
ON AN INVARIANT TENSOR UNDER A CL-TRANSFORMATION

By SATOSHI KOTO AND MITSUGI NAGAO

Tashiro and Tachibana showed some characteristic properties of Fubinian and
C-Fubinian manifolds in their paper [6], where the notion of C-loxodromes was
introduced in an almost contact manifold with affine connection.

The purpose of the present paper is to obtain an invariant tensor, that is, a
tensor which is left invariant under a CL-transformation between two almost
contact manifolds with symmetric affine connections. And Takamatsu and Mizusawa
have performed the similar consideration about infinitesimal CL-transformations. [2],

§1. Preliminaries. [4, 5, 7, 8].

Let there be given, in an Af-dimensional differentiable manifold M of class C°°,
a non-null tensor field / of type (1, 1) and of class C°° satisfying /3-f/=0. When
the rank of / is constant everywhere and is equal to r, such a structure is called
an /-structure of rank r. r is necessarily even.

Now, let M be a (2n+l) -dimensional differentiable manifold of class C°° for
which the second axiom of countability holds true. If there exist a mixed tensor
//, a contravariant vector field fi and a covariant vector field fjf all of which are
of class C°°, satisfying the conditions:

then such a manifold M is said to have an almost contact structure (//, f\ //) of
class C°° and we call the manifold an almost contact manifold of class C°°.

It is well-known that in a manifold with an almost contact structure (//, f\ /))
of class C°°, there exists a positive definite Riemannian metric g^, which is called
a Riemannian metric associated with the almost contact structure, such that

fi = Qvfj, Qjifh]fk% = Qhk -fhfk.

We call the set (//, f\ /,, QJI) an almost contact metric structure and a manifold
with an almost contact metric structure (//, f\ fj, gώ of class C°° is called an
almost contact metric (or Riemannian) manifold of class C°°.

In a (2^+l)-dimensional differentiable manifold with an almost contact structure
(//>/*>//)» the following properties are satisfied:

(1.1) /iΛ=l,
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(1.2) f*>ff=-dt+f%,

(1. 3) ///>=0,

(1. 4) /ΛΛ=0,

(1. 5) rank (ff)=2n.

Therefore, the almost contact structure is an /-structure of rank 2n, where // are
components of /.

Furthermore, if this manifold has an associated metric and //$ is defined as
fjhgm, then in addition to (1. 1)~(1. 5) the following relations hold true:

(1.6) Λί =-/».,

(1. 7) rank (fjί)=2n,

(1. 8) f^=O^Jfj,

(1. 9)

If, in a (2^-fl)-dimensional differentiable manifold Λf, there exists a differentiable
1-form / such that /Λ(d/)π^0 everywhere, then such a manifold is called to have
a contact structure / and we call the manifold a contact manifold.

It is well-known that in any contact manifold with a contact structure / there
exists always an almost contact metric structure (//, /*, /,, gjt) such that

where, in terms of a local coordinate system x\ f is expressed as f^fidx1 and d$
denotes d/dx\ Such an almost contact (metric) structure is simply called a contact
(metric) structure. If a (2^+1) -dimensional differentiable manifold has a contact
metric structure (//, /% fjf g^) in the above sense, then the following relations
hold true,

(1. 10) fjhghi=fji= - - (^Λ-^Λ),

(1. 11)

(1.12)

(1. 13) fJΦ,fih=Q,

(1. 14) Γ,/^=0,

(1.15)

where F^ denotes the covariant differentiation with respect to the Riemannian
connection.
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Next, an almost contact or a contact manifold are called to be normal if the
tensor

vanishes, where Ntf is the Nijenhuis tensor defined by //. If a contact metric
manifold is normal, then the following equations are satisfied:

(i. 16) r>ft=fji,

(l I?) ?*fji=fjgki-fιgkj,

(I- 18) K^f^fjcgjt-fy^

(1. 19) Kjif
i=2nfJ,

where Kkji

h and Kjt denote the Riemannian curvature tensor and the Ricci tensor
respectively.

Now if we put

(1. 20) Hji= -~KJiabf*
b= - ~-K^h\

then Hji is skew symmetric and we have

(1- 21) H^Kawf^Kaitff.

Moreover operating Vι to (1. 17) and taking use of the Ricci's formula we get

(1. 22) ffKai = (2n-ΐ)fίt-HJt,

and hence

(1. 23) fj"Kai+fiaKja = 0.

Multiplying (1. 22) by fιj and summing for j we have

(1. 24) Λαflrαί=-K}i-(2n-l)gy*-/JΛ,

(1. 25) fjaHai+fiaffja = 0.

§2. Manifolds with corresponding C-loxodromes.

Let M be a (2^+1) -dimensional differentiable normal contact manifold with an
associated almost contact metric structure (//, /% fjy QJI) and with the Riemannian
connection Γμh.

The equation of a C-loxodrome in the manifold M in terms of any parameter t is
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where δ indicates the covariant differentiation along the curve, a is a function of
t and a is a constant. [6].

If fM is a second (2n+l)-dimensional differentiate manifold with an almost
contact structure (//,/% //) and Tjih is its symmetric affine connection, then the
equation of its C-loxodrome is analogous to (2. 1) and is obtained by replacing Γ/Λ a
and a in (2. 1) by Ty^, 'a and 'a respectively.

Suppose that there exists a CL-transformation (correspondence), that is, to C-
loxodromes in M there correspond C-loxodromes in 'M. Then the equation

must be satisfied identically. By the usual process it follows that their connections
are in the relation

(2. 2) 'Γίi*=Γίi*+%pi+%pj+c(f,fi*+flfj*\

where the vector field pi is equal to (fΓai
a— Γaί

a)/2(n-}-l) and a constant c is equal
to ('a-ά)l2.

Let Kkjih and ̂ ^ be the curvature tensors for the connections Γ ̂  and Tjτ

h

respectively. Then the respective curvature tensors are related to each other by
the relation

(2.3)

where we put

(2. 4) Pa

and 17 j denotes the covariant differentiation with respect to the connection Γ/A [6].
Contracting h and k in (2. 3), we have

(2.5) /Kji=KJi

Contracting h and ϊ in (2. 3), we have

Since 'Kji+'Kjia*, Kj^,fJfilJrf^f^l are symmetric in y and i, it follows easily that
Pji is symmetric in y and L [1]. Accordingly it follows that the tensor 'Kji='Kaji

a

formed by the connection 'Γ^ must be symmetric in this case. Consequently we
have instead of (2. 3) and (2. 5)

(2.6) '/&y**=/2yi*-^<+^«^^
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(2. 7) 'Kii=Kii-2nPfl+cri(f,ft+fJfi.

Substituting (2. 7) into (2. 6) to eliminate Pjt, we get

2n'
(2.8)

-V A f*fih+f^f*h)}-c{!Wl(f3f^
l+f^fj

l)-ψl(M^l+f^f J}},

where PF*^* is the so-called Weyl's projective curvature tensor, i.e. [1]

(2. 9) Ww^Rtjt*- ~ (StKji-iήKtύ.

In the following, if X is a quantity in M, then we denote the corresponding
quantity in 'M as 'X. Since the manifold M is normal contact, we see that the
equation (2. 8) is rewritten as follows:

n' WVi
κ

(2. 10)

Transvecting on both sides of this equation with /*/Λ, we have

(2. 11) Λ/PΓw1*/*/»=«Wwi*/*Λ+ί:(n+l)(Λί-Λ/,).

Substituting (2. 11) into (2. 10) to eliminate gμ, we have

(2. 12) ' PΓWi*+'J3yi»=

where we put for simplicity

(2. 13)

Further, transvecting on both sides of (2. 12) with ftf, we get

(2. 14) (/ίΓW4

fc+'Aiy<»)Λ*=(ΪΓwi*+Aiίi»)Λ*+ί:(2»+l)Λ<.

Lastly, substituting (2. 14) into (2. 12) to eliminate fμ, we obtain

(2. 15)

where we put

+//( Wa^+X^i") ~fk

h( Waf
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Substituting (2. 9) and (2. 13) into this equation, we obtain

(2. 16)

Thus if there exists a CL-correspondence between two manifolds M and 'M, then
the tensor Lkjih has the same components for them. In this sense we shall call
the tensor Lkji

h defined by (2. 16) the CL-curvature tensor. Consequently, we obtain
the following

THEOREM 1. Let M be a (2n-srl)-dimensional differentiate normal contact
manifold with an associated almost contact metric structure (//, /% fj9 QJI) and with
the Riemanian connection Γ/Λ And let 'M be a (2njrl)-dimensional differentiate
manifold with an almost contact structure (//, /% /}) and with a symmetric affine
connection Tjih. If the two manifolds M and 'M are related to each other under
a CL- trans formation, then their CL-curvature tensors have the same components.

§3. CL-flat manifolds.

The CL-curvature tensor Lkjί
h, which was obtained in the preceding section, is

able to be defined in an almost contact manifold with a symmetric aίrlne connection.
Now, if the tensor Lkjίh vanishes identically, then we shall call such a manifold to
be CL flat.

Let M be a normal contact manifold with an associated almost contact metric
structure (fjl, f \ f j , gjί) and with the Riemannian connection {$}. In the manifold
M, on account of (1. 18), (1. 19) and (1. 22) we have
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Therefore the CL-curvature tensor of the manifold M is expressible in the form

(3.

And if the manifold M is CL-flat, then we have

—

/I \~ X

Hu+fri-f^

Lowering the index h, we have

(3. 2)

Since /δbyίΛ is skew symmetric in i and h, we have the identity

Substituting (3. 2) into this identity and making use of (1. 19) and (1. 25), we have

(3. 3) ^ί

where X" is the scalar curvature of the manifold M. Therefore it follows that the
manifold M is ^-Einstein and hence K= const. [3].

Substituting (3. 3) into (1. 22), we have
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(3.4) Hji

If the expressions (3. 3) and (3. 4) are substituted in (3. 2), the resulting equation
is reducible to

f£kjih=(

(3.5) +k(fkhfji-fjhfki-2fk,fijt')

— k(gkhf,fi+gjifkfh—Qjnfkfi—gmfjfh),

where

K-2n(2n+ϊ)
K ~~~ *

Therefore it follows that the manifold M is locally C-Fubinian. Thus we have the

THEOREM 2. If a normal contact metric manifold is CL-flat, then the manifold
is locally C-Fubinian.

When an almost contact metric manifold is of constant curvature, then from
(2.16) it is easily seen that the CL-curvature tensor vanishes identically, that is,
the manifold is CL-flat. Therefore we have the

THEOREM 3. An almost contact metric manifold of constant curvature is CL-
flat.

THEOREM 4. A normal contact metric manifold related to an almost contact
metric manifold of constant curvature under a CL-transformation is locally C-
Fubinian.

In particular, we have the

THEOREM 5. A normal contact metric manifold related to a locally Euclidean
almost contact metric manifold under a CL-transformation is locally C-Fubinian.
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