
\N,pn\ SUMMABILITY FACTORS OF INFINITE SERIES

BY S. M. MAZHAR

1. 1. Let Σ an be a given infinite series with sn as its n-th partial sum. Also
let {pn} be a sequence of positive real constants such that Pn tends to infinity with
n, where PW=Σ ?=<>/>„. We write

(1.1.1) f»=
•i

The series Σ an is said to be absolutely summable (N, pn) or, simply summable
|AΓ, pn\, if the sequence {tn} is of bounded variation.

If for some finite 5

Σ \s»-s\pv=o(Pn\
V=l

as_ n—>oo, then Σ an is said to be strongly summable (N, pn) or, simply summable
[N,pn\. If

as n—>oo, then 2 an is said to be bounded [N, pn]
Writing pn=l/n in the above definitions we get summability \R, log n, l|,υ

summability [R, log n, 1] and bounded [R, log w, 1] respectively.

1.2. Suppose Σ #n is summable |-/V,/>T O | . Then, since

Sn + l/>w + l = /n-M-Pw + l — /n-Pro,

we have
m m

Σ |S»+l|Λ + l= Σ \ΔtnPn\
1 1
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1) Summability \R, log w, 1| is equivalent to the summability |JV, l/w|.
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=OCP«+ι).

Thus if a series 2 an is summable \N,pn\ it is necessarily bounded [N,pn]
However the converse is not true.

The object of this paper is to obtain a suitable summability factor {λn} so that
boundedness [N, pn] of Σan may imply \N,pn\ summability of Σ βnλn

2.1. In what follows we shall prove the following theorem.

THEOREM 1. If Σ&n is bounded [N,pn], where {pn+ι/pn} is bounded and if
{λn} is a bounded sequence satisfying the following conditions:

m

(a) Σ M4] =0(1),
1

(b)

(c) ΣΛI^+il Λ—=0(1),
2 Pn

m p

(d) Σ T^M^n^oα),
2 ίn

as m-*oo, then Σ Gnλn is summable \N,pn

It may be remarked that the special case for pn=l/n of this theorem has been
recently considered by Kulshrestha [2].

2. 2. Proof of Theorem 1. Let cn=anλn, Γn=Σ£=<A and

We have

- p rPreΓίt~
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( 1 X7*"1 / 1 X™"1

pΓ Σ (Sv+i-tfoK+iA+i-Λ -5- Σ (5y+ι-
- Γ w / V = 0 \ - t n / V = 0

- Σ ^-+1 Σ (s,
Γ^Ti / V=0 μ=0

( 1 \w-2 ί p

4- )Σ Δ T11

^ n /V=0 I A+l

( 1 \ Pn n-l

•p- ~ ̂ n Σ (
•in / Pn μ=0

n / μ=0

Σ (s^ι-

say.

- n V

Now

(2. 2.1)

by virtue of the condition (a) of the hypotheses.
Next

(rτι-2

Σl^i0

rτι-2 m / 1
i Σ Λ ί - H -

V+2 \Γn

by the condition (b) and the hypothesis that {pn+i/pn} is bounded.
Again
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( m / 1 \ n—2
T1 J ( i y1 p p M^

by (2. 2. 1) and conditions (c) and (d) respectively.
Next

Finally, we have

Σ

m-1

= Σ
2

ί
771"1

Σ
2

/α=0

Mlj?

^ ' ""ι

( m / 1 \ n~2 \ /m-2

Σ^ (-5- j Σ Λ + i l Ή . M l +0 Σ Λ+ιl
2 \ r / n / v = o / \v=o

(ra-2

Σ
v=o
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1 \ |\

M \)
+ ι / l /

by conditions (a) and (b) of the hypotheses.
This completes the proof of Theorem 1.

3. 1. The following theorem concerning summability |C, 1| of Σ anλn is a direct
corollary of the above theorem (obtained by taking pn=l).

THEOREM 2. //

(3.1.1) Σ N
1

and {λn} is a bounded sequence such that

(ay Σl^»l=



100 S. M. MAZHAR

(b)' =0(1),

(c)' 2>M
2

as m-+oo, then Σ βnλn is summable |C, 1|.

This is a generalisation of the following theorem of Pati [3].

THEOREM A. If Σ an is summable [C, 1] then Σ anλn is summable |C, 1|, where
{λn} is a convex sequence such that Σ

It may be observed that summability [C, 1] implies (3. 1. 1). Also it is well
known [1, 4] that if {2n} is a convex sequence such that Σ An/n<oo, then λn neces-
sarily satisfies all the above conditions of Theorem 2 but the converse is not true.

The author is highly indebted to Prof. B. N. Prasad for his constant encoura-
gement and helpful suggestions.
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