defined on the product space MnxEr to be complex that the tensor Scδ

α

vanishes identically.

We suppose now that a manifold Mn admits two equivalent /-structures
(/, fy, fx) and (/, fw, fz) with complementary frames. Let NCBA and NCBA be the
Nijenhuis tensors of almost complex structures induced on Mn x Er by given /-
structures, respectively. Making use of (1. 13) and (1. 14), and taking account of
(2. 4), we get

(2. 15) Scy

a=cyyScy

a, 5cf=cfdx*Scy*,

S' being components of the Nijenhuis tensor NOBA. Thus we get

THEOREM 2. 5. In a differenίiable manifold Mn admitting equivalent f -structures
(f>fy,fx) and (f, fw, fz) with complementary frames, Scb

a=0 and SCb
a=0 are

equivalent to each other.
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3. Λsubmanifolds of almost complex and almost Hermitian spaces.

Let Mm be an m-dimensional almost complex space with local coordinate system
{ξh} and F be an almost complex structure defined on Mm. Let Mn be an ^-dimen-
sional submanifold of Mm represented by ξh=ξh(ηa) for a local coordinate {ηa} in
Mn. We put

(3. 1) Bτ>h=dξhldη\

which span the tangent space of Mn at each point.
We assume that the tangent space T(Mn)p of Mn at each point p satisfies

(3. 2) dim (T(M»)PΠ F(T(Mn)p))--=n-r>0

everywhere on Mn. Then we can choose locally linearly independent unit vector
fields Un+i, •-•> Un+r normal to the submanifold Mn such that Fun+ι, •••, Fun+r^ are
tangent to Mn and m—n—r mutually orthogonal vector fields Cn+r+ι, •••, Cm belong-
ing the complement of the tangent subspace T(Mn}p+F(T(Mn)p) at each point in
Mn. If this is the case, we say that Mn is locally framed in Mm. Let vy be an
inverse image of % under the transformation F. Then the vector field vy is given
by Fvy=Uy, from which we see that vy is a tangent vector of Mn. Let vx be a
covariant vector field such that ϋx(Vy)=δ$ and ύx be an inverse image of ϋx under
the transformation F, that is, ύxF=vx. Consequently, we have

FVy = Uy, FUy = — Vy,

(3. 3)
ύxF=vx, vxF=-ux.

Summing up, we have

LEMMA 3.1. If a submanifold Mn is locally framed in an almost complex space
Mm, then the tangent subspace T(Mn)PΓ\F(T(Mn)p) and T(Mn)p+F(T(Mn)p) for any
point p on the submanifold Mn are invariant under the transformation F.

We denote by B, u and C the matrices (Bb

h\ (uy

h) and (Cβ

h), respectively. Λ
matrix (B, u, C) is of maximal rank, and hence there exists an inverse matrix,
which is denoted by

5) Throughout this paper, indices run over the ranges as follows:

1,2, ••-, m,
1,2, •••, »,

x, y, ••• w-fl, •••, n+r,
A B, ... 1,2, ..-, n+r,

• , w,
• , m,

unless otherwise stated.
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The vector fields Bat span the cotangent space of Mn. We put A= (B, u} and
/B*\

A* = l „ }. It follows from the construction that we get the equations

(3.4)

If, in a submanifold Mn framed in an almost complex space Mm> a tangent
field T, say Tjth, has components of the form

(3.5)

with certain tensor fields P, Q and R, then the relation (3. 5) is expressed in a
simplified form as

(3.6) Ϊ^ΞΞO,

and Ujl

h—Vjίh=Q, as Ujih=Vah. Using this notations, we get

(3.7)

/B*\because a matrix ( ΰ is an inverse of (B, u, C).
\C*/

Now we put

which define a tensor field of type (1,1), a contra variant vector field and a covariant
vector field on Mn. Making use of (3. 8) and the properties of the tangent vector
vy, we obtain

(3.9) fvaf*a=δS.

We put

(3. 10) F=A*FA,

then we get

(
•f a -f a

y

fx

b 0

From the definition (3.10) of F it follows that

(3.12) F2=-l.

We express the equation above in terms of components, then we have

(3. 13)

This implies that the following equation is valid:

that is, the tensor field / on the submanifold Mn satisfies/3-f/=0 and/ 2= — ]
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Jrfy®fy This means that the submanifold Mn admits an /-structure / with
complementary frames. Thus we find

THEOREM 3. 2. If the submanifold Mn is locally framed in an almost complex
space Mm, then Mn admits an f-structure of rank n—r with complementary frames.

We call the /-structure the induced /-structure with complementary frames
and the submanifold Mn admitting an /-structure the /-submanifold.

Next, let Mm be an almost Hermitian space and (F, G) be an almost Hermitian
structure. We put

(3.14) G=AtGA.

We denote by Gji the components of the Riemannian metric tensor G of the
almost Hermitian structure. If we write down the components of both sides of
(3.14), we get

(3.14)' GcB=GkιA(?ABl.

By grouping their indices in two groups (a, b, •••) and (x, y, •••), we get

. _ 0 \ „ / g 0
(3. 15)

0 g'xy I 0

where g^—GjiB^B^ and gf

 Xy=GjiUχJuy

% define a tensor field of type (0, 2).
It follows from (3. 14) and (3. 15) that we have

(3.16) GΞΞ(B

We express both sides of the equation above in terms of the components, then
we get

(3. 16)' G^ΞΞg^BciBj+g'^UyJuJ.

Making use of (3. 8) and (3. 14), we get

G-F'GF,

which means that we get

(3. 17) gCb=gedfcefbd+g'yxf
y

cf
xb.

This shows that the tensor fields / and g defined on the submanifold Mn satisfy
(1. 5). Thus we find

THEOREM 3. 3. If the f -submanifold Mn is locally framed in an almost Her-
mitian space Mm, then Mn admits an (/, g)-structure of rank n—r with comple-
mentary frames.

If, in particular, r=0, then the submanifold Mn is invariant.^ Tashiro [11]
has treated of the case that r=l.

6) Yano and Schouten [20].
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4. Λsubmanif olds of almost Kaehlerian and Kaehlerian spaces.

In this section, let Mm be an almost Kaehlerian space and (F, G) be an almost
Kaehlerian structure. Let Mn be an /-submanifold of Mm. We can choose locally
m~n unit vector fields Cn+ι, •••, Cm along Mn, which are perpendicular to Mn and
linearly independent at each point of Mn. The Riemannian connection { C

α

6 } induced
on the submanifold from the given Riemannian connection {$} is by definition
given by

We define the van der Waerden-Bortolotti covariant derivative of Bb

h along the
submanifold by

We put

(4.1) Fcfi&^Acδ'CV,

where hcb

λ are second fundamental tensors of Mn. Concerning the second funda-
mental tensor, it is known that the following result is valid:

(4. 2) hcb

λ = hbc

λ for any λ.

We put

(A Q\V* o)

then we have

(4. 4) Vcfb

a=-hcb

λ

where pia=—BajFijCf and ptt=gabpxa. From which we get
def

(4. 5) /cδα = Fc/6α + F6/αc + Fα/cδ = 0.

Thus we find

LEMMA 4. 1. In an f- submanifold Mn of an almost Kaehlerian space Mm the
exterior differential form fcbdxc f\dxb is closed.

Making use of Lemma 4. 1, we can prove

THEOREM 4. 2. In an f -submanifold Mn of an almost Kaehlerian space Mm the
distribution M corresponding to the projection operator m given by the f- structure is
integrable.

Hereafter we call such distributions L and M the induced distributions.

Proof. Since it follows from (1. 6)' that the components of the Nijenhuis tensor
of the structure / satisfy

(4. 6) N^=ftfeff-f^eff-(VtfJ-V,f<?}fe\

we get
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from which, by virtue of Lemma 4. 1, we obtain Ncb

ame

cmd

b=0. The equation
means that N(mX, mY) vanishes identically. Because of Theorem A, this com-
pletes the proof.

Next we consider the case that Mm is a Kaehlerian space. Let Mn be an /-
submanifold of Mm. Substituting (4. 4) into the components (4. 6) of the Nijenhuis
tensor of the /-structure, we have

(4. 7)

We assume that the vector fields pλ belong to the distribution M Then, trans-
vecting ma

flecld

b and la

flecldb to this, we get

(4. 8)

and

(4. 9) lafNcb

ale

cld

b=Q,

respectively. Since we see that the left hand side of the equation (4. 8) is the com-
ponents of the tensor mN(lX, /F), it follows from Theorem A that we have

LEMMA 4. 3. If in an f- submanifold Mn of a Kaehlerian space Mm the vector
fields pλ belong to the distribution M, then it is necessary and sufficient for the
induced distribution L to be integrable that

The equation (4. 9) means that IN(IX, /F)=0 for any two vector fields X and
F, and therefore, making use of this result and Theorem 4. 2 we can obtain the
following

LEMMA 4. 4. If in an f- submanifold Mn of a Kaehlerian space Mm the vector
fields pλ belong to the distribution M, then we have

N(X, Y)=mN(lX, IY)+N(IX, mY)+N(mX, IY)

for any two vector fields X and F.

Lemma 4.4 implies that we get N(IX, lY)=mN(lX, IY) and this means that
the integrability of the distribution L is equivalent to the partial integrability of
the structure /. Thus we find

THEOREM 4. 5. If in an f-submanifold Mn of a Kaehlerian space Mm, the
vector fields pλ belong to the distribution M, then it is necessary and sufficient for
the structure f to be partially integrable that the distribution L is integrable.

Now, suppose that the /-submanifold Mn is totally umbilical. From the hypo-
thesis hcb

λ=A*gcι> for any λ and (4. 8), we get
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Therefore, if the induced distribution L is integrable, then A*=Q for any λ. Thus
we find

COROLLARY 4. 6. // in a totally umbilical f-submanifold Mn of a Kaehlerian
space Mm the induced distribution L is integrable and the vector fields px belong to
the distribution M, then the submanifold is totally geodesic.

In particular, we assume that the /-submanifold Mn of a Kaehlerian space Mm

is totally geodesic. It follows from (4. 5) that Fc/>α=0, and this implies that the
Nijenhuis tensor Ncb

a vanishes identically. Consequently the (/, g)-structure / is
integrable.

5. Λsubmanifolds framed in a Kaehlerian space.

Let Mm be a. Kaehlerian space and (F, G) a Kaehlerian structure. Let Mn be
a submanifold of Mm. We denote by N(Mn) an orthogonal complementary sub-
bundle of T(Mn) in T(Mn)+F(T(Mn)).

In this section, we assume that the normal bundle to Mn is the product of
N(Mn) and its complement N(Mn). Then, there exist r globally vector fields uy of
Mm defined on Mn, which belong to the subbundle N(Mn) and are lineary in-
dependent, and moreover m—n—r mutually orthogonal vector fields Cβ belonging
the complement of N(Mn) in the normal bundle. We call such a submanifold Mn

the submanifold framed in Mm.
Taking account of the vector fields uy and Cβ introduced above in the sub-

manifold Mn in a Kaehlerian space, as discussed in the section 3, the submanifold
Mn admits an (/, g)-structure {/,//} of rank n—r with complementary frames.
Hence Mn is an /-submanifold and the induced /-structure {/,//} satisfies (1. 5).

In an /-submanifold Mn framed in a Kaehlerian space, we put

where hcb
x and hCb

a are second fundamental tensors of Mn, then we get

/CΓ O\ 17 f,Qι tj ,X-f Q> \ . tj CLX f
\*J *-* ) * CJ 0 '"CO J X I fl'C J XD)

where fy

a=BajFi

3uy'
1 and fxb=fxeQeb, from which we have

(5.3)

By the similar method as the section 3, we obtain the following properties:

LEMMA 5. 1. In an f-submanifold Mn framed in a Kaehlerian space Mm it is
necessary and sufficient for the induced distribution L to be integrable that

fbefad(feCkcdX — fd°h C e X ) = 0.

LEMMA 5. 2. In an f-submanifold Mn framed in a Kaehlerian space Mm we have

N(X, Y)=mN(lX,,
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for any two vector fields X and Y.

THEOREM 5. 3. In an f-submanifold Mn framed in a Kaehlerian space Mm, it
is necessary and sufficient for the structure f to be partially integrable that the dis-
tribution L is integrable.

Since an /-submanifold Mn framed in a Kaehlerian space Mm admits an /-
structure with complementary frames {/,/y}, it follows that the product space
Mn X Er admits an almost complex structure F induced from the /-structure with
complementary frames. We denote the five sets of the components of the Nijenhuis
tensor of the almost complex structure F by SCb

a, Scύ

x, Scy

a, Scy

x and Szy

a, and then
we have (2. 5) with vanishing T.

Suppose that Scy

a=Q. By making use of Theorem 2. 1, this implies that the
structure / is invariant under the transformations generated by the infinitesimal
transformation fy. On the other hand, when we write down the components of
/CC(wF)/)/ for any vector field F, we get Zad(£(mf

eYS)fb

a)lc

b. Consequently, we
show, under the assumption that SC2/

α=0, that /0£(wF)/X=0. Since it is known?)

that the last equation is valid if and only if N(IX, mY)=Q, it follows from Lemma
5. 2 that

(5. 4) N(X, Y)=mN(lX, /F)

for any two vector fields X and F. Thus we have

LEMMA 5. 4. If in an f-submanifold Mn framed in a Kaehlerian space Mm the
tensor Scy

a vanishes identically, then we get (5. 4).

Taking account of the property of the induced distribution L and the condition
for the /-structure to be integrable and making use of Lemma 5. 4, we get

THEOREM 5. 5. If in an f-submanifold Mn framed in a Kaehlerian space Mm

the tensor Scy

a vanishes identically, then it is necessary and sufficient for the induced
f -structure to be integrable that so does the induced distribution L.

Next, in an /-submanifold Mn framed in a Kaehlerian space Mm, we shall
investigate the relation between the tensors Scδ

α and Scy

a. We first assume that
Scy

α=0 and Scy

x=Q (Sey

a=Q and Sal,
α=0). Then it follows from Theorem 2. 3 that

SZy
a=Q (and Scy

x=Q), respectively. Making use of (4. 8) and (5. 4) and the defini-
tion of the tensor SCδα, we have

(5. 5) Scδ

α= -(/ce/δ

d-Λe/c

d)^^/

On the other hand, we get from the fourth equation of (2. 8)

Substituting the second equation of (2. 5) and (5. 5) into the equation above and
then transvecting /zc/Λ we have

7) Yano and Ishihara [17].
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from which it implies that

U fx^ U^ fx _ ί - f e / ^ d -f^ej d\lj x
V cj δ — v bj c — \Jc ίb — Jb I'C Jfϊed

By substituting this equation into (5. 5), it is seen that SCδα=0. Thus we find

THEOREM 5. 6. If in an f-submanifold Mn framed in a Kaehlerian space Mm

the tensors Scy

a and Scy

x (Scy

a and Szy

a) vanish identically, then so does the tensor Scδ

α.

Next, we prove the following

THEOREM 5. 7. If in an f-submanifold Mn framed in a Kaehlerian space Mm

the induced structure f is integrable and the tensor Scy

x vanishes identically, then
the tensor SCb

a vanishes identically and each of exterior differential forms fx

cdxc is
closed.

Proof. Since the induced structure /is integrable, we get N(IX, mY)=Q. This
means l(£(mY)f)l=Q, that is,

(5. 6) lad(£(fz)fba)lcb=0.

By virtue of the fifth equation of (2. 5), (2. 6) and Lemma 4. 1, we get

( C(f}f*a}f b— — /VαS b—_nacfefbσ f,—f\\*~\Jz)Jt> )Jy — Jb ^zy — y Jzjyrcjeb — v,

and

Substituting these equations into (5 6), we have J2(fz)fba=Q, which implies from
Theorem 2. 1 that Szb

a=Q. By virtue of Theorem 5. 6, it is seen that SCδα=0.
From SCδα=0 and the first equation of (2. 5), it is easily seen that I7

cf
x

b—f7

bf
x

c=0
for any x.

Hence we prove Theorem 5. 7.

In particular, we consider the case r=l, then the induced (/, gO-structure is
almost contact metric.8) If we assume that the induced almost contact metric
structure is integrable and Sδ=0, then, taking account of Theorem 5. 7, we get

On the other hand, when, for an almost contact metric structure, both 1-form
θl=fcdxc and 2-form Θ2 = (l/2)fcbdxc /\dxb are closed, the structure is said9) to be of
Xi-type. When the tensor /δ

α and the vector fa defining the almost contact metric
structure are both covariant constant, the structure is said10) to be of X"2-type.
Since it is seenn) that a normal almost contact metric structure of /£Ί-type is of
jβΓ2-type, we get

COROLLARY 5. 8. If in an f-submanifold (r=l) framed in a Kaehlerian space
Mm the induced almost contact metric structure is integrable and the tensor Sb
vanishes identically, then the structure is normal and moreover of Kz-type.

8) Concerning the almost contact metric structure, see Sasaki and Hatakeyama [8]
and [9].

9), 10), 11) Nakagawa [3].
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6. Weingarten's formula.

Let Mm be a Kaehlerian space and (F, G) be a Kaehlerian structure. Let Mn

be the /-submanifold of Mm. Then ^ vector fields Bb are tangent to the sub-
manifold Mn and there exist m—n local vector fields Cλ in Mm defined on Mn

such that the vector fields are orthogonal to Mn. Therefore we get GjiBbJCf=Q.
If we put

then grcδ is a Riemannian metric in Λfw and gλμ is a metric tensor. Differentiating
this covariantly along the submanifold Mn and using the second fundamental
tensor, we get

0^he

where

For the induced (/, g)-structure in the /-submanifold Mn, transvecting Ba

hgab to
the equation above, we have

We put Gj/cCλ:ι Cμ

l=lCλμj which are the third fundamental tensors of the sub-
manifold Mn. Thus we get

(6. 1) VcC^-g^BeWs+l^&β*,

which is a generalization of well known Weingarten's formula in the theory of
surfaces.

It is easily seen that the third fundamental tensor lcιμ is skew-symmetric in λ
and μ, that is,

(6. 2) lciμ+leμι=0

In this section, we assume that the /-submanifold Mn is framed in Mm. Accord-
ingly there exist linearly independent vector fields Bb, uy and Cβ, and taking account
of (6. 1) we get

(6. 1)' VcUyh = -gyχBehhe

c

x+leyxu
x

jG*h+lcyaC*jGih

J

where gZy=GjiUz

JUy'L and grβ=GjίCr

JCβ\ which are metric tensors in the vector
bundles N(Mn) and N(Mn). Making use of Gauss and Weingarten equations, we
see that the following identities are valid:

(6. 3) Fc/*δ = -fb

ehce

x + gxyίcyzfzb

and

(β. 4) PCfy
a = gχyfeahcex-\-fzalcyz,

where gxy is defined by gxzgzy=d*. Substituting (4. 5), (6. 3) and (6. 4) into (2. 5)
without T, we have
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-\-(lczwfWb-lbzιofwc)/Za,

_ f eL wf α I fi f afJ y tι>ec Jw \~yzyjw J

(6. 5)

S α— -f'at' ri -f elj dw rι -f et> dw\\ fwaf -f e/ -f el \zy —Jd \ywyjz Me Vwzjy rle )~rj \Jz t>eyw—Jy lezwj

Suppose that the tensors Scy

x and Szy

a vanish identically. Then, transvecting
fxa to the last equation of (6. 5), we get

(6. 6) fzeleyx=fyele^.

It follows from (6. 2) that we have fz

eleyx=—fy

elexz> Making use of (6. 6), we see
that the right hand side is symmetric in y and x and furthermore the left hand
side is skew-symmetric in y and x. Accordingly we get

(6. 7) fg

eleyx = Q,

from which we have

(6. 8) fadhedx(yxyfze-Qxzfye) = Q.

Thus it follows from the fourth equation of (6. 5), (6. 7) and (6. 8) that

and the first term of this equation is symmetric in x and y. Consequently the
third fundamental tensor ίcyx must vanish. Thus we find

THEOREM 6. 1. If in an f-submanifold Mn framed in a Kaehlerian space Mm

the tensor Scy

x and Szy

a vanish identically, then so does the third fundamental
tensor lcyx.

Under the assumption of Theorem 6. 1, (6. 5) can be simplified as follows :

Scb

a - ( -feahc

ew -\-fceheaw)fwb + ( -fbeheaw +feakte W)fwc,

(6.9)

Next, we prove the following

THEOREM 6. 2. If in an f-submanifold Mn framed in a Kaehlerian space Mm

the tensor SCb
a vanishes identically, then any vector field fy is Killing.

Proof. By virtue of Theorem 2. 3, we see that the other tensors S vanish
identically. Therefore, transvecting fϋa to the third equation of (6. 9) and taking-
account of fy

efcdhedx=Q, we have
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fbGhceXJrfcchbex = Q,

from which we have

Pcf
xb+Fbfx

c=Q for any x.

This completes the proof.

COROLLARY 6. 3. If in an f-submanifold Mn framed in a Kaehlerian space Mm

the induced f-structure is integrable and if the tensor Scy

x vanishes identically, then
the f-structure { f , f y } with complementary frames is covariant constant.

Proof. Making use of Theorem 5. 7 and Theorem 6. 2, we see that the vector
fy is covariant constant. This implies from (6. 3) that fbehce

x=Q. Since the tensor
SCb

x vanishes identically, we have kc

ewfwb—hb

ewfwc=0. This means from (4.4) that
the tensor /δα is covariant constant. Thus the /-structure {/,/?/} is covariant constant.

7. Kaehlerian spaces of constant holomorphic curvature.

A Kaehlerian space Mm is said12) to be of constant holomorphic curvature if
the holomorphic sectional curvature is always constant with respect to any plane
section at each point on the manifold Mm and its curvature tensor is given by

(7. 1) Kkjih—k[GkhGji— GkίGjh-\-FkhFji—FkiFjh—2FkjFih],

k being constant. In this section, we consider the /-submanifold Mn of a Kaehlerian
space Mm of constant holomorphic curvature.

Substituting (7. 1) into the Gauss and Codazzi equations

(7. 2) Kdcύa

where Byίίa=B*dBlBlBl, and

(7. 3) KkjihBk^Cμh = Ϋdhcbμ — Pchdbμ -f hdbλlcμλ — kcύλldμλ,

which are obtained by using Weingarten equation (6. 1), we have

(7. 4) Kdcba = k[QdaQcb ~ QdbQca+fdafcb ~fdbfca ~ 2fdcfba] + (hda*kcbλ ~ hdbλhca,λ),

and

(7. 5) k[pμdfcb —Pμcfdb — 2fdcpμb] = F ' JlCb μ ~ VCkdbμ + kdb^Cμλ ~ hcb*ldμλ,

where pμ

a==-BajF^Cμ

l and pμb=Qbepμ

e.
We now assume that the second fundamental tensor hcb

λ satisfies

(7. 6) Ac&'=^flrc6+#wc6

18) for any 2,

where Aλ and Bλ are scalar functions. Substituting (7. 6) into (7. 4) and (7. 5), we
get

12) Yano and Mogi [19].
13) As is well known [11], if in the pseudo-invariant submanifold of a Kaebleriaii

manifold the induced almost contact metric structure is Sasakian, then the second funda-

mental tensor has the form (7. 6).
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Kdcba = (k + A*A*) (QdaQcb — QάbQca) + k(fdafcb —fdbfca

(7. 7) -j —2fdcfba)+AλBλ(gdamCb—gdbmca+gcbmda—gcamdb)

and

k(pμdfcb —pμcfdb — 2,/dcpμb)

We assume that the vector fields pμ. belong to the distribution M. Then, trans-
vecting fdcpf to the last equation, we get

(7. 8) (n

Because, provided that we substitute (7.6) into hdb*lcμrfybfdc, this term vanishes
identically.

From now on, we assume that an /-submanifold Mn is framed in a Kaehlerian
space of constant holomorphic curvature.

Then (7. 8) is simplified as follows :

(7. 8)' (n-r)kgλy=BJ7dfy*.feΛ.

Substituting (6.4) into ί7<ιfy

e'fea, we get

(7.9) PdΛ«./e* = -(»-r)Λy,

and hence, from (7. 8)' and (7. 9), we have

(7.10) kgλy = -Ay Bλ.

On the other hand, making use of the property of the induced /-structure, we
show that

(7. 11) Λx+B^Q for any x,

where r^2. In fact, it follows from (5. 2) that

Taking account of this equation and (7. 9), we see that (7. 11) is valid.
By virtue of (7. 10) and (7. 11), we state the following

THEOREM 7. 1. //, in an f-submanifold Mn framed in a Kaehlerian space M
of constant holomorphic curvature, all second fundamental tensors hCb* satisfy

Cb for any λ,

then the holomorphic sectional curvature k is non-negative constant, where r^2.
Especially, if the space M™ is Euclidean, then hCb

x=Q for any x, and if k is
negative then there exists at least an index x such that hcbΛ'*rAxgCb-\-Bxmci,

In particular, it follows from (7. 10) that the following result is valid :
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THEOREM 7. 2. In a non-Euclidean Kaehlerian space Mm of constant holomor-
phic curvature, there exists no totally umbilical f-submanifold framed in Mm.

Suppose that k=Q and r=m~n^2. Then, making use of Theorem 7. 1, we
get Aλ=Q and J5*=0 for any λ. Thus we find

COROLLARY 7. 3. Under the assumption of Theorem 7. 1 if a space Mm is
Euclidean with a natural Kaehlerian structure and r=m—n^2, then the f-submani-
fold is locally Euclidean also.

Finally, we assume that r=l. Then, we get mdamcb—mdbmca = Q, that is,
the last term of the right hand side in (7. 7) vanishes identically. On the other
hand, as mentioned in the previous section, the condition r—\ means that the
submanifold admits an almost contact metric structure. An almost contact metric
space which has the curvature tensor of the form (7. 7) without the last term is
called10 a locally C-Fubinian space. Thus we have

COROLLARY 7. 4. Under the assumption of Theorem 7. 1, if r=l, then the sub-
manifold is locally C-Fubinian.

8. Flat distributions.

In this section, let Mm be a Kaehlerian space and Mn be the /-submanifold
framed in Mm. If a distribution of Mn is parallel when we displace in any
direction contained in M, the distribution is said to be parallel along M. When
we translate a vector contained in the distribution M parallelly along itself, if the
translated vector is always belonged in M, the distribution M is said15) to be flat.
It is known that the condition for the distribution M to be flat is

(8. 1) mc

ei7emb

a=Q.

Now, taking account of the definition (1. 2) of the projection operator m, we get

Making use of (5. 2), we easily get

(8. 2) Pcmb

a = -hcez (fzafb

e+f*bf
ae).

Suppose that Scy

x and Szy

a vanish identically. Under this assumption, Theorem 6. 1
and the fourth equation of (6. 5) mean that fyefc

dhed

x=0. The last equation shows
that the right hand side of (8. 2) vanishes identically. This implies that (8. 1) is
valid. Thus we find

THEOREM 8. 1. If in an f-submanifold Mn framed in a Kaehlerian space Mm

the tensors Scy

x and SZIJ

a vanish identically, then the induced distribution M is flat.

14) Okumura [7].

15) Concerning flat distributions, see Koto [2], Walker [12] and Yano [16].
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9. Hypersurfaces of a Kaehlerian space.

As is well known, an odd dimensional almost contact metric manifold is similar
to an almost Hermitian space in formal aspect. Giving attention to this fact, the
present author has defined several structures in an almost contact metric manifold
which correspond to restricted almost Hermitian structures in the previous paper
[3] and investigated the mutual relations among these structures. In this section,
we shall afford the examples of the new structures defined on the almost contact
metric manifold by studying the structure of the almost contact metric hypersur-
face of a Kaehlerian space, whose hypersurface is one of the important examples
about the almost contact metric structure it is possible for us to give.

Let Mm~1 be an almost contact metric manifold and (φc

b, ίδ, ηc, Qcb) be an almost
contact metric structure. If in the almost contact metric manifold Mm~l a tensor
field φ satisfies Vcφbc=ΰ and the divergence of a vector field ζ vanishes identically,
then the structure is said16) to be of Λ-type. As mentioned already in the previous
sections, if the 1-form θλ and 2-form Θ2 are both closed, then the structure is said17)

to be of ^i-type. In the last, the almost contact metric structure is said to be of
^2-type, if the given tensor field φ and the vector field η are both covariantly
constant.

Now, let Mm be a Kaehlerian space. Let Mm~l be the almost contact metric
hypersurface of Mm and (fb

a, /α, /&, gCδ)18) be the induced almost contact metric
structure. Making use of Gauss and Weingarten equations of the hypersurface,
we see19) that the following equations

(9.1) Pcfb = -hcefι>
e

and

(9. 2) Fc/6

α= -hcbf
a+hc

afb

are always valid, where hCb is the second fundamental tensor of the hypersurface.
In an almost contact metric hypersurface Mm~l of a Kaehlerian manifold Mm, the
four tensor 5c6

α, S6

α, Scb and Sb introduced by Sasaki and Hatakeyama [9] are useful.
From now on, we assume that the tensor Sb vanish identically, that is, the

vector field fa defines a principal direction of the second fundamental tensor hcb of
the hypersurface. Let α be a characteristic root of the second fundamental tensor
hCb with respect to the principal direction fa. Contracting with respect to a and c
in (9. 2), in the almost contact metric hypersurface under the assumption we get

(9. 3) Γc/6

c = (Acc-α)/6,

from which we have

THEOREM 9. 1. If in the almost contact metric hypersurface Mm~L of a KaeJil-

16) Concerning the structure of each type, see Nakagawa [3].

17) The structure of ^-type is studied by Okumura [6] and Takizawa [lϋj.
18) In this section, indices a, b, ~ run over the range 1, 2, •••, m—1.
19) Okumura [5].
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erian space Mm the tensor Sb vanishes identically, then it is necessary and sufficient
for the induced almost contact metric structure to be of A-type that the first mean
curvature of the hypersurface is equal to a/(m—l).

Next we require the condition under which the almost contact metric hypersur-
face of a Kaehlerian space is of jftΓi-type. Suppose that Vca=βfc, where β is a
scalar field. Differentiating Ϊ7

ca=βfc along the hypersurface, we get

Since the left hand side of the equation above is symmetric in b and c, we have
β(Pefb—Pι>fc)=fcPbβ—fι>Pcβ. Transvecting fb to this, we have ί7cβ=(fΨbβ)fcί from
which we get

Thus we find

LEMMA 9. 2. If in the analytic almost contact metric hypersurface Mm~l of a
Kaehlerian space Mm the tensor Sb vanishes identically and moreover if Pcoί=βfc,
then the scalar a. is constant or the induced almost contact metric structure is of
Krtype.

Taking account of this lemma, we can prove the following

THEOREM 9. 3. If in the analytic almost contact metric hypersurface Mm~l of a
Kaehlerian space Mm of constant holomorphic curvature the tensor Sb vanishes
identically and moreover a is non-constant, then the induced almost contact metric
structure is of Ki-type.

Proof. Under the assumption of this theorem, it is seen that we have

(9. 4) (Γ6α /β-Γeα Λ)+α(Γ6/β-FcΛ)= -2kfbc-2hcehbdf
βd.

Transvecting fb to this, we show that the equation Vcoί=βfc is valid. Consequently
(9. 4) implies that

(9. 5) a(ί7bfc-Γcfb^~2kfbc-2hcehbdf^.

As a is non-constant, Lemma 9. 2 follows that Fc/&— F&/c=0. Taking account of
Lemma 4. 1, we show that 2-form θ2=^(l/2)fcbdxcAdxύ is closed. Thus the induced
almost contact metric structure is XΊ-type. This completes the proof.

Finally, we consider the case that the second fundamental tensor hCb is of rank
one, that is,

About this property, it is known20) that the following theorem is valid:

THEOREM 9. 4. If in the almost contact metric hypersurface Mm~l of a Kaehl-
erian space Mιτι the tensor Sb vanishes identically, then it is necessary and suf-
ficient for the induced almost contact metric structure to be of K»-type that the

20) Yano and Ishihara [18].
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second fundamental tensor is of rank one.

Making use of Theorem 9. 3 and Theorem 9. 4 and taking account of (9. 5), we
obtain the following

COROLLARY 9. 5. If in the almost contact metric hypersurface Mm~λ of a Kaehl-
erian space of constant holomorphic curvature the tensor Sb vanishes identically and
a is non-constant, then the hypersurface admits the almost contact metric structure
of Krtype and not of Kz-type,
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