
ON A CERTAIN FUNCTIONAL-DIFFERENTIAL INEQUALITY

BY SHOHEI SUGIYAMA

Introduction.

Recently, the method using the relations described by some inequalities has
been applied to the uniquenes problem for certain functional equations. For ex-
ample, Nickel [5] has considered a functional equation including an operator T such
that

(1) F(i,a?',a?, Γa?)=0,

and obtained various criteria for the uniqueness of solutions of (1). If the operator
T will be defined suitably, (1) will yield various types of equations. For example,
if F(t, x, y, z) is of the form such that

F(t, x, y, z)=y—g(t, χ)-z,

and if T is defined by

(1) is reduced to an integro-differential equation

x'=g(t, x)+\ K(t, s, x(s))ds.
Jo

Hence, the results in [5] will be applicable to the uniqueness problem of a very
wider class of equations.

On the other hand, it has been shown in [2] that the Lyapunov function is
applicable to the uniqueness problem for differential equations and also shown in
[1] that some estimations for solutions of differential inequalities yield the uniqueness
theorem for differential equations.

In this paper, a functional-differential inequality including an operator T such
that

\x'-f(t,x,Tx)\^e(ϊ),

in which a functional-differential equation corresponds to the case e(/) = ϋ, will be
considered as well as the existence problem for

(2) xf=f(tίx)Tx).
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§ 1. Existence theorem.

1. Existence theorem. As a preparation for § 2, we first consider briefly the
existence problem of solutions for (2) in the introduction.

Let / be an interval O^ί^ti, Di and D2 the domains \x—xQ\^a and \y\^b in
Rn respectively.υ Let f(t, x, y) be a continuous function of t, x, y defined on

z, and \f(t,x, y)\^M be satisfied on IxDiXDz
Next, we introduce a family of functions x(f) continuous on the interval Λ:

πιin(ίι, a/M) and contained in DI. If we denote the family by 2ft, it is
clear that 2ft is a convex set. With this definition of 2ft, we define an operator T
which satisfies the following conditions:

(i) for any x in 2ft, Tx is a continuous vector function on 70 contained in Dz,
(ii) for any sequence {xm(t}} in 9ft uniformly convergent to x(t) (fe/0) in 2ft,

(ΓtfmXO also uniformly converges to (7a?)(0 (fe70).2)

Then, if we introduce a second operator U such that

=Λ?o+ \ f(s, x(s\ (Tx)(s))ds9Jo

for any x in 2ft, it is easily observed that the family £72ft is a convex subset of 2ft.
From the hypotheses on/and 70, it is easily shown that the inequality | Ux\^\xϋ\-\ \a\
is satisfied for any element in £72ft, that is, every element in £72ft is uniformly
bounded. Furthermore, for any points έ', ί" in 70, we have

\(Ux)(f)-(Ux)(t")\^\} f(s,x(s),(Tx)(s))ds ^

which implies the equi-continuity of Ux. Since 2ft and £72ft are convex sets, U is
the contraction operator, and every element in t/2ft is uniformly bounded and equi-
continuous, then it follows that there exists at least a fixed point in 2ft such that
Ux—x. It is easily observed that this fixed point corresponds to a continuous
solution of the equation

"' \s,x(s),(Tx)(sy)ds,

or equivalently, x(f) is a solution of a functional-differential equation

α i \ «,/ — f(+ ~, 7VΛ vf(\\~v 1cT
. L) dj J \i) JL>, J-^Jί Jj\\J) i Λ / Q j ί t J O

Thus, we have the following

THEOREM 1. Let f(t, x, y) be a continuous function of t,χ,y and \f\^M on
IχDιXD2, and T a continuous operator defined above. Then, there exists at least a

1) In this paper, it is supposed that, for any scalar function x, Tx is also scalar and the
norm of x is as usual the sum of the absolute values of each element.

2) Since the operator T is always supposed to be continuous, some class of equations,
for example, difference-differential equations of neutral type will be excluded.
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continuous solution of the functional-differential equation (1.1) on 0^/^min (ί1} a]M).

2. Maximal and minimal solutions. It may not be expected that the uniqueness
of solutions is established, even if f(t, x, y) is continuous on 70 X Di X D2. From this
reason, it is useful to introduce the maximal and minimal solutions of (1. 1) as in
the theory of differential equations.

In this paragraph, all variables are supposed to be scalar, and we first prepare
a following

LEMMA 1. In the two equations

(1.2) x'=f(l, x, Tx), χ (0)=χ υ,

(1.3) y'=g(t,v,Tu), i/(0)-y0,

suppose thai f(έ, x, y) and y(t,x,y) are continuous on Λ x / Λ x / Λ and the existence
of continuous solutions of (1. 2) and (1. 3) on 70 is already established.

Then, if x0=yo, and if f(t,u,v)<.y(t,u,v) is satisfied on 7 0x7Λx7Λ, every so-
lution of (1. 2) is not greater than any solution of (1. 3) on 70.

The proof of this lemma is so similar to that in the theory of differential
equations that it is omitted.

Corresponding to the equation (1. 1), for any constant ε>0 we consider an
equation

(1.4) #'=/(*, Λ , Tx)+ε, Λ (0)=α?0.

Then, it follows from Theorem 1 that there exists at least a continuous solution of
(1.4) on an interval L: Q^t^ts=min(t0,a/(M+e)). It is apparent that 7e tends to
70 as ε—»+0. Since the solution may depend on ε, we denote it by x(t, έ). From
the above Lemma 1, we obtain that any continuous solution x(t) of (1.1) is not
greater than x(l,έ) on 7β, that is, we have an inequality x(t)^x(t,ε) on 7C. I3y a
wellknown theorem of Dini, as ε—>+0, the function x(£, ε) uniformly converges to a
function φ(t) which is a continuous solution of (1. 1) on 70. Hence, the inequality
x(f)^φ(t) remains valid on 70 for any solution x(f) of (1.1).

Similarly, if we consider an equation

xr =f(t, x} Tx) — ε, α?(0) = XQ

for ε>0, there exists a continuous solution φ(l) of (1. 1), for which the inequality
φ(i)^x(t)^φ(t) is fulfilled on 70 for any solution x(l) of (1. 1). Thus, we obtain two
continuous solutions φ(t) and ψ(t) which are called the maximal and minimal solu-
tions respectively.

§ 2. Functional-differential inequalities.

In order to derive the uniqueness theorem for (1.1), we first deal with the
functional-differential inequalities such that

(2. 1) \x'-f(t, x, Tx)\^εi(έ), x(V)=Xί (i=l, 2)
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on Jo, which is reduced to the equation (1. 1), if £i(f)=Q. Since every solution of
(2. 1) may depend on xίy we denote it by x(t, xt), or sometimes it will be abbreviated
by x*(f).

In the sequel, it is supposed that / and T be the same as defined in § 1, and

£i(t) (£=1,2) continuous on 70. Then, we introduce a F-function as follows.
Let V(t, x) be a function of t and x satisfying the following conditions:
( i ) V(tyx) is continuous and non-negative for fe/0 and |x|<oo;
(ii) V(t,x)=Q implies x=0 uniformly in t\
(lϊi) V(t, x) satisfies the Lipschitz condition such that

where k(ί) is continuous on 70.
Corresponding to such a function V(t, x), we define two quantities

, xl9 yί} x2, 7/2), DV(t,

by setting

(2* 2) xι, Λ a -

Λ-»0

for any α?i, '</i, ί and any continuous functions x(l), y(t) (/e/0).

LEMMA 2. For α^y solutions x, y of (2. 1), the inequality

(2. 4) |bF(ί, x, y, Tx, Ty)-DV(t, x-y)\ ^ *(0(eι(0+ea(0)

remains valid on IQ.

Proof. By the definitions of (2. 2) and (2. 3), it follows that

\W(t,x,y, Tx, Ty)-DV(t,x-y)\

Now, we choose a function ω(ί, x, y) such that it is a continuous and non-
negative function of t,x,y for fe/0, 0^^<oo, |?/|<oo. Furthermore, it is supposed
that ω(£, x, y) is monotone increasing with respect to y for any fixed t and #. With
this choice of the function ω(t, x, y), we consider a functional-differential equation

(2. 5) r*=ω(t, r, T¥)+k(f)(Sl(f)+e^.

Here, it is necessary to re-define the operator T with some additional conditions.
Suppose that the operator T satisfies the following conditions:
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( i ) for any continuous function x on 70, Tx is also a continuous function on 70;
( ii ) T is a continuous operator;
(iii) for any continuous functions x and y on 0^iί<s, where s is an arbitrary

constant not greater than to, if x^y for 0^/<s, then Tx^Ty holds good for t=s.
From the above definition, it is observed that there exists at least a continuous

solution of (2. 5) on a certain interval (Q^t^ti (^ίo)) Hence, in the following, it
is supposed that 70 is the existence interval of continuous solutions of (2. 5).

THEOREM 2. Let r0(f) be the maximal solution of (2. 5) under the initial con-
dition r(0) = F(0, xι - #2). Then, if

(2. 6) bF(ί, x, y, Tx, Ty)^ω(t, V(t, x-y\ (TV)(t, x-y}}

for any continuous functions x, y on 70, we obtain the following estimation

(2. 7) V(t, x(t, xι)-x(t, a?2))^r0(0, teI0.

Proof. Corresponding to the equation (2. 5), we consider an equation

(2. 8) rf = ω(t, r,

Let rp(t) be a continuous solution of (2. 8) under the initial condition r(0)
= V(Q,xι—x2)

Jrp. Since F(0, #ι— #2)O/0), it follows from Lemma 1 and the conti-
nuity of V and rp that there exists an interval Q^t^tz, on which the inequality
V(t,x(t,x1)—x(t,X2))^rp(t) remains valid. Then, if we denote by 4 the supretnum
of £>, and if t2<to, it turns out that

V(t, xl(f)-xl(f)')- V(U, x\

Hence, from the above relations and the properties of ω and T, it follows that

which is a contradiction, since p>0. Hence, the inequality

remains valid on the whole interval 70. Since rp(t) uniformly converges to the
maximal solution r0(f) of (2. 5) as p— >-|-0, we obtain the desired inequality (2. 7),
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which completes our proof.
In the above result, if £i(t) = Q (/=!, 2), we can apply Theorem 2 to the unique-

ness problem for the functional-differential equation (1. 1).

THEOREM 3. Under the hypotheses of Theorem 2, if the equation (2. 5) has only
the zero solution, the uniqueness of solutions of (1. 1) is established.

Proof. Let xι(f) and x2(t) be two solutions of (1.1). Then, it follows from
Theorem 2 that

V(t, xι(ί} —^2(/))^rr0(/)^0, fe/0.

Since Fi^O and V(t, x)=Q implies #=0 uniformly in /, we have .7α(/) = .ro(/), which
proves the uniqueness of solutions.

If F= |#|, the inequality (2. 6) is replaced by

(2. 9) \f(t, x, Tx)-f(t, y, Ty)\^ω(t, φ, Tψ\ φ~ V(t, x-y}.

Then, we have the following corollary which corresponds to a theorem of Perron
in the theory of differential equations.

COROLLARY 1. If the inequality (2. 9) is satisfied, and if the equation (2. 5)
has only the zero solution, the uniqueness of solutions of (1. 1) is established.

On the other hand, let M(r) be a function satisfying the following conditions:
( i ) M(r) is defined and continuous for Or^r<oo;
(ii) M(0)^0 and M(r) is non-decreasing for 0^r<oo, and M(r)=0 if and only

if r=0;

(iii) lim \

Then, we obtain the following

COROLLARY 2. Suppose that M(r) is the same function defined as above and
the inequality

\ f ( t , x , Tx)-f(t,y, Ty)\^φ(t)(M(\x-y\)+M(T\x-y\y)

is fulfilled for any t and any continuous functions x, y on L. Then, if T is a
bounded operator, the uniqueness of solutions is established.

§ 3. Applications.

1. Integro-differential equations. In (2. 1), if /(/, x, ?/) is of the form

f(t, x, y)=a(t, Λ?)

and if the operator T is denned by
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the inequality (2.1) is considered to be an integro-differential inequality such that

Jo

and the equation (1. 1) becomes an integro-differential equation such that

(3. 2) x'=g(t, x)+ (W, s, x(s))ds, χ(0)=χ0,

which is called the integro-differential equation of Volterra type. For these ine-
quality and equation, we can apply every result as already shown in the preceding
sections. As an example, we consider a particular case with strong conditions that
g and K satisfy the Lipschitz conditions such that

\g(t, χι)—g(t, a?2) I ̂ L\xL-x2\,

\K(t, s, yι)-K(t, 5, ϊfe)l ^.M\yι-y*\,

where L and M are positive constants. Then, if we choose a function

=Lr(£)+M\ r(s)ds
Jo

as an co-function, the result in Theorem 2 yields the estimation

\x(t,xι)—x(t,xz)\

where

From the above estimation, it follows that, if ετ(t) = Q (i=l, 2), the uniqueness
of solutions of (3. 2) is established, and furthermore, every solution of (3. 2) is a
continuous function of initial values.

2. Difference- differential equations. In (2. 1), if T is denned by

where s ranges over a^s^t, we obtain the functional-differential inequality and
equation respectively such that

and

x'=f(t,x,x(sy).

On the other hand, if T is defined by

\x(t-1ϊ) (AriO,j % — j
\φ(t) (
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where h is a positive constant, we obtain the difference-differential inequality and
equation such that

x'(f)—f(t, x(t\ x(t-h))\ ^ε(t)

and

χ'(f)=f(t,x(t),x(t-Kj).

These functional-differential inequalities and equations have been already investi-

gated in detail, for example, Cf. [3, 4,6, 7]
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