| N, pn| SUMMABILITY FACTORS OF INFINITE SERIES

By S. M. MazHAR

1.1. Let 3} @, be a given infinite series with s, as its z-th partial sum. Also
let {p.} be a sequence of positive real constants such that P, tends to infinity with
n, where P,=X".p. We write

(1. 1. 1) tn= i ipvsw
n v=0
_ The series 3] @ is said to be absolutely summable (N, pn) or, simply summable
[N, pnl, if the sequence {#.} is of bounded variation.
If for some finite s

Ms

|S,,—S|17,,=O(Pn),
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as n—oo, then 3] a, is said to be strongly summable (N, pn) or, simply summable
[N, p.]. If

Z 1,1 5,=0(Py),

as nw—oo, then X a, is said to be bounded [N, p.].
Writing p,=1/n in the above definitions we get summability |R, log =, 1],?
summability [R, log %, 1] and bounded [R, log %, 1] respectively.

1. 2. Suppose Y @, is summable |N, p.|. Then, since

Sn+1Pn+ 1=tni1Prns1—1aPn,
we have
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1) Summability |R, log #, 1] is equivalent to the summability |N, 1/x].
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=O(Pm+1)-

Thus if a series 3 @, is summable |N, p,| it is necessarily bounded [N, pn].

However the converse is not true.
The object of this paper is to obtain a suitable summability factor {4,} so that

boundedness [N, p»] of X @, may imply |N, p.| summability of Y] @nin.
2.1. In what follows we shall prove the following theorem.

THEOREM 1. If X @ is bounded [N, pn), where {pnei/pn} is bounded and if
{A.} is a bounded sequence satisfying the following conditions:

@ 3141, =0q),

®) 5 2l o,

© 5 P[4 =0,
@ 5 2 )=o),

as m—oo, then Y, ankn is summable |N, pa).

It may be remarked that the special case for p,=1/z of this theorem has been
recently considered by Kulshrestha [2].

2.2. Proof of Theorem 1. Let cp=ani,, Th=72 "4, and

We have
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Now
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by virtue of the condition (a) of the hypotheses.
Next
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by the condition (b) and the hypothesis that {p,1/p.} is bounded.
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by (2. 2.1) and conditions (c) and (d) respectively.

Next
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Finally, we have
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by conditions (a) and (b) of the hypotheses.
This completes the proof of Theorem 1.

3.1. The following theorem concerning summability |C, 1| of X @4, is a direct
corollary of the above theorem (obtained by taking p,=1).

THEOREM 2. If
B.1.1) ; |$,]=0(n)
and {2} is a bounded sequence such that
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: 2
(b) ; " =0(),
(© S ldean) =0,

as m—co, then 3, anhn is summable |C, 1].
This is a generalisation of the following theorem of Pati [3].

THEOREM A. If ] an is summable [C, 1] then Y, ani, is summable |C, 1|, where
{4n} is a comvex sequence such that 3, An/n< oo.

It may be observed that summability [C, 1] implies (3.1.1). Also it is well
known [1, 4] that if {4,} is a convex sequence such that }; 2,/#<co, then 2, neces-
sarily satisfies all the above conditions of Theorem 2 but the converse is not true.

The author is highly indebted to Prof. B. N. Prasad for his constant encoura-
gement and helpful suggestions.
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