ON A CERTAIN FUNCTIONAL-DIFFERENTIAL INEQUALITY

By Shohei Sugiyama

Introduction.

Recently, the method using the relations described by some inequalities has been applied to the uniquenes problem for certain functional equations. For example, Nickel [5] has considered a functional equation including an operator T such that

$$
\begin{equation*}
F\left(t, x^{\prime}, x, T x\right)=0, \tag{1}
\end{equation*}
$$

and obtained various criteria for the uniqueness of solutions of (1). If the operator T will be defined suitably, (1) will yield various types of equations. For example, if $F(t, x, y, z)$ is of the form such that

$$
F(t, x, y, z)=y-g(t, x)-z,
$$

and if T is defined by

$$
T x=\int_{0}^{t} K(t, s, x(s)) d s
$$

(1) is reduced to an integro-differential equation

$$
x^{\prime}=g(t, x)+\int_{0}^{t} K(t, s, x(s)) d s
$$

Hence, the results in [5] will be applicable to the uniqueness problem of a very wider class of equations.

On the other hand, it has been shown in [2] that the Lyapunov function is applicable to the uniqueness problem for differential equations and also shown in [1] that some estimations for solutions of differential inequalities yield the uniqueness theorem for differential equations.

In this paper, a functional-differential inequality including an operator T such that

$$
\left|x^{\prime}-f(t, x, T x)\right| \leqq \varepsilon(t),
$$

in which a functional-differential equation corresponds to the case $\varepsilon(l) \equiv 0$, will be considered as well as the existence problem for

$$
\begin{equation*}
x^{\prime}=f(t, x, T x) . \tag{2}
\end{equation*}
$$

Received March 21, 1965.

§ 1. Existence theorem.

1. Existence theorem. As a preparation for $\S 2$, we first consider briefly the existence problem of solutions for (2) in the introduction.

Let I be an interval $0 \leqq t \leqq t_{1}, D_{1}$ and D_{2} the domains $\left|x-x_{0}\right| \leqq a$ and $|y| \leqq b$ in R^{n} respectively. ${ }^{1)}$ Let $f(t, x, y)$ be a continuous function of t, x, y defined on $I \times D_{1} \times D_{2}$, and $|f(t, x, y)| \leqq M$ be satisfied on $I \times D_{1} \times D_{2}$.

Next, we introduce a family of functions $x(t)$ continuous on the interval I_{0} : $0 \leqq t \leqq t_{0}=\min \left(t_{1}, a / M\right)$ and contained in D_{1}. If we denote the family by \mathfrak{M}, it is clear that \mathfrak{M} is a convex set. With this definition of \mathfrak{M}, we define an operator T which satisfies the following conditions:
(i) for any x in $\mathfrak{M}, T x$ is a continuous vector function on I_{0} contained in D_{2};
(ii) for any sequence $\left\{x_{m}(t)\right\}$ in \mathfrak{M} uniformly convergent to $x(t)\left(t \in I_{0}\right)$ in \mathfrak{M}, $\left(T x_{m}\right)(t)$ also uniformly converges to $(T x)(t)\left(t \in I_{0}\right) .{ }^{2)}$

Then, if we introduce a second operator U such that

$$
U x=x_{0}+\int_{0}^{t} f(s, x(s),(T x)(s)) d s, \quad t \in I_{0}
$$

for any x in \mathfrak{M}, it is easily observed that the family $U \mathfrak{M}$ is a convex subset of \mathfrak{M}. From the hypotheses on f and I_{0}, it is easily shown that the inequality $|U x| \leqq\left|x_{0}\right|+|a|$ is satisfied for any element in $U \mathfrak{M}$, that is, every element in $U M$ is uniformly bounded. Furthermore, for any points $t^{\prime}, t^{\prime \prime}$ in I_{0}, we have

$$
\left|(U x)\left(t^{\prime}\right)-(U x)\left(t^{\prime \prime}\right)\right| \leqq\left|\int_{t^{\prime}}^{t^{\prime \prime}} f(s, x(s),(T x)(s)) d s\right| \leqq M\left|t^{\prime \prime}-\iota^{\prime}\right|
$$

which implies the equi-continuity of $U x$. Since \mathfrak{M} and $U \mathfrak{M}$ are convex sets, U is the contraction operator, and every element in $U M$ is uniformly bounded and equicontinuous, then it follows that there exists at least a fixed point in \mathfrak{M} such that $U x=x$. It is easily observed that this fixed point corresponds to a continuous solution of the equation

$$
x(t)=x_{0}+\int_{0}^{t} f(s, x(s),(T x)(s)) d s,
$$

or equivalently, $x(t)$ is a solution of a functional-differential equation

$$
\begin{equation*}
x^{\prime}=f(t, x, T x), \quad x(0)=x_{0}, \quad t \in I_{0} \tag{1.1}
\end{equation*}
$$

Thus, we have the following
Theorem 1. Let $f(t, x, y)$ be a continuous function of t, x, y and $|f| \equiv M$ on $I \times D_{1} \times D_{2}$, and T a continuous operator defined above. Then, there exists at least a

[^0]continuous solution of the functional-differential equation (1.1) on $0 \leqq t \leqq \min \left(\ell_{1}, a / M\right)$.
2. Maximal and minimal solutions. It may not be expected that the uniqueness of solutions is established, even if $f(t, x, y)$ is continuous on $I_{0} \times D_{1} \times D_{2}$. From this reason, it is useful to introduce the maximal and minimal solutions of (1.1) as in the theory of differential equations.

In this paragraph, all variables are supposed to be scalar, and we first prepare a following

Lemma 1. In the two equations

$$
\begin{array}{ll}
x^{\prime}=f(l, x, T x), & x(0)=x_{0}, \\
y^{\prime}=g(t, y, T y), & y(0)=y_{0}, \tag{1.3}
\end{array}
$$

suppose that $f(t, x, y)$ and $g(t, x, y)$ are continuous on $I_{0} \times D_{1} \times D_{2}$ and the existence of continuous solutions of (1.2) and (1.3) on I_{0} is already established.

Then, if $x_{0} \leqq y_{0}$, and if $f(t, u, v)<y(t, u, v)$ is satisfied on $I_{0} \times D_{1} \times D_{2}$, every solution of (1.2) is not greater than any solution of (1.3) on I_{0}.

The proof of this lemma is so similar to that in the theory of differential equations that it is omitted.

Corresponding to the equation (1.1), for any constant $\varepsilon>0$ we consider an equation

$$
\begin{equation*}
x^{\prime}=f(t, x, T x)+\varepsilon, \quad x(0)=x_{0} . \tag{1.4}
\end{equation*}
$$

Then, it follows from Theorem 1 that there exists at least a continuous solution of (1.4) on an interval $I_{\varepsilon}: 0 \leqq t \leqq t_{s}=\min \left(t_{0}, a /(M+\varepsilon)\right)$. It is apparent that I_{ε} tends to I_{0} as $\varepsilon \rightarrow+0$. Since the solution may depend on ε, we denote it by $x(t, \varepsilon)$. From the above Lemma 1, we obtain that any continuous solution $x(t)$ of (1.1) is not greater than $x(l, s)$ on I_{s}, that is, we have an incquality $x(t) \leqq x(l, s)$ on I_{c}. By a wellknown theorem of Dini, as $\varepsilon \rightarrow+0$, the function $x(l, \varepsilon)$ uniformly converges to a function $\bar{\varphi}(t)$ which is a continuous solution of (1.1) on I_{0}. Hence, the inequality $x(t) \leqq \bar{\varphi}(t)$ remains valid on I_{0} for any solution $x(t)$ of (1.1).

Similarly, if we consider an equation

$$
x^{\prime}=f(t, x, T x)-\varepsilon, \quad x(0)=x_{0}
$$

for $\varepsilon>0$, there exists a continuous solution $\varphi(t)$ of (1.1), for which the inequality $\underline{\varphi}(t) \leqq x(t) \leqq \bar{\varphi}(t)$ is fulfilled on I_{0} for any solution $x(t)$ of (1.1). Thus, we obtain two continuous solutions $\bar{\varphi}(l)$ and $\varphi(t)$ which are called the maximal and minimal solutions respectively.

§ 2. Functional-differential inequalities.

In order to derive the uniqueness theorem for (1.1), we first deal with the functional-differential inequalities such that

$$
\begin{equation*}
\left|x^{\prime}-f(t, x, T x)\right| \leqq \varepsilon_{i}(t), \quad x(0)=x_{i}(i=1,2) \tag{2.1}
\end{equation*}
$$

on I_{0}, which is reduced to the equation (1.1), if $\varepsilon_{i}(t) \equiv 0$. Since every solution of (2.1) may depend on x_{i}, we denote it by $x\left(t, x_{i}\right)$, or sometimes it will be abbreviated by $x^{i}(t)$.

In the sequel, it is supposed that f and T be the same as defined in $\S 1$, and $\varepsilon_{i}(t)(i=1,2)$ continuous on I_{0}. Then, we introduce a V-function as follows.

Let $V(t, x)$ be a function of t and x satisfying the following conditions:
(i) $V(t, x)$ is continuous and non-negative for $t \in I_{0}$ and $|x|<\infty$;
(ii) $V(t, x)=0$ implies $x=0$ uniformly in t;
(iii) $V(t, x)$ satisfies the Lipschitz condition such that

$$
|V(t, x)-V(t, y)| \leqq k(t)|x-y|,
$$

where $k(t)$ is continuous on I_{0}.
Corresponding to such a function $V(t, x)$, we define two quantities

$$
\mathfrak{D} V\left(t, x_{1}, y_{1}, x_{2}, y_{2}\right), \quad D V(t, x(l)-y(l))
$$

by setting

$$
\begin{align*}
& \delta V\left(t, x_{1} y_{1}, x_{2}, y_{2}\right) \\
= & \varlimsup_{h \rightarrow 0}-\frac{1}{h}\left(V\left(t, x_{1}-y_{1}+h\left(f\left(l, x_{1}, x_{2}\right)-f\left(l, y_{1}, y_{2}\right)\right)-V\left(l, x_{1}-y_{1}\right)\right)\right. \tag{2.2}\\
& D V(t, x(t)-y(t))
\end{align*}
$$

$$
\begin{equation*}
=\varlimsup_{h \rightarrow 0} \frac{1}{h}(V(t+h, x(t+h)-y(t+h))-V(l, x(l)-y(t)) \tag{2.3}
\end{equation*}
$$

for any x_{i}, y_{i}, t and any continuous functions $x(t), y(t)\left(t \in I_{0}\right)$.
Lemma 2. For any solutions x, y of (2.1), the inequality

$$
\begin{equation*}
|\Delta V(t, x, y, T x, T y)-D V(t, x-y)| \equiv k(t)\left(\varepsilon_{1}(t)+\varepsilon_{2}(t)\right) \tag{2.4}
\end{equation*}
$$

remains valid on I_{0}.
Proof. By the definitions of (2.2) and (2.3), it follows that

$$
\begin{aligned}
& |\delta V(t, x, y, T x, T y)-D V(t, x-y)| \\
\leqq & \varlimsup \prod_{h \rightarrow 0} \frac{1}{|h|} k(t+h)(|x(t+h)-x(t)-h f(t, x(t),(T x)(t))|+|y(t+h)-y(t)-h f(t, y(t),(T y)(t))|) \\
\leqq & k(t)\left(\varepsilon_{1}(t)+\varepsilon_{2}(t)\right) .
\end{aligned}
$$

Now, we choose a function $\omega(t, x, y)$ such that it is a continuous and nonnegative function of t, x, y for $t \in I_{0}, 0 \leqq x<\infty,|y|<\infty$. Furthermore, it is supposed that $\omega(t, x, y)$ is monotone increasing with respect to y for any fixed t and x. With this choice of the function $\omega(t, x, y)$, we consider a functional-differential equation

$$
\begin{equation*}
r^{\prime}=\omega(t, r, T r)+k(t)\left(\varepsilon_{1}(t)+\varepsilon_{2}(t)\right) . \tag{2.5}
\end{equation*}
$$

Here, it is necessary to re-define the operator T with some additional conditions. Suppose that the operator T satisfies the following conditions:
(i) for any continuous function x on $I_{0}, T x$ is also a continuous function on I_{0};
(ii) T is a continuous operator;
(iii) for any continuous functions x and y on $0 \leqq t<s$, where s is an arbitrary constant not greater than t_{0}, if $x \leqq y$ for $0 \leqq t<s$, then $T x \leqq T y$ holds good for $t=s$.

From the above definition, it is observed that there exists at least a continuous solution of (2.5) on a certain interval ($0 \leqq t \leqq t_{1}\left(\leqq t_{0}\right)$). Hence, in the following, it is supposed that I_{0} is the existence interval of continuous solutions of (2.5).

Theorem 2. Let $r_{0}(t)$ be the maximal solution of (2.5) under the initial condition $r(0)=V\left(0, x_{1}-x_{2}\right)$. Then, if

$$
\begin{equation*}
\delta V(t, x, y, T x, T y) \leqq \omega(t, V(t, x-y),(T V)(t, x-y)) \tag{2.6}
\end{equation*}
$$

for any continuous functions x, y on I_{0}, we obtain the following estimation

$$
\begin{equation*}
V\left(t, x\left(t, x_{1}\right)-x\left(t, x_{2}\right)\right) \leqq r_{0}(t), \quad t \in I_{0} \tag{2.7}
\end{equation*}
$$

Proof. Corresponding to the equation (2.5), we consider an equation

$$
\begin{equation*}
r^{\prime}=\omega(t, r, \operatorname{Tr})+k(t)\left(\varepsilon_{1}(t)+\varepsilon_{2}(t)\right)+\rho, \quad \rho>0 \tag{2.8}
\end{equation*}
$$

Let $r_{\rho}(t)$ be a continuous solution of (2. 8) under the initial condition $r(0)$ $=V\left(0, x_{1}-x_{2}\right)+\rho$. Since $V\left(0, x_{1}-x_{2}\right)<r_{\rho}(0)$, it follows from Lemma 1 and the continuity of V and r_{ρ} that there exists an interval $0 \leqq t \leqq t_{2}$, on which the inequality $V\left(t, x\left(t, x_{1}\right)-x\left(t, x_{2}\right)\right) \leqq r_{\rho}(t)$ remains valid. Then, if we denote by t_{3} the supremum of t_{2}, and if $t_{2}<t_{0}$, it turns out that

$$
\begin{aligned}
& V\left(t_{3}, x\left(t_{3}, x_{1}\right)-x\left(t_{3}, x_{2}\right)\right)=r_{\rho}\left(t_{3}\right), \\
r_{\rho}^{\prime}\left(t_{3}\right) & =\lim _{t \rightarrow t_{3}} \frac{r_{\rho}(t)-r_{\rho}\left(t_{3}\right)}{t-t_{3}} \\
& \leqq \varlimsup_{t \rightarrow t_{3}} \frac{V\left(t, x^{1}(t)-x^{2}(t)\right)-V\left(t_{3}, x^{1}\left(t_{3}\right)-x^{2}\left(t_{3}\right)\right)}{t-t_{3}} \\
& =D V\left(t_{3}, x^{1}\left(t_{3}\right)-x^{2}\left(t_{3}\right)\right) .
\end{aligned}
$$

Hence, from the above relations and the properties of ω and T, it follows that

$$
\begin{aligned}
& \omega\left(t_{3}, V\left(t_{3}, x^{1}\left(t_{3}\right)-x^{2}\left(t_{3}\right)\right),(T V)\left(t_{3}, x^{1}\left(t_{3}\right)-x^{2}\left(t_{3}\right)\right)\right)+k\left(t_{3}\right)\left(\varepsilon_{1}\left(t_{3}\right)+\varepsilon_{2}\left(t_{3}\right)\right)+\rho \\
\leqq & \omega\left(t_{3}, r_{\rho}^{\prime}\left(t_{3}\right),\left(T r_{\rho}\right)\left(t_{3}\right)\right)+k\left(t_{3}\right)\left(\varepsilon_{1}\left(t_{3}\right)+\varepsilon_{2}\left(t_{3}\right)\right)+\rho \\
= & r_{\rho}^{\prime}\left(t_{3}\right) \\
\leqq & D V\left(t_{3}, x^{1}\left(t_{3}\right)-x^{2}\left(t_{3}\right)\right) \\
\leqq & \delta V\left(t_{3}, x^{1}\left(t_{3}\right), x^{2}\left(t_{3}\right),\left(T x^{1}\right)\left(t_{3}\right),\left(T x^{2}\right)\left(t_{3}\right)\right)+k\left(t_{3}\right)\left(\varepsilon_{1}\left(t_{3}\right)+\varepsilon_{2}\left(t_{3}\right)\right) \\
\leqq & \omega\left(t_{3}, V\left(t_{3}, x^{1}\left(t_{3}\right)-x^{2}\left(t_{3}\right)\right),(T V)\left(t_{3}, x^{1}\left(t_{3}\right)-x^{2}\left(t_{3}\right)\right)\right)+k\left(t_{3}\right)\left(\varepsilon_{1}\left(t_{3}\right)+\varepsilon_{2}\left(t_{3}\right)\right),
\end{aligned}
$$

which is a contradiction, since $\rho>0$. Hence, the inequality

$$
V\left(t, x\left(t, x_{1}\right)-x\left(t, x_{2}\right)\right) \leqq r_{\rho}(t)
$$

remains valid on the whole interval I_{0}. Since $r_{\rho}(t)$ uniformly converges to the maximal solution $r_{0}(t)$ of (2.5) as $\rho \rightarrow+0$, we obtain the desired inequality (2.7),
which completes our proof.
In the above result, if $\varepsilon_{i}(t) \equiv 0(i=1,2)$, we can apply Theorem 2 to the uniqueness problem for the functional-differential equation (1.1).

Theorem 3. Under the hypotheses of Theorem 2, if the equation (2. 5) has only the zero solution, the uniqueness of solutions of (1.1) is established.

Proof. Let $x_{1}(t)$ and $x_{2}(t)$ be two solutions of (1.1). Then, it follows from Theorem 2 that

$$
V\left(t, x_{1}(t)-x_{2}(t)\right) \leqq r_{0}(t) \equiv 0, \quad t \in I_{0} .
$$

Since $V \geqq 0$ and $V(t, x)=0$ implies $x=0$ uniformly in ℓ, we have $x_{1}(l) \equiv x_{2}(t)$, which proves the uniqueness of solutions.

If $V=|x|$, the inequality (2.6) is replaced by

$$
\begin{equation*}
|f(t, x, T x)-f(t, y, T y)| \leqq \omega(t, \psi, T \psi), \quad \psi \equiv V(t, x-y) . \tag{2.9}
\end{equation*}
$$

Then, we have the following corollary which corresponds to a theorem of Perron in the theory of differential equations.

Corollary 1. If the inequality (2.9) is satisfied, and if the equation (2.5) has only the zero solution, the uniqueness of solutions of (1.1) is established.

On the other hand, let $M(r)$ be a function satisfying the following conditions:
(i) $M(r)$ is defined and continuous for $0 \leqq r<\infty$;
(ii) $M(0)=0$ and $M(r)$ is non-decreasing for $0 \equiv r<\infty$, and $M(r)=0$ if and only if $r=0$;
(iii)

$$
\lim _{c \rightarrow+0} \int_{\varepsilon}^{r} \frac{d \rho}{M(\rho)}=\infty
$$

Then, we obtain the following
Corollary 2. Suppose that $M(r)$ is the same function defined as above and the inequality

$$
|f(t, x, T x)-f(t, y, T y)| \leqq \varphi(t)(M(|x-y|)+M(T|x-y|))
$$

is fulfilled for any t and any continuous functions x, y on I_{0}. Then, if T is a bounded operator, the uniqueness of solutions is established.

§ 3. Applications.

1. Integro-differential equations. In (2. 1), if $f(t, x, y)$ is of the form

$$
f(t, x, y)=g(t, x)+y,
$$

and if the operator T is defined by

$$
T x=\int_{0}^{t} K(t, s, x(s)) d s
$$

the inequality (2.1) is considered to be an integro-differential inequality such that

$$
\begin{equation*}
\left|x^{\prime}-g(t, x)-\int_{0}^{t} K(t, s, x(s)) d s\right| \leqq \varepsilon_{i}(t), \quad x(0)=x_{i}, \tag{3.1}
\end{equation*}
$$

and the equation (1.1) becomes an integro-differential equation such that

$$
\begin{equation*}
x^{\prime}=g(t, x)+\int_{0}^{t} K(t, s, x(s)) d s, \quad x(0)=x_{0} \tag{3.2}
\end{equation*}
$$

which is called the integro-differential equation of Volterra type. For these incquality and equation, we can apply every result as already shown in the preceding sections. As an example, we consider a particular case with strong conditions that g and K satisfy the Lipschitz conditions such that

$$
\begin{array}{r}
\left|g\left(t, x_{1}\right)-g\left(t, x_{2}\right)\right| \leqq L\left|x_{1}-x_{2}\right|, \\
\left|K\left(t, s, y_{1}\right)-K\left(t, s, y_{2}\right)\right| \leqq M\left|y_{1}-y_{2}\right|,
\end{array}
$$

where L and M are positive constants. Then, if we choose a function

$$
\omega=\operatorname{Lr}(t)+M \int_{0}^{t} r(s) d s
$$

as an ω-function, the result in Theorem 2 yields the estimation

$$
\begin{aligned}
& \left|x\left(t, x_{1}\right)-x\left(t, x_{2}\right)\right| \\
\leqq & \frac{M}{\sqrt{L^{2}+M}}\left(\left|x_{1}-x_{2}\right|\left(e^{\lambda_{1} t}-e^{\lambda_{2} t}\right)+\int_{0}^{t} k(s) \varepsilon(s)\left(e^{-\lambda_{1} s}-e^{-\lambda_{2} s}\right) d s\right),
\end{aligned}
$$

where

$$
\lambda_{1}=\frac{1}{2}\left(L+\sqrt{L^{2}+M}\right), \quad \lambda_{2}=\frac{1}{2}\left(L-\sqrt{L^{2}+M}\right), \quad \varepsilon(t)=\varepsilon_{1}(t)+\varepsilon_{2}(t) .
$$

From the above estimation, it follows that, if $\varepsilon_{\imath}(t) \equiv 0(i=1,2)$, the uniqueness of solutions of (3.2) is established, and furthermore, every solution of (3.2) is a continuous function of initial values.
2. Difference-differential equations. In (2.1), if T is defined by

$$
T x=x(s),
$$

where s ranges over $\alpha \leqq s \leqq t$, we obtain the functional-differential inequality and equation respectively such that

$$
\left|x^{\prime}-f(t, x, x(s))\right| \leq s(t)
$$

and

$$
x^{\prime}=f(t, x, x(s))
$$

On the other hand, if T is defined by

$$
T x= \begin{cases}x(t-h) & (h \leqq t), \\ \varphi(t) & (-h \leqq t<0),\end{cases}
$$

where h is a positive constant, we obtain the difference-differential inequality and equation such that

$$
\left|x^{\prime}(t)-f(t, x(t), x(t-h))\right| \leqq \varepsilon(t)
$$

and

$$
x^{\prime}(t)=f(t, x(t), x(t-h)) .
$$

These functional-differential inequalities and equations have been already investigated in detail, for example, Cf. [3, 4, 6, 7]

References

[1] Antosiewicz, H. A., An inequality for approximations of ordinary differential equations. Math. Zeits. 78 (1962), 44-52.
[2] Brauer, F., and S. Sternberg, Local uniqueness, existence in the large, and the convergence of successive approximations. Amer. J. Math. 80 (1958), 421-430.
[3] Driver, R.D., Existence and stability of solutions of a delay-differential system. Arch. Rat. Mech. Anal. 10 (1962), 401-426.
[4] Hale, J. K., Asymptotic behavior of the solutions of differential-difference equations. Tech. Rep. 61-10, RIAS Baltimore (1961).
[5] Nickel, K., Fehlerabschätzungs- und Eindeutigkeitssäze für Integro-Differentialgleichungen. Arch. Rat. Mech. Anal. 8 (1961), 159-180.
[6] Sugiyama, S., Dependence properties of solutions on the retardation and initial values in the theory of difference-differential equations. Kōdai Math. Sem. Rep. 15 (1963), 67-78.
[7] Sugiyama, S., On the theory of difference-differential equations, III. Applications of Lyapunov function. Mem. Sch. Sci. Engr. Waseda Univ. 28 (1964), 73-85.

Department of Mathematics, Waseda University, Tokyo.

[^0]: 1) In this paper, it is supposed that, for any scalar function $x, T x$ is also scalar and the norm of x is as usual the sum of the absolute values of each element.
 2) Since the operator T is always supposed to be continuous, some class of equations, for example, difference-differential equations of neutral type will be excluded.
