THE f-STRUCTURE INDUCED ON SUBMANIFOLDS OF
COMPLEX AND ALMOST COMPLEX SPACES

By KENTARO YANO and SHIGERU ISHIHARA

Let there be given, in a differentiable manifold V, a tensor field f of type
(1, 1), a vector field U and a 1-form o such that

X+ X=0(X)U,
FU=0, o(fX)=0, olU)=1

for an arbitrary vector field X. The structure defined by f, U and o is called an
almost contact structure (Cf. [4], [6], [7], [8], [9], [10], [11], [12], [21]).

It is easily seen that when the manifold 7 admits an almost contact structure,
the product space VX R admits an almost complex structure, R being the real line.
When this almost complex structure is integrable, the original almost contact struc-
ture is said to be normal. The notion of the normality introduced by Sasaki and
Hatakeyama [9] plays an important role in the study of differentiable manifolds
with almost contact structure.

For example, a hypersurface in an almost complex space admits an almost
contact structure and hypersurfaces in an even-dimensional Euclidean space are
found to form a very interesting and important class of hypersurfaces (Cf. [4], [6],
[71, [10], [11], [12], [21]).

When f, U and o define an almost contact structure, we can easily obtain
f3+f=0 from the first and the second equations above. Conversely, if a tensor field
f of type (1, 1) and of rank »—1 everywhere in an #-dimensional orientable manifold
satisfies f3+f=0, then it defines an almost contact structure in the manifold.

A tensor field of type (1, 1) satisfying f*+f=0 and of rank r everywhere is
called an f-structure of rank . The normality of f-structure has been defined and
studied by one of the present authors [2].

The main purpose of the present paper is to show first of all that a general
submanifold in an almost complex space admits what we call an f-structure under
certain conditions and then to study the properties of f-structures on submanifolds
in complex and almost complex spaces, that is, those of f-structures on submanifolds
in a locally flat complex space, in an almost Hermitian space, in a Kihlerian space
and in a Fubini space.
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§1. f-structure and its integrability conditions.

Let there be given, in an n-dimensional differentiable manifold V of class C=,
a non-null tensor field f of type (1, 1) and of class C satisfying the equation

1D fi+r=0.

We call such a structure f an f-structure of rank », when the rank of f is con-
stant everywhere in the manifold and is equal to 7, » being necessarily even (Cf.
[17], [18]).

If we put

I==f%  m=f?+1,
then we find immediately

2=l mi=m,

[+m=1, Im=mi=0,

where 1 denotes the Kronecker’s unit tensor. These equations show that the
operators / and m applied to the tangent space at each point of the manifold are
complementary projection operators. Thus there exist in the manifold comple-
mentary distributions L and M corresponding to the projection operators / and m
respectively. When the rank of f is #, the distribution L is 7»-dimensional and M
is (n—r)-dimensional.

The Nijenhuis tensor Ne* of the f-structure f is by definition?

(1. 2) Ncba_—‘(fceVefba —‘fbeVefca)—‘(chbe—bece)feav

Jf»* being the components of f and F, denoting covariant differentiation with respect
to a symmetric linear connection. It is easily seen that N.* does not depend on
the symmetric linear connection F/, involved. Denote by /5% and #,* the com-
ponents of / and m respectively. We have proved in [3] the following theorems.

1) The indices a, b, ¢, d, e, f run over the range {1, 2, ---, n}.
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THEOREM A. A mecessary and sufficient condition for the distribution M to be
integrable is that

MeMp® Nea®=0,
or equivalently

meemp® Nea f 12=0.

THEOREM B. A mecessary and sufficient condition for the distribution L fo be
integrable is that
Ney*me2=0,

or equivalently

I8 Nea?m s =0.

TueEOREM C. A necessary and sufficient condition for both of two distributions
L and M to be integrable is that Ne® has the form

Nep® =lcelbdNedflfa+IcembdNeda+mcelbdNeda'-

Suppose that the distribution L is integrable. Then, since fi=If and f¥=—I, f
acts as an almost complex structure on each integrable manifold of L. If L is
integrable and this almost complex structure is also integrable in each integral
manifold of L, we say that the f-structure is partially integrable.

TaeorREM D. A necessary and sufficient condition for an f-structure f to be
partially integrable is that

letlye Nea®=0.

Suppose that for any point of the manifold there exists a coordinate neighbor-
hood of the manifold with respect to which f has the numerical components

0 E 0
(fey=| —E 0 0 ,
0 0 0

E being an mXm unit matrix, where r=2m is the rank of /. In this case, we say
that the f-structure f is integrable.

THEOREM E. A mnecessary and sufficient condition for an f-structure f fo be
integrable is that

Ncba= B
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Let there be given a positive definite Riemannian metric a. in a differentiable
manifold admitting an f-structure f;?. Putting
- 1
Aep= —z—[acb_l‘(lce_mce) (ot —mp®)acal,
we easily see that

1 _ _ _
1.3 Oep= 5 [Geotfetf ol @ea+me M Gea]

is also a positive definite Riemannian metric. It is easily verified that
Jetfo eat ey =9es,
1.4 Jo=—foey  dos=loe,  Mcr=mMsc,
lempigea=0,
where, by definition,
Jev=Fc"Ges, lev=1c%es, Meo=McGes.

We call a pair of such an f-structure f»* and a Riemannian metric g, an (f, ¢)-
structure. Thus we have

THEOREM 1. 1. There always exists in a diffeventiable manifold admitting an
f-Structure f»* a positive definite Riemannian metric 9o Such that f»* and 9o form
an (f, 9)-structure.

§2. Normal f-structure.

Let U be a coordinate neighborhood of an z-dimensional differentiable manifold
V admitting an f-structure f»* of rank » and (»*) local coordinates defined in U.
There exist, in U, r (contravariant) vector fields f,* spanning the distribution L
and n—r vector fields f,® spanning the distribution M.?

If we denote by (f?s, /%) the inverse of the matrix (f¢%, fy*), we have

bt=fPfp®, M= "fs",
from which
So'f o= =0 )
by virtue of m=s%+1. We also have
FPefy*=0,  fTufo*=0,  fTufy*=0y,

2) The indices p, ¢ run over the range {1, 2, ---, 7} and the indices «, v, w, x, y, z the
range {r+1, r+2, .-+, n}.
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from which
fcafyc: ) fwafca:

by virtue of /,2=f7,f,% and fi=f.
Summing up, we have

fbcfcu'= _5’?_}_]"?/0 yay fycfca: )
2.1

fbcfxcz s fycfzc:‘;:-

The ordered set {f,*} is called an (n—7)-frame in U and the ordered set {f¥} the

(n—7)-coframe dual to {fz*}.
Let v+ be a vector field belonging to the distribution M at each point. Then,

v® is expressed in U uniquely as
Z)a:vxfxa,

which is a linear combination of f,%, and »* is called the components of »* with
respect to the (n—r)-frame {f,2}. Consider a covector field ¢, such that

¢ef pe= O
or equivalently
¢elbe = 0.

We say that ¢, is transversal to the distribution L. If we transvect the first equa-
tion of (2.1) with ¢, we see that ¢, is expressed uniquely as

Po=0y S s,
where
¢y = ¢bf yb~

We call ¢, the components of ¢» with respect to the (n—r)-frame {f»*}.

Denoting by M(V') the vector bundle consisting of all vectors which belong to
the distribution M, we see that M(V) is a subbundle of the tangent bundle T(V)
of the manifold V. Let M*(V) be the vector bundle over ¥V which is dual to
M(V). Then, it is easily seen that M*(V) can be identified, in a natural way, with
the covector bundle consisting of all covectors which are transversal to the dis-
tribution L. In this sense, M*(V) is regarded as a subbundle of the cotangent
bundle T*(V) of V.

Let there be given a tensor field Tw* such that it is expressed in each co-
ordinate neighborhood by

Trbﬂ': T('yxfybfra.



f-STRUCTURE INDUCED ON SUBMANIFOLDS 125

Then, transvecting 7., with an arbitrary vector field »¢, we have
v° cha:(vc Tcyx)fybfﬁa)

which is a cross-section of the tensor bundle M*(V)QM(V). We call such a tensor
field Te® an M*(V)RQM(V)-valued tensor field of type (0,1) and T¢,® its com-
ponents with respect to (3% fz%). An M*(V)QM(V)-valued tensor field of type
(1, 1) has components of the form 7.¢,* and is given by

Ta%=Ta " Vo Sz

Similarly, we can define tensor fields of any such mixed type (Cf. Ishihara [2]).

Let there be given a connection w* in the vector bundle M(V) and denote by
I'.®, the components of w* with respect to (3%, f2*) in each coordinate neighbor-
hood of the manifold V. Let »* be a vector field belonging to the distribution M.
Then, »* is regarded as a cross-section of the vector bundle M(V) and is ex-
pressed as

pe—=pEf,a
in each coordinate neighborhood. If we put
2. 2) Vowr=0w*+1I =07,
it is easily verified that

Vevm)fz®

is an M(V)-valued tensor field of type (0, 1), which is globally defined in V (Cf.
Ishihara [2]). We call the tensor field (F.v®)f.% or, simply, Vw* the covariant
derivative of v* with respect to the connection w*.

Let there be given a linear connection w in the manifold V and I'.% its com-
ponents in local coordinates (»%). If, taking an M*(V)RM(V)-valued tensor field
Te*, of type (1, 0), we put

(2 3) Vc Taxy — ac Ta.xy "I’Pca'e Te:cy _I_ chz Tazy _ [’czy Taxz,

then we can easily verify that (V. 7%%,)fYsf%¢ or, simply, V.T%*, is an M*(V)QM(V)-
valued tensor field of type (1, 1), which is globally defined in V (Cf. Ishihara [2]).
We call the tensor field V.T%*, the convariant derivative of T**, with respect to
both of the connections w and w*.

We assume hereafter that the connection I7.% is symmetnic. On putting

@. 4) chx=fce(l7efzb_17bfze),

we call Le® Levi tensor, which is an M(V)-valued tensor field of type (0, 2). We
have introduced in [2] the following five tensor fields:
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Sev®=Nes®+ e f o~V %) f22,
Ses®=Lev® — Lo,

(2.5) Sey®=fyVefe—FeV o fy*+ eV oSy

Sey®=fy*WefZe—Vcf "),

Sey*=f2V oS y*—FyVefs%

where N2 is the Nijenhuis tensor of the given f-structure f3%. These five tensors
S’s do not depend on the symmetric connection I'.% in V, but they are determined
by giving the connection I.%, in the vector bundle M(V).

We shall now find out identities involving these tensors L and S’s. Taking
account of (2.4) and (2. 5), we find

f 'ychbz = 0,
Len?*f)b =feW o f 5=V o f =) 10

= —‘fceSeyz»
2. 6)
fetLev®=—F o f *s—V o f%c)+f¥eSsy",

Lcexfbe=(Vefzd_Vdfxe)fcefbd’
\ Lea®fc®fv?= Ly Seyf Ve S 1.

From the first equation of (2.5), we obtain
@7 Sev’fCa=—Fef Ta—Vaf ) fefo?+F cf "s—Fof "),
(2.8) Sev®fy? =Sey*fe* —Sey“ S,
from which we have, transvecting (2. 8) with f%,
2.9) Sey®=—SeoY ®afyP-
Substituting into (2. 7) equations
Vefoo—Vsf%e=—fc*Lev" +f"eSty",
Vefra—Vaf v fee fo?=Lee"f3"
obtained respectively from the third and the fourth equations of (2. 6), we find
(2. 10) Sev¥f Ca=—Fc?Les® — Lee® ot +1cSoy”.

If we transvect (2. 10) with f4® and make use of the second and the fifth equations
of (2. 6), we find
Ses®=Lep® — Lpc®
@2.11)
"'—‘Sceafbefxa—seyxfcefyb:
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from which we have
2.12) Sey®=Sea®fe’fy2+Sayf %S %e

as a consequence of the fourth and the fifth equations of (2. 5).
Transvecting the first equation of (2.5) with f,°f,°, we get

(2.13) Sey®=—Ses*f 1"
By means of the third, the fourth and the fifth equations of (2. 5), we obtain
Sey®fe* +1e®Say*=Sey "+ ?eSy"
and, substituting (2. 8) in this equation,
(2.14) Se®Say®= —SceSy° -+ %Sy
Transvecting (2. 14) with f,¢, we obtain
(2.15) Soy®=Sea"SsS y* —SzyS "o Se"
by virtue of
fzeSeya-:Szyefea

obtained from the third and the fifth equations of (2.5).
Furthermore, we find

(2. 16) Scyx=Seq/dfcefztl+szydfchxd

by making use of the third, the fourth and the fifth equations of (2. 5).
From (2.9), (2. 11), (2. 13) and (2. 15), we have

ProrosiTION 2. 1. If Seco® vanishes, then all the other S’s, i.e. Sev®, Scy® Sey®
Szy® vanish (Cf. Ishihara [2]).

From (2. 16), we have
PROPOSITION 2. 2. If Sey® and S.,* vanish, then S.,® vanishes (Cf. Ishihara [2]).
From (2. 12), we have
PROPOSITION 2.3. If Sev® and S.y* vanish, then Sc,* vanishes (Cf. Ishihara [2]).

When there is given a connection I'.®, in the vector bundle M(V), there
exists an almost complex structure F in the bundle space of M(V) (Cf. Ishihara
[2]). If the almost complex structure F is complex analytic, then we say that the
given f-structure is normal with respect to the connection I'., in M(V). We
have proved in [2].

THEOREM F. A necessary and sufficient condition for an f-structure f to be
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normal with respect to a connection 'y in M(V) is that
Sep?=0

be satisfied and the given commection I'*, be of zevo curvature.

In a manifold with an f-structure f3%, a tensor field, say, Te® (or T.»*) is said
to be congruent to zero with respect to f%., if it has components of the form

(2. 17) cha:fychha'+fbeyca (Or ch't =fychbx+f’beycx)’

Py and Q. (or Pyp® and Q%) being certain local tensor fields. In such a case, the
relation (2. 17) will be expressed in a simplified form as

(2.18) To*=0  (or Tep*=0).
The relation Ugp?— Vep®*=0 (or U,®— Ver®=0) is expressed as
Ua®=Va*  (or Usp®= Ver®).
It is easily seen that (2. 18) is valid if and only if we have
Ter®wv?=0 (or Ter*wcv®=0)

for any vector fields »* and w® such that f%,02=0, f%.w*=0, i.e. for any vector
fields »* and w* belonging to the distribution Z. We have from (2. 11)

PRrROPOSITION 2. 4. If Sa*=0, then S.*=0, that is
Ley®= Ls.®.
It is easily seen from (2. 5) that each of the three conditions
Ser?=0, Ser? = and Lep*=Lse*

does not depend on both of the connections I'c* and I'.%y involved.
The distribution L is integrable, if and only if

0cf*—0of = =0.

Consequently, taking account of (2.6), we have from the definition (2.4) of L.~
and the definition (2.5) of Sg*

ProprosiTiON 2. 5. A mecessary and sufficient condition for the distribution L
to be integrable is that ome of the following three conditions is satisfied:

Scba_NcbaEO, (Scba_Ncba)fzaEOa
fceLebE 0.

It is easily seen from (2.5) that the three equivalent conditions stated in
Proposition 2, 5 are independent of the connections /7% and I'.% involved.
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If we take account of the definition (2.5) of Sp?% we see from Theorem A
given in §1 that the distribution M is integrable if and only if

Scbef ch ybf =
is satisfied. Thus we have

PropOSITION 2.6. If an f-structure is normal, or if Se®=0, then the distribu-
tion M is integrable.

Let there be given an (f, g)-structure (/»%, ¢.») in a differentiable manifold. Let
{fz*} be an (n—7r)-frame and {f%} the (n—r)-coframe dual to {f»?}. On putting

Goafs®=far, 9O V=117,
9ya=SyFa"der,
we have
Too=f"YGys,  FVO=[2"g"Y
by means of (1.4), where ¢ and gv* are defined by
@)=(goa)* and  (¢¥*)=(gya)*

respectively.
Let there be given a connection /'.¢, in the vector bundle M(V) and suppose

that
chyz = acgy,v —1 chygzw —1 'czw.(/yz =()

is satisfied. We call such a connection /'¢%, a meiric connection in the bundle
M(V). Denoting by {.%} the Riemannian connection determined by g¢.,, we see that

chyz[acfya"'*' {cab}fyb]fxa

define a metric connection in the vector bundle M(V).
If we assume that

2.19 Vefro—Vofoe=2A%cs
is valid with a certain vector field A%, f.=—f3. being defined by
f ¢cb :f %0 av,

then we find
2. 20) Lo =2A%(—geo+Mep).
In such a case, we have

chh—VbZ)c———Z(Axvx)fcb,
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(Z(Ubdpb)zdfcbdﬁ"/\(h/l’, a=AN*D,

for any vector field v,=f»*v, belonging to the distribution A and satis{ying V,v,=0.

§3. Surfaces in an almost complex space.

Let W be an N-dimensional differentiable manifold of class C* with an almost
complex structure F=(F*)* of class C=, i.e.

@. 1) FlF=—a,

N being necessarily even.

Let there be given an #z-dimensional submanifold V differentiably immersed in
W, and denote by (V) the tangent space of V at a point P belonging to V. We
suppose that

Ho(V)=Te(V)NF(Te(V))=#{0}

and that r=dim Hp(V) is constant everywhere in V, » being necessarily even,
where we have put

F(Te(V)={FX|XeTx(V)}.

If this is the case, we call the submanifold V an f-submanifold in the almost com-
plex space W. The vector space Hp(V) is called the holomorphic tangent space of
V at P. On putting

(3.2 TEV)=Te(V)+F(Te(V)),

we call this subspace TH#(V) the holomorphic extension of tangent space Tp(V).
It is easily seen that, if dim H(V)=r, we have dim T¥(V)=2n—7.

If 2n> N, we have >0 because of N=dim7% V). Thus we know that, in an
almost complex space W of N dimensions, a submanifold of » dimensions is always
an f-submanifold if 22> N and dim He(V) is constant.

Let there be given an f-submanifold V in an almost complex space W. Then,
there exists a subspace N of the holomorphic extension T'#(V) of the tangent
space Tx(V) at each point P belonging to ¥ such that

6.3 F(Ne)CTe(V), TEV)=Te(V)+Ne  (direct sum),

where F(Np)={FX|XeNp}. If To(W)xHy(V), in the tangent space Tp(W) of the
enveloping space W at P, there exists a subspace Np such that
(3.4 F(No)=Np, To(W)=T%V)+Np (direct sum),

3) The indices7z, i, 7, By s, t run over the range {l, 2, ---, N}.
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where F(Np)={FX|XeNp}. The subspaces Ny, and N, are respectively (n—7)-
dimensional and (N—2#r+7)-dimensional. Therefore, there exist along V two dif-
ferentiable fields of such subspaces Ny and Np. If we put

N(V)=UNs, NV)= U Ny,
Pev PevV

then M(V) and N(V) are vector bundles over V. Letting N(V) and N(V) be
fixed, we call the set {V, N(V), N(V)} an f-surface and V its base submanifold.
For the sake of simplicity, we denote sometimes an f-surface {V, N(V), N(V)}
simply by V.

Let there be given an f-surface {V, N(V), N(V)} in an almost complex space
W and its base submanifold V be expressed by equations

Eh=EM(n?)
in local coordinate (¢%) in W, where (3%) is a system of local coordinates in V.
If we put

(3- 5) Ba,h'zaa,sh’ aa:a/aﬁa)

then B.* are n local tangent vector fields in V and span the tangent space T%(V)
of V at each point P of V. There exist locally along V n—r vector fields C,*

and N—2xn+r vector fields Cs* which span respectively Np and g_i at each point

b
P of V*®. Denoting by (B%, C%, C%) the inverse of the matrix (gy”:>, we have
8

By By =0, B*,Cy*=0, B, Cg=0,
(3. 6) C=, Byt =0, CoyCy=0dg, ConC=0,
Co, By =0, C4Cyh=0, CenCy =05
and
3.7 BaBo4C " Co i+ CC =0,

Taking account of (3. 3) and (3. 4), we can put

Fi*Byr=fu2Bo"+fCi",

3.8 FrCyr=—fy*Ba*,
ErCyr=fpCo",

and, taking account of (3.1), we find

Sfoof b= —0f+f"fs"  Sfoof %c=0,
3.9 JFvfe*=0, Sof =0y,
Jo'fr=—03

4) The indices #, v, x, y, z herealter run over the range {n+1, %-+2, -+, 2n—7} and the
indices a, g, 7, 0, ¢ run over the range {2n—r+1, 2n—7-+2, .-, N}.
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which implies
(3. 10) fi4r=0,

f being the tensor field of type (1, 1) defined in V by components f32. Thus, tak-
ing account of (2.1), we see from (3.9) and (3. 10) that f,* is an f-structure, {f,*}
is an (m—r)-frame and {f%} the (n—r)-coframe dual to {fy2}, all in the sense of
§2. The tensor field f5* is called the induced f-structure of the given f-surface V.

By means of the second equation of (3.8), we find that F(N(V)) coincides
with the vector bundle M(V) consisting of all vectors which belong to the dis-
tribution M determined by the projection operator m*=fo’fc®+0d¢. Thus, if we
define a bundle isomorphism F*: N(V)—M(V) by

3. 11) F¥(X)=—F(X),

X being an arbitrary vector belonging to N(V), then for any vector X having
components v°C,* the transformed vector F*(X) has components (v%f,*)Bs"” as a
consequence of the second equation of (3. 8).

Let there be given a symmetric linear connection I';*, in the enveloping space
W. If we put

(3.12) I’ =(9:Bv"+Be! Byl j*4) B,

then I'¢% define a symmetric linear connection in the base submanifold V¥, which
is called the induced conmection of V.
If we put

(3.13) Loty =(0.Cy" 4 BoICyL 1) Cn,

then ['c.®, define a connection in the vector bundle N(V) which is called the in-
duced conmection in the vector bundle N(V). Since, as is seen from (3. 11), there
exists a bundle isomorphism F*: N(V)—M(V), there exists in M(V) a connection
o* induced from I'.*, by F* and the connection o* induced in M(V) is expressed
by the same components I.*, with respect to the (z—r)-frame {f,%}. We call
briefly the connection w* the induced connection of the vector bundle M(V).

If we put

@.14) I'e*g=(0.Cy"+ BCyL";:)Co,

the I'.%s define a connection in the vector bundle N(V). We call the connection
Iy the induced commection in N(V).

We define the van der Wearden-Bortolotti covariant derivatives of By, C,"
and Cg* along V by

V.By"=0cBy"+ B Byl s — Bl ™,
(3. 15) VcCyh’:acczlh+Bc]Cyl]1]hi_C;thcxyy
VcCphT- acCph+Bc]Cﬂlehi—CahFc“p



/-STRUCTURE INDUCED ON SUBMANIFOLDS 133

respectively. Then VcBy*, V.C/» and V.Cs" belong respectively to Np+Ny, To(V)
+Np and T(V)+N; at each point P of V. Thus we can put

VcBbh—': hcbzczh‘l‘hcbacmh;
(3. 16) V.Cyt=—hyBa" 7y C.",
Vccﬂh*: _hcaﬂBah—hczﬂcxh,

where #’s are the so-called second fundamental tensors of the given f-surface V.
It is easily seen that

hcbx=hbcx; hcba—:hbc“-

If we differentiate covariantly each member of (3. 8) along V and take account
of (3.8) and (3. 16), we obtain

ViFi)BI Byr= o fo"+hev"Sy* —he®y [ V6) Ba™
+V oS "o theef°)Ci"
+(her™ —hev' S hey [ 15)Ca",

3.17 (ViFi)BCyr=— o fy*—hety fe*) Ba®
F by fPe—hee"S4)Ca"
—(hee" Sy +hefy F5)Ca",

Vi FMBICyr=(hetpf *—he® S 57 —he? 5]y *) Bu"
+ (e f e—he® f5)Co"
+ef)C",

where we have put

(3. 18) Vefsr=0cf "+ 1 e for—I"ctsf .

The Nijenhuis tensor N;* of the almost complex structure F;* is by definition
(3.19) Nyt =FV Fit—FW Fsh— jFs =V F)Ft.
Taking account of (3. 8), (3.17) and (3. 19), we find

Nji*Be! By
=[Seo® —fZe(ls* oS e —fohe" ) F S "o(he o o —T o he"x) | Ba
(3.20) +[Seo™ = (f¥elto®y =S Vohe®y) [ 2]Ca
HeSo? =Fo e Vhey* — (e S Vo—ho of Vo) F51Co
+72W i FiM)Co? By — =V jFi*)Co B,
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N;i*BiCy
=[Sey ey t+hey foof o — oS y 1 Ba"
(3.21) +[Sey®+Sfehely f7a]Ca"
FHl—trey* —f ey [+ S 7ehea F1Ca"
+ 2V i FMCICy + T s F:4Cy B Fy,

N, 5" Be? Cp"
= [hcaﬂ+hcerfeafﬂr+hedﬂfcefda _hcarfccfpr '—heyﬁfccfya]Bah
3. 22) HBe® ST ehe ) [ atheTs—he® f o fT1Ca"

Ffe W ef ) — W oS 57) [ 1C"
-+ (Vij;s)CﬂchlFs"’ -+ (Vszh)fzcchsz —prCTj(VjFih)Bc",

N;*CiCy
=Suy*Ba"+[— (fohey—1 ) fa"]Ca"
3. 23) FI(fothey —Fyhes) f57]Co"

F Vi F =V FACIC, Fe,

where S’s are tensor fields given in (2.5), coumections involved in S's being the
induced comnections I's% and I';*,., We have immediately from (3. 20)

THEOREM 3. 1. For an f-surface V in an almost complex space W, the vector
field (N;i"Bd By ywv® belongs to the holomorphic extension TE(V) of tangent space
Te(V) at each point P of V, v* and w* being arbitrary vector fields in V satisfying
the conditions f*.w*=0, f*w*=0.

THEOREM 3. 2. For an f-surface V in an almost complex space W, the vector
field (Nj"BByhywtv is tangent to V at each point of V,v* and w* being arbitrary
vector fields satisfying the conditions f2w0°=0, fZw*=0, if and only if S*=0,
that is, if and only if Le®=Ly*. (The condition Sup*=0 does not depend on the
induced connections I':% and 1'%y involved).

THEOREM 3. 3. For an f-surface V in an almost complex space W, we have
(Nji*BoI By )ywv*=0, v* and w* being arbitvary vector fields satisfying the conditions
FPwe=0, fPw*=0, if and only if Se*=0. (The condition Su*=0 does not depend
on the induced connections I'c% and I'.%, involved).

§4. f-surfaces in a complex space.

Let W be a complex space with a complex structure Fi*. Then, the Nijenhuis
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tensor N;* of F;* vanishes identically. As is well known, there exists a sym-
metric linear connection I';*, such that (Cf. Yano [20])

@1 ViFt=0.

In the present paper, by a complex space we mean a space admitting a complex
structure F;* and a symmetric connection /"%, satisfying (4. 1).

Let there be given an f-surface V in a complex space W. Then, taking
account of (4. 1), we have from (3. 17)

chb“'l'hcbyfya—hcayfyb:(),

chxb“l‘hcexfbe: )
4.2
chya'“hceyfea= }
chﬁa=
and

Rty f To—hes™f 4*=0,
R —het 5 Rty [ Y0 =0,
@3 hee" fy®+hefyfp*=0,
hetpfe* —he® fo7 —he?sf =0,
hetsf%e—he", for=0.
On the other hand, since N;;*=0, we find from (3. 20), (3. 21), (3. 22) and (3. 23)
1 Sep® =1 (% f e —Jo %) —F ot S e~ e hes),
Seo” =fVeHoy" —fVsHey",

(4. 4) Scya: _(hca'y +}ledyfcefda)+fzc(h8a2fye)’
wa= —feHey”,
Szya'=

respectively, where, taking account of the first equation of (4. 3), we have put
Hyy® =hoe” fye=ho®y [ %e.
From the first equation of (4. 4), we have
ProrosiTION 4. 1. For any f-surface in a complex space, we have
Ser®=0.

From the expression (2. 4) for L,® and the second equation of (4. 2), we find
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(4 5) chz = (/Zcbx""lledmfccfbd) +fyc[:Ibyw-
Thus we have

ProposiTiON 4. 2. For any f-surface in a complex space, we have the expres-
sion (4.5) for Le® and Le®=Le” (Cf. Hermann [1]).
We have from the second and the third equations of (4. 2)
thx=(chxe)fbe+Hcyxfyb:
4.7
hca?/= —(chye)fea+Hcy$fra

respectively. If we take account of Zw®=/w.", we have directly from the first
equation of (4.7)

“4.8) WS fot—Wof ) e+ Hey S Vo —Hoyf ¥e=0.
Substituting (4. 7) into the first equation of (4. 2), we obtain
(4. 9) chba"‘(chxe)fbefxa+(chye)fybfea'= .

We have moreover from (4. 2)
(4. 10) Vef)fye=0,  (Vefy)f*e=0.

Taking account of (4. 10), we see from (4. 7) and (4. 9) that the following three
conditions are equivalent to each other:

(a,) chba= g
(b") Vef®=0 and V.f,*=0.
(C/) hcbx=Hcyzfyb and /lcay-:Hcyxfzu.

When the condition (c¢’) is satisfied, we find, taking account of %®="/s",
Hcyx:fzczzyx’
where
Azy®=2y5".
Thus we have

THEOREM 4. 1. For an f-surface in a complex space, lhe following three condi-
tions are equivalent to each other:

(a) chba:O-
(b) Pofoo=0 and Veof,*=0.
(C) hcbxzfchybzzyx and hcay =fcha:a'2zyx,
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A4® being a certain tensor field such that A,,*=2y". When one of these conditions
is satisfied, the induced f-structure f»* is integrable and S.*=0 is satisfied.

If we take account of (4.2), we have from the definition (1.2) of Ne®
(4. 11 Ne®=fYe(ho'yfe*—fo*he ) —Fo(hety fo —F e he®y)+ oot —hoe S o) fo™
Therefore, if N.*=0, then we have from (4. 11)
hee®fot—hoe"f  =f Ve s Hey" —S oS " Hey",
{ Retyfet—Ffethe®y =S e(he® o Sy fa®—F o Hey S o™

Conversely, if (4. 12) are satisfied, we have N.*=0. If we take account of the ex-
pression (4.4) for S.;%, we see that the second equation of (4. 12) is equivalent to

Scba:fchyb(hedzfye_hedyfze)fda‘f‘(fycsbyx_fybscyx)fwa-

Thus, taking account of the expression (4.5) for L% we have

(4.12)

ProPOSITION 4. 3. For an f-surface in a complex space, the induced f-structure
is integrable, if and only if one of the following conditions (@) and (b) is satisfied

( ) {hcesze—hbexfce EO,

a
hceyfea‘ —fceh«eay =fzc(hedzfye)fda _fceHeyxfxa.
chxEO,

(®)
Scba:fchyb(heazfye_hea'yfze)+(fychyz“fbecyx)fxa'

If we take account of (4.5) and (4. 11), we see that the following four condi-
tions are equivalent to each other:

Ncb"'EO, Ncbu'fxaEO) chxEO»
hcbx'l‘kedzfcefbd =0.
Thus, by virtue of Theorems B and D stated in §1, we have

ProposiTiON 4. 4. For an f-surface in a complex space, the following four
conditions ave equivalent to each other:

(@) The distribution L is integrable (Nep*f%a=0).

(b) The induced f-structurve is partially integrable (Ngp*=0).
(©) Le*=0.

(D A +hea” S0 =0

We now suppose that the distribution M is integrable. Then, by means of



138 KENTARO YANO AND SHIGERU ISHIHARA
Theorem A stated in §1, we have

4. 13) S P Neo®fe*=0,

which implies

4.14) (fshey— Iy he®s) — (fot Hey™ — [y Hes®) f22=0.

Conversely, if (4. 14) is satisfied, we have (4. 13) and consequently we see that the
distribution M is integrable. Thus we have

ProrosiTION 4.5. For an f-surface in a complex space, the distribution M is
integrable, if and only if

(fzeheay— yehe'ZZ)—(fzeHeyz‘" yeHezz)fxazo-

We suppose next that S.*=0 is satisfied. Then, we have by means of Pro-
position 2.1

Sey® =0,
which is equivalent to the condition
(4. 15) Hey® =127,
where
Aay®= Ayt =1 f PR

Taking account of (4.4), we see that S.,*=0 is equivalent to the conditions

{ hceyfea —f ey =1 (oS y) fa%
4. 16)

(hedzfye_hedyfze)fdazoy
which are equivalent to
(4. 17) hcay‘l‘hedyfcefda :fzc(keazfye).

Taking account of (4.15) and substituting (4. 7) in the first equation of (4. 16),
we find

4. 18) Vefy*+refa® W efy)—F2efy* W ef2*)=0.

Conversely, if we substitute the third equation of (4.2) in (4. 18), we obtain the
first equation of (4.16). Transvecting (4. 18) with f.¢, we find

fzeVefya_ferefza'—‘ y

which implies together with (4. 2) the second equation of (4. 16). Thus we have
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ProposiTION 4. 6. For an f-surface in a complex space, the following four
conditions are equivalent to each other:

(@ Ser®=0.

® {hcey St —fcthey=1?(he"- Sy "
(e y* —he®y f:9) fa*=0.

() Ry S f a by =1 c(e"2 %)

@ {V Sy e fat W efy)—Fefv* Ve f:4)=0,
Hey®=f2Ay"  (Aey®=2y").

We have also from Propositions 4. 3, 4.4 and 4. 6

THEOREM 4. 2. If, for an f-surface in a complex space, the condion Sa*=0 is
satisfied, then the following three conditions are equivalent to each other:

@) The induced f-structure is integrable (Np*=0).
(b)  The induced f-structure is partially integrable (Ne*=0).

(©) The distribution L is integrable (Nuf*.=0).

§5. Normal f-surfaces in a complex space.

Let there be given an f-surface V in a complex space W. We suppose now
that the induced f-structure f* is normal with respect to the connection I'.%,
induced on the vector bundle M(V). Such an f-surface is said to be normal.
Thus, from Theorem F stated in §2, we see that an f-surface is normal if and
only if we have

(5. ].) Scb‘I:O and Rdcyzzo,
where S.,* is the tensor field defined by (2. 5) and
(5. 2) Rdcy‘t=adl—1czy—ac[,d“ty"{“rdxz['czy"['crzpdzy

is the curvature tensor of the induced connection I'.%,.

On the other hand, as was seen in § 3, there exists a bundle isomorphism F*:
N(V)-M(V), which is defined by (3. 11), and the connection induced in N(V) has
the same components ['.%, as that induced in M(V). Therefore, if the f-surface
V is normal, the connection induced in N(V) has vanishing curvature tensor
because of (5.1). Thus, if the f-surface is normal, the structure group of the
vector bundle N(V) is reducible to a discrete group.
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When the vector bundle N(V) admits a locally flat connection I'.%,, there
exists in each coordinate neighborhood U of the f-surface V an ordered set {C.*}
of normal vector fields C,* spanning the fibre N, of N(V) at each point P of U,
such that all of components "%, of the induced connection vanish with respect to
{Cs*}. Such an ordered set of local normal vector fields C," is called an adapted
normal frame in N(V). In each coordinate neighborhood U, an adapted normal
frame is determined up to transformations with constant coefficients, that is, for
an adapted normal frame {C,"}

Cph=A%C"

determine another adapted frame C,* if and only if (A%) is a non-singular, con-
stant matrix in U. Summing up, if we take account of Theorem F, we have

THEOREM 5. 1. In a complex space, a necessary and sufficient condition for
an f-surface to be novmal is that it satisfy the conditions

Rdcy't:O (an Scba: .
When an f-surface V is normal, the following facts (@) and (b) are valid:

@) The structure group of the vector bundle N(V) is veduced to a discrete
group. If the f-surface is simply commected, the vector bundle N(V) is a product
bundle.

(b) All of the five tensor fields S's vanish identically, i.e.
Seo=(fe°0e [o*—[fo°0e fe*) — (e fo*— 00 S c®) fe* +(0c f *o—0bf % e) fo =0,
Sev®=Fe0ef To—00f Te) — [0S Te—0cf ) =0,
Sey=[y0cfe*—Sc 0cfy*+fe0cfy*=0,
Sey® =@ f Tc—0cf%e)=0,
Sey®=S240cfy* — Sy 0ef 0=

with respect to an adapted normal frame {C."} in each coordinate neighborhood
U of the f-surface.

Theorem 4. 2 and Proposition 2. 6 imply immediately

THEOREM 5. 2. For a normal f-surface in a complex space, the following three
conditions arve equivalent to each other:

@) The induced f-structure is integrable.
(b) The induced f-structure is partially integrable.

(c) The distribution L is integrable.
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If an f-surface is normal in a complex space, then the distribution M is integrable.

§6. f-surfaces in a locally flat complex space.

We consider in this section f-surfaces in a complex space W which is locally
flat, i.e. whose curvature tensor vanishes identically. If we suppose that the holo-
morphic extension T#(V) of tangent space 7%(V) coincides with the tangent space
Ty(W) of the enveloping space W at each point P of V, ie. if

6.1) THEV)=Tu(W),

we obtain

(6.2) Val o By —V oF 4By = Racy*Ba",
(6. 3) Val Cy—V V 4Cy = Racy®C

as a consequence of locally flatness of the enveloping space W, where
Rdcba=adrcab—acrdab+rdaerceb—Fcae[’dcb;
Rdwx=adrczy—adpcxy+[,dxzrczy_[’czzpdzy

are curvature tensors of the induced connections 77.% and I'.%, respectively. Sub-
stituting the first and the second equations of (3. 16) with vanishing /4q* and /c,®
into (6. 2) and (6. 3), we find

Racv®*=ha%hes” —he®zshav”®,

Rdcyrzhdexhcey—hee$hdey,
6. 4)

Vaher™ =V chap®™ =0,

thca'y_Vchday:().

We suppose that the f-surface satisfies the condition (6. 1) and has the follow-
ing properties

(6. 5) ;lcbx=fchyblzzyx, hca'y :fchxazzyx,
where
Ay ®=2y.".

Substituting (6. 5) in (6. 4), we obtain

(6 6) { RdCba'=fudfchybfxa('zuvzlzyv‘szzluyv),

Rdcyw =, udfzc(xuvxlzyv_szxlzuyv)

and
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{ fueVelzy'r—fzeVezuyw':Oy
Vblzy"”EO.

6.7

The both equations of (6. 6) imply
(6. 8) Rdcba:-Raﬂyzfybfz”'o
Thus we have

ProrosiTioN 6. 1. If, in a locally flat complex space, an f-surface satisfies the
conditions (6.1) and one of three conditions (a), (b) and (c) mentioned in Theorem
4.1, then it has the properties (6. 6), (6.7) and (6. 8).

We suppose next that a normal f-surface V of a locally flat complex space W
satisfies the conditions (6. 1) and (6.5). Then, we have from Theorem 5. 1

Riey®=0,
which implies together with (6. 8)
Raer*=0,
ie. that the induced connection I.% of V is locally flat. Thus we have

THEOREM 6. 1. If, in a locally flat complex space W, a normal f-surface V
satisfies one of three conditions (), (b) and (c) mentioned in Theovem 4.1, and, if
the holomorphic extension TE(V) of tangent space of V coincides with the tangent
space To(W) of the enveloping space W at each point of 'V, then the induced connection
% of 'V is locally flat and the equations

hcbz=fchybzzyz, hcay=fch.ta2zyxy

zm’x Xzy” —szx /zuyv = 0:
6.9
fueVelzyz—ﬁeVezuy‘”.:O,
Vb'zz'y'z:—.'o
are valid, wheve 2,,"=2y,".

If an f-surface in a locally flat complex space satisfies the condition (6. 5),
then by virtue of Proposition 4. 6 we have

Scba': y

since the condition (c) of Proposition 4. 6 is valid as a consequence of (6.5). We
suppose that the f-surface satisfies the condition (6. 1) and is locally flat. Then,
taking account of (6. 8), we have

Rdcy‘r=0
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because of Rgi®=0. Thus we have

THEOREM 6. 2. If, in a locally flat complex space, W an f-surface V satisfies one
of three conditions (a), (b) and (c) mentioned in Theovem 4.1, and, if the surface
Vis locally flat and the holomorphic extension TH(V) of tangent space of V coincides
with the tangent space To(W) of the enveloping space W at each point of V, then
the surface V is normal.

Coming back to the general case, in a complex space W of N=2x dimensions,
we take a submanifold V of »# dimensions and suppose that To(V)NEF(T(V))={0}
at each point P of 7. We call such a submanifold V an antikolomorphic surface
of W. Denoting by B,"* = local tangent vector fields defined by (3. 5), we see that
n vector fields

(6. 10) Ct=F* By
span the space F(T:(V)). If we put

(6. 11) VeBy*=he*Ct,
then we have

(6. 12) V.Gt =—her* B

by means of (6.10). Then, 4.* is called the second fundamental tensor of the
antiholomorphic surface V.

We now consider a normal f-surface ¥ in an N-dimensional space CA* of s
complex numbers (2}, 2%, ---, z°), 2s being equal to N. If we put

A=gita/—1yt (=12, -, 3),

then (z% y*) are cartesian coordinates in CAs. Then, taking account of Theorem
5.1, we see that the connection I'.®, induced in the vector bundle N(V)is of zero
curvature, ie. that there exists in each coordinate neighborhood of ¥V an adapted
normal frame {C,*} with respect to which the components I'.®, of the induced
connection vanish identically. If we assume moreover that the f-surface V satis-
fies the condition (6. 1) and one of three conditions mentioned in Theorem 4.1, we
see from Theorem 6.1 that the connection I'.% induced in the f-surface V is
locally flat, i.e. that there exist in each coordinate neighborhood of V local coordi-
nates with respect to which the components I"c% of the induced connection of V
vanishes identically. Thus we have

chba= cfba'; chya=acf'ya: chzb=acfxb

with respect to such local coordinates and such an adapted normal frame.
We have from Theorem 4.1
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acf},“= cfba= )
(6. 13) acfya=‘7cfya=0, 0cf %=V f*=0,
hcbxzfchyb'zzyxy hcay:fchanzyxi

where 1,,°=1,." satisfy (6. 9). Taking account of (6. 13), we see that each integral
manifold of the distribution L, which is spanned locally in the enveloping space

CA®* by vector fields f,*B." is a complex plane CA’;_, 7 being the rank of the
induced f-structure. Thus we may assume that each integral manifold of L is
expressed in CA*® by linear equations

T
z'2  =const,, .-+, z°=const.

Next, taking account of (6.13), we see that the holomorphic extension M
=M+F(M) of the distribution M is parallel along the f-surface V, since MZ¥ is
spanned locally in the space CA*® by vector fields f,*B.* and C,*. Thus we may
assume that the distribution M¥Z is, along the f-surface V, parallel to the complex
plane defined by linear equations

2'=0, 22=0, ---, z% =0.
Therefore, each integral manifold of the distribution M is an antiholomorphic sub-
manifold in a complex plane defined by linear equations

r

z'=const., z?=const., ---, 22 =const.

Summing up, we find that the base submanifold of the given f-surface V is con-

jugate to a portion of a submanifold V under the group of all affine transforma-
tions operating on CA* and preserving the complex structure of CA®, where the

f-submanifold V is defined by equations of the form
(6. 14) @), (@) (=l )

where {* are parameters of ¥ and 7 is the rank of the induced f-structure. The
equations (6. 14) determine, in the subspace CA‘“_?r defined in CAs by z'=2z?=-..

=z%=0, an antiholomorphic surface whose second fundamental tensor coincides
with 2,,%, where 2., are constant along the distribution L and satisfy the second
and the third equations of (6.9). Thus, the induced connection of the antiholo-

morphic surface defined in CAS'TT by (6. 14) should be locally flat. Thus we have
THEOREM 6. 3. If, in the N-dimensional space CAS of s complex numbers z*

=zt /=1yt (A=1,2, -+, s; N=2s), there exists a novmal f-surface V satisfying
one of the conditions (a), (b) and (c) mentioned in Theorem 4.1, and, if the holo-
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morphic extension TH(V) of tangent space of V coincides with tangent space of the
enveloping space CAS, then the base submanifold of the given f-surface V 1s con-

Jjugate to an f-submanifold v defined by (6.14) wunder the group of all affine
transformations operating on CAS and preserving the complex structure of CAS,

where the antiholomorphic suvface defined in CA™ T by (6. 14) is locally flat.

§7. f-surfaces in an almost Hermitian space.

We consider an almost Hermitian space W of differentiability class C* with
an almost Hermitian structure (Fi", G;;) of class C*, where F;* is an almost com-
plex structure and Gj; a positive definite Riemannian metric such that

@.1) FyFeGu—Gys
The tensor field

.2 Fyi=F{'Gu,

is skew symmetric. If the Riemannian connection {,",} determined by Gj; satisfies
(7. 3) ViFinA+V Fo,+VnFy0=0,

then the space is called an almost Kdihlerian space. 1f, moreover, the Nijenhuis
tensor N;* defined by (3.19) vanishes identically, the almost Hermitian space is
called a Kahlerian space. A necessary and sufficient condition for an almost
Hermitian space to be Kéihlerian is given by

(7.4 ViFh=0

(Cf. Yano [20]).

We now consider an f-submanifold ¥V in an almost Hermitian space W. Then,
there exists uniquely a subspace N, in the holomorphic extension T#(V") of tangent
space Tu(V) at each point P of ¥ such that N, is orthogonal to 7.(V) and
F(Np)cTe(V), and N; is (n—v»)-dimensional if dim Hp=7. Furthermore, therc
exists uniquely a subspace N, of N—2n-+r dimensions in each tangent space
To(W) such that F(Ny)=N, and N, is orthogonal to T#(V) at each point P of V.
Thus we have an f-surface {V. N(V), N(V)} corresponding uniquely to the given
f-submanifold ¥ and denote it simply by V.

We follow notations introduced in §3. Then, local vector fields C,* are ortho-
gonal to By* and Cs*, and Cy* are orthogonal to By* and C,". Therefore we find

G;iByCy=0,  G;ByCs=0,
(7. 5)
GiC?Cyr=0.
If we put
=G 35,
(7. 6) { )
9:y=G;CCy% (7] :szcrj(/,sl,
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then ¢ is a Riemannian metric in V, which is called the induced Riemannian
metric of V, and ¢,, and g¢,; are metric tensors in the vector bundles N(V) and
N(V) respectively. The metrics g., and ¢, are called the induced metrics of N(V)

and N(V) respectively.
Taking account of (3. 6), (7. 5) and (7. 6), we obtain

Ba=g%G . By", C2=g*Gy,Cyt,
C=g%GuCg",
where ¢°%, g*¥ and g¢*f are respectively defined by
9%y =08,  9"Quy=0y,  JG;=0p.
It is well known that the induced connection
%= (0,Bo"+ BBy {j"}) B,

defined by (3.12) coincides with the Riemannian connection {.%} determined by
the induced metric g of V. Thus we have

V496=0.
Similarly, the induced connections
L7y =0:Cy"+BICy{)C,
Ie%5=(0.C5"+ BCy {1 })Cn
defined by (3. 13) and (3. 14) respectively have the following properties
Vegey=0c02y—1"c"e0ay—1"c"y0:2=0,
Vegr5=0c9,5 — L"c%955— I's9,5 =0.

Transvecting the second equation of (7.1) with BB, and taking account of
(3.8 and (7. 5), we find

(7.7 Jefs%Gea Ve "0y e =0eo.

Transvecting the second equations of (7. 1) with B.’C,* and taking account of (3.8)
and (7.5), we find

(7° 8) fccfydged':()-
Finally, if we transvect (7. 1) with C,’C,* and take account of (3. 8), we find
(7. 9) fyc,ﬁrbgcb:gy.m

The equation (7. 7) shows that /3% and ¢, form an (f, ¢)-structure in V, which is
called the induced (f, 9)-structure of V. An f-surface with such an induced (f, ¢)-
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structure is called a metric f-surface.
In our metric case, the second fundamental tensors 4’s appearing in equations
(3. 16) have the following properties

hey=hes*0""Gay,  he"5=her"0" s,
(7. 10)
D% =Ry gV G ap.
Transvecting the first equation of (3. 17) with B%,, we obtain

Veofot=hy fVs—he'f 2+ ;F) B Byt Bo,
or equivalently

Vefva=hcalSys—hes"f yat+ ;Fin) B! Byt B
because of (7. 10), where we have put

Soo=F"100y=1y"Gar-

Then we have
(7. 12) VefvatVofactVof o= iFin+V:iFn;+VnF ) B By Bo"
by virtue of Au*=hy®. Thus we have

PropositiON 7. 1. For a metric f-surface wm an almost Kdhlevian space, lhe
Jorm fodyp*Adp® is closed (Cf. Nakagawa [5]).

§8. Metric f-surfaces in a Kihlerian space.

We assume that the enveloping space is Kihlerian. Then, by virtue of V;F*
=0, we find from (4. 2)

chba"i'hcbyfya—/lgayfyb :0,
@& 1
chxb'l"hcesze:o,
the second equation of which is equivalent to
Vnya—hccyfca:().

If we take account of the definition (1.2) of the Njienhuis tensor N2, we
have by means of Proposition 7. 1

Nedamcembd = —(Vefdf’i“Vdffe)ffamcgmbd = (foed)ffamc”mbd;

which implies together with (4. 9)

Ned“mc"mb“ = 0.
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Thus, taking account of theorem A stated in §1, we have

TureOREM 8. 1. For a metric f-surface in a Kihlevian spuce, the distribution
M is integrable (Cf. Nakagawa [5]).

Let there be given a metric f-surface in a Kéihlerian space. Then, as a con-
sequence of the condition (a) mentioned in Proposition 4. 3 and /¢ =/4s.%, the induced
f-structure is integrable if and only if

8.2 heo® =M e + 1 ica® — My hed®,
or equivalently

he®y=mhey Fma®hety—mma®hety,
where m®=/%,f,* On the other hand, the first equation of (4. 3) implics

Bee®f e = Re’y [ Vs

Taking account of this equation, we see that (8. 2) is equivalent to the condition
8. 3) Vefoy=—mf1%hea”
as a consequence of (4.2) and (4.7) and we have
8.4 Vefst=me(hey f Vo —hev" )
by means of the first equation of (4.2). Summing up, we have

ProrosiTiON 8.1. For a metric f-surface in a Kdhlevian space, a necessary
and sufficient condition for the induced f-structure to be integrable is that one of
the conditions (8.2) and (8.3) is satisfied. When the induced f-structure is in-
tegrable, the equation (8.4) is satisfied.

It follows from the second equation of (4.4) that
Hcyx :hcexfye =f2c2zyx

is satisfied if and only if S;*=0. Since the third expression of (4. 4) for S¢,* can
be written as

Seagerg?? = —(hev? —F S o hea?) + 1 cHy2Y,
we have the equation H.,®=f%4," above if and only if
Sey°des="Svy Gec-
Thus, taking account of the fourth expression of (4.4) for S.,* we have
ProprosiTION 8. 2. For a metric (-surface wn a Kihlerian space, the condilion

Hcyx:hcezfye :fzclwx
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with A:y°=21,." is equivalent to one of the following three conditions:
Sen®=0,  Sey®0er=>S0y°0ec;  Sey®=0.
Differentiating m,*=f%,f,* covariantly, then we find
Vemu®= —hee™(fo"f s+ S m)
by means of (8. 1), where fe¢=g%efy, fu=gs.f2°~ We thus find
MoV amp® = —mchae*(foof «*+1 %S ),
which implies that the condition
meW gmyt =
is equivalent to the condition
Hey®=f%c2%

On the other hand, the condition e.“V 4m,*=0 is equivalent to the condition
that the distribution M is flat, i.e. that, if we translate any vector belonging to M
parallelly along M, the translated vector belongs always to M (Cf. Walker [14], [15]
and Yano [16]). Thus we have

THEOREM 8. 2. For a metric f-surface in a Kahlevian space, the distribution
M is flat if and only if one of the three conditions mentioned in Proposition 8. 2
is satisfied (Cf. Nakagawa [5]).

We shall now study metric f-surfaces satisfying S;2=0. We know that all
of other S’s vanish if Se¢=0. Thus, if S;*=0, we have from (4. 4)

ol —Fo he®a)—S “o(htaf *—Fhe®2) =0,
SV Hyy®—fYsHy® =0,
he®y+hety [ a=F7che® 1",
SetHey* =0,
from which we obtain
hev®—hea™f S ot =mmis fea®.

Conversely, if the equation above is satisfied, we have H,*=1%c1;,® and /Ay [c"
—fethe®y=0, which implies S;;2=0. Thus we have

ProrosiTioN 8. 3. A necessary and sufficient condition for a metric f-surface
in a Kahlerian space to have vanishing Sa* is thal

@8.5) hov® —f s ea® =M fea®,
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or equivalently
by + fef a%hety =mcma®hey,.

If (8.5) is satisfied, we have H.,*=f%.,,* and consequently the expression
(4. 5) for Le® reduces to

(8. 6) Leop®=—(hev® S fsYhea™) +memythea™.
Taking account of (8.5), we have from (8. 6)
(8. 7) chz= _zfcefbdhedx-

Consequently, if Le® has this form, then Se*=Le*—Ls*=0 and consequently we
have

Hcyx=fzc'zzyw

by means of Proposition 8.2. Therefore, taking account of (4.5) and (8. 7), we
obtain

hcy® —fcefbdhedz =mcembdhedz,
which implies S;*=0 by virtue of Proposition 8. 3. Thus we have

PrOPOSITION 8.4. In a Kdhlervian space, a necessary and sufficieni condilion
Jor a metric f-surface to have vanishing Su® is that

cha,‘: _2fcefbdhedz-
The condition S.y®*=0 is equivalent to (4. 17) because of (4.4). Thus we have

PRrROPOSITION 8.5. For a metric f-surface in a Kéhlerian space, the two condi-
tions

Sa®=0,  Sg*=0
are equivalent to each other.
The equation (8. 5) is equivalent to
Ree™fo?~+hoe"f 2 =0,
which is, by virtue of the second equation of (8. 1), equivalent to
8. 8) Vefoy+Vsfe.=0.
On putting #pe=ms’geq, We have
Moa=f"f gy

and hence
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V v~V imac+V amico
=S VAV V) "agya
F+ oSVt af ) [oeGyotTaf VetV efVa) [10yo
Therefore, the condition
8.9 V empa-+V smac+V amip =0
is equivalent to (8. 8). Thus we have

ProposiTION 8.6. For a metric f-surface in a Kdahlevian space, the condition
Seo®=0 is valid if and only if one of the two conditions (8.8) and (8.9) is satisfied.

From Propositions 8. 3, 8.4, 8 5 and 8. 6, we have

THEOREM 8. 3. For a metric f-surface in a Kahlevian space, the following six
conditions are equivalent to each other:

(a) Se®=0.

(b) Sey®=0.

(c) heo” —fefo hea® =memy hea®.
(d) Lov®=—2fc"fo%hea®.

(e) VefostVof==0.

() V emsa~+V omac+V amer=0.

We now assume that the condition (¢) given in Theorem 8.3 is satisfied.
Then vector field v,=v,f*, satisfies

Vs +V =0,

if Vew,=0 is valid.

Next, if we take an arbitrary geodesic 7*=7%s) in a metric f-surface of a
Kéihlerian space, s being the arc-length of the geodesic, then the condition (f)
given in Theorem 8. 3 is equivalent to the condition

¢ b
d <m dn® dy >=O,

that is, that the function mec(d7c/ds)(dy®/ds) is constant along any geodesic. In
such a.case, we say that mc(dn°/ds) (dn®/ds) is a first quadratic integral of the
system of geodesics (T. Y. Thomas [13]). Thus we have from Theorem 8.3

Tueorem 8. 4. For a metric f-surface in a Kdhlevian space, a necessary and
sufficient condition for Se* to vanish is that the system of geodesics of the metric
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f-surface has a first quadratic integral me(dy|ds) (dptlds). When Sa®=0 is satis-
fied, vector field vy=0v,f"y satisfies

Vcl)b—[—vac:O,
i.e. v*=g%, is a Killing vector field if V.,=0.

We assume now that the tensor field £, is a Killing tensor, i.e. that it satisfies
the condition (Yano [19])

Vefo®+Vsfer=0.

Then, substituting the first equation of (8. 1) in the equation above, we have
Qe g — sy [V — sy f1e=0,

{rom which it follows

Iy =fZcf VhAu®
and consequently

V. fpr=0, Vef=0.

The converse being evident, if we take account of Theorem 4.1, we have

ProrosiTiON 8.7. For a metric f-surface in a Kdhlerian space, a necessary
and sufficient condition for f»* to be a Killing tensor is that one of the following
four conditions is satisfied:

(a) ha® =f e Vokey® Ry =F7cS s Aey"
(b) hov® =f7cfYhay®,  Aey Gua=Aez"Guy.
(c) Vefs2=0.

(d) Vef*y=0 (or equivalently V.f,*=0),

Whefe Zzyx = ﬂyzx.

We next assume that the tensor field fe=fc9es iS harmonic. Since we had 1n
Proposition 7.1

VefoatVofaetVafen=0,
the condition for fe to be harmonic is equivalent to the condition
9° o fo2=—0(her®f o — ey [ '0) =0,
from which we have

habzf:cb:fya'zy; 2y:gwhcbxgacy-
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The converse being evident, we have

ProposITION 8.8. For a metric f-surface in a Kdhlerian space, a necessary
and sufficient condition for fu to be harmonic is that

D™ f o :fyczy, 'zy:gwhcbrgmy-
We now suppose
(8. 10) Ly"=0

in a metric f-surface in a Kéhlerian space. Then, from the definition (2.4) of L.~
and (4. 10), we find

JefLoay®=—W e f =V f 2SSy Vo f "1=0,
from which we have
SoVof7e=0
and consequently
8.11) Vef=s—Vof.=0.

Therefore, the two conditions (8. 10) and (8. 11) are equivalent to each other. Con-
sequently, it follows from Proposition 8.2 that the condition (8. 10) is equivalent
to one of three conditions:

Ser®=0,  Sey®=0,  Hey®=f%c2z"
By means of (4. 2), the condition (8. 11) is equivalent to
Ree®So®—hoe"f =0,

from which we find

hev® +e S o hea® =[7cf VbAzy”,

he®y—fefahey =1 S 2"y,

heyfet+Sethety =0,
2%y being defined by 2.%,=2:,"¢"%guy, and consequently S.,* and S;,* take respec-
tively the form
6.12) { Sev®=2(f *chv® 2 —S *ohe =) F o

Sey®=—2f S ahey+T e (A% yz—2%2y)

because of (4. 4), A%., being defined by 2%.,=2,.%¢%%g.,. Thus we have

ProrosiTiON 8.9. For a metric f-surface in a Kdhlervian space, a necessary
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and sufficient condition for La® to vanish is that
Vef—Vyf.=0.
If this condition is satisfied, the tensors Se;® and So® are given by (8.12) and
Se®=0,  Sey®=0.

Let v*=0%f,* be a vector field belonging to the distribution M and satisfying
Fw*=0. Then we find

Vv =V of2*)0"
=(fuhez)v" =0
by means of (8. 1), because fu®h.%z=1°%hca?9y==0. On putting v,=gsa0?, we obtain
Vers—Vsoe=F cf “s—V 1 f*cJ0,
v, being defined by v,=g¢.,v?. Thus we have from Proposition 8.9

ProrosiTioN 8. 10. If, in a metric f-surface of a Kdhlerian space, Lo®=0 is
valid, then any vector field v*=v>f,* belonging to the distribution M and satisfying
V.*=0 is harmonic.

We assume now that N,?=0 and S.?=0 are satisfied in a metric f-surface of
a Kihlerian space. Then, Sq,*=0 implies S.,®=0, from which we find

he™ " =1 che”.
Therefore, taking account of Theorem 4.1 and Proposition 8.1, we have
(a)  he®=f%cS"A", ey e = 2o Guy.
(8.13) (b)  P.fyr=0.

(c)  Pefm=0.
respectively from (8. 2), (8.4) and (8.3). Thus we have

THEOREM 8. 5. A mnecessary and sufficient condition that the induced f-structure
of a metric f-surface in a Kdhlevian space is integrable and Su*=0 is satisfied is
that one of the three conditions (a), (b) and (c) stated in (8.13) is satisfied.

We next assume that the second fundamental tensor %.,® of a metric f-surface
in a Kéhlerian space has the form

(8. 14) hcbeAxg('h
and satisfies the condition

8. 15) B f,P=0,
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where f?.A, is a certain vector field belonging to the distribution M. If this is
the case, we say that the metric f-surface is f-umbilic. Then the tensor 4q.° has
the form

(8. 16) hcbz:Al‘gcb'i'fchbezyz,
B.,” being a tensor field satisfying the condition
Bzyz-:Byzx.

Conversely, if the condition (8.16) is satisfied, then the metric f-surface is f-
umbilic.
Taking account of (4. 2) and (4. 5), we have from (8. 16)

8.17) Ley™ =2A%(—gev+mco)
and
(8.18) Vef*y=A"feco.

Next, substituting (8. 16) in the first equation of (4. 4), we find
Scba": o
Thus we have

ProrosiTiON 8.11. When a metric f-surface in a Kdhlerian space is f-umbilic,
the conditions

chx:dAx("gcb"‘mcb)r
chxbzAmfcb
are satisfied and moreover Scv®*=0 is valid.

If we assume that a metric f-surface in a Kihlerian space satisfies the condi-
tion

Vef®y—Vsf?e=2Afcr,
or equivalently
Ley® =2A%(—ger+mes)
(Cf. equation (2. 20)), then we have
(8.19) heo® + 1S st hea® =2A%gor—2A Mo+ M her®
by virtue of (4.5). Transvecting (8. 19) with f,?, we find
Hey® =heo" [ =[f*chey”,
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which implies together with (8. 19)
(8~ 20) hch”'l’fcefbdhedm=2Axgcb+fchyb(2zyw“‘2gzyAx).

If we assume moreover that S.*=0 is satisfied in the metric f-surface, then we
have from Proposition 8.3

(8.21) Rev® —fe vl hea® =2 VoA
Adding two equations (8. 20) and (8. 21), we obtain
By = Ager+f 7 VB2,
where
By =220" — g2y A",
Thus, taking account of Proposition 8. 11, we have

THEOREM 8. 6. A necessary and sufficient condition for a metric f-surface in
a Kidhlerian space to be f-umbilic is that two conditions

Scba=0 and chxb——be‘rc=A"’fcb

are satisfied.

§9. Metric f-surfaces in a Fubini space.

We suppose that the enveloping space W is a Fubini space. Then the curva-
ture tensor of W is given by

9.1 Krjin=Rk(GunG ji— G jnGri+ FinFji— FinFri—2Fy;Fin)

with a constant £ (Cf. Yano [20]). If, taking a metric f-surface V in a Fubini
space W, we assume that the holomorphic extension T#(V) of tangent space
of V coincides with the tangent space Tx(W) of W at each point P belonging to
V, we obtain the following equations of Gauss and Codazzi

KijinBd*BoI By B
=Kaeva—Raa e —Rea Rav® )9 oy,
9.2) KiejinBa*B By'Co" =V ahey? =V chav?)9y
KijinBa*BJICCt
=Kacyz—(hav*hcy—hev*ha®y)0 .,
where
Kacvo=Kacr*dea,  Kacya=Kacy9za,
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Kaiv® and Kyy® being the curvature tensors of the induced connections 77.% and
I';®, respectively.
Substituting (9. 1) in (9. 2), we find

k(gdagcb—gcagdb+fdafcb '—‘fcafdb—zfdcfba)

:chba,—'(hdayhcbx —hcayhdbz)gxy,
9. 3)
R(fZafeo—f%cfao—2F acf Z0) =V aher™ —V har”,

k(fxdfyc_fxcfyd):chyx'— (hdbzhcby"hcbﬁhdby)y

Sfw being defined by fye=s"10zy.
If we now assume that for the metric f-surface S.®=0 is valid and the
induced f-structure f»* is integrable (N:,*=0), then we have from Theorem 8.5

.4 Vef®s=0,  ha®=f"fYshn".
Thus, taking account of the well known formula
Vil ef o=V eV o f "y =~ KaerS o+ Kaey"S Yo,
then we have
9. 5) Ko™ *a=Kacy"f s
by means of the first equation of (9.4). Transvecting (9. 5) with f.*, we find
Kaey®fafed=0,

which implies together with the first equation of (9. 3) and the second equation of
0.4

k=0

and consequently Ki;"=0. Therefore, the enveloping space W should be locally
flat. Thus we have

TueoreM 9. 1. In a Fubini space, which is not locally flat, there exists no
metric f-surface such that S.*=0, the induced f-structure f»* is integrable and the
holomorphic extension of tangent space of the f-surface coincides with the tangent
space of the enveloping Fubini space at each point of the f-surface.

Taking account of (9. 4), we have from Theorems 6.2 and 6. 3

Tueorem 9. 2. If, in a Euclidean space EY of even dimensions with the
natural Kihlerian Structuve, theve is given a novmal metric f-surface V such that
the induced f-structure fv* is integrvable and the holomorphic extension of tangent
space of the surface coincides with the tangent space of the enveloping FEuclidean

space EY, then the surface is conjugate to a portion of a submanifold Vappeaﬂ'ng
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in Theorem 6.3 under the group of all motions operating on EN and preserving the
complex structuve of EV and the induced connection {:%} is locally flat.

We next suppose that a metric f-surface V in a Fubini space W is f-umbilic
and the holomorphic extension TE(V) of tangent space of V coincides with the
tangent space Tw(W)of W at each point of V. Then we have from (8. 16)

9. 6) hev®* =A%+ VBw®  Buy®=DBy."
Substituting (9. 6) in the second equation of (9. 3), we find

k(f*afes—F"cfav—2f acf ™)

=V 3A*gs—V . A*gas

6.7

H af* ) o=V e a) s+ 2V af o) —*aV f“0)] Bou®

+1ef "V aBou® —faf "V ¢ Bou®.

Transvecting (9. 7) with f%f,?, we obtain
rkog =2V a1 ?c) Bzy*,
and, substituting (9. 6) in the second equations of (4. 2),
FleVafi)=—rAs,
r being the rank of the induced f-structure f»*. From these two equations we have
0.8 ko§ =—A?B.,".
On the other hand, substituting the first equations of (4. 2) in the identity
Pefo) foat 1oV e f 7a) =0,
we find
Ry S Fa—Tee®f 4 =0,

which implies together with (9. 6)
9.9 (n—r—1)A®=B,,’g** — g"* Bu.®.
Thus we have

ProrosiTiON 9. 1. If, in a Fubini space W, a metric f-surface is f-umbilic and
the holomorphic extension TE(V) of tangent space of V coincides with the tangent
space Te(W) of W at each point P of V, then equation (9.8) and (9.9) are valid.

If we now assume that B,,® appearing in (9. 6) has the form

Byw*=9.yB",
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i.e. that %c® has the form
hev® = A%heo+ B Mo,
then (9. 8) and (9. 9) reduce respectively to

kg*v=—A*BY,
9. 10)
(n—r—1) (A*+B=)=0.
The equations (9. 10) imply, provided n—»—1+0,
k=0, A*=0, B*=0
and consequently
9. 11) her®=0.

Therefore, the enveloping Fubini space W is necessarily locally flat and the surface
V is totally geodesic. Thus we have

THEOREM 9. 3. In a Fubini space W, which is not locally flat, there exists no
metric f-surface V such that its second fundamental tensor he® has the form

hey*=A%g s+ B Mep

and the holomorphic extension TE(V) of tangent space of V coincides with the tangent
space To(W) of W at each point of V, if the rank of the induced f-structure is smaller
than nw—1, the surface V being n-dimensional.

THEOREM 9. 4. When, in a locally flat Fubini space, there exists a metric f-surface
satisfying the conditions mentioned in Theorvem 9. 3, the second fundamental tensor
heo® of the f-surface vanishes identically, i.e. the surface is totally geodesic, if
the rank of the induced f-structure is smaller than n—1, the surface being n-
dimensional.

If, for a metric hypersurface in a Euclidean space of even dimensions 71,
the conditions mentioned in Theorem 9.4 are satisfied, then the hypersurface is a
portion of a hypersphere S™. If this is the case, the induced f-structure is of rank
n—1. (Cf. Kurita [4], Tashiro [10], [11], Tashiro and Tachibana [12], Yano and
Ishihara [21]).
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