ON A CERTAIN FUNCTIONAL-DIFFERENTIAL INEQUALITY

By SnonEer Sucivama

Introduction.

Recently, the method using the relations described by some inequalities has
been applied to the uniquenes problem for certain functional equations. For ex-
ample, Nickel [5] has considered a functional equation including an operator 7 such
that

(1) F(t, 2, x, Tx)=0,

and obtained various criteria for the uniqueness of solutions of (1). If the operator
T will be defined suitably, (1) will yield various types of equations. For example,
if F(¢, x,y,2) is of the form such that

F, z,v,2)=y—9, x)—z,
and if 7 is defined by

t
szg K(, s, 2(s))ds,
0
(1) is reduced to an integro-differential equation
&/ =t &)+ Kt 5, a(9)ds.
0

Hence, the results in [5] will be applicable to the uniqueness problem of a very
wider class of equations.

On the other hand, it has been shown in [2] that the Lyapunov function is
applicable to the uniqueness problem for differential equations and also shown in
[1] that some estimations for solutions of differential inequalities yield the uniqueness
theorem for differential equations.

In this paper, a functional-differential inequality including an operator 7" such
that

|2’ —f (&, x, Tx)| =),

in which a functional-differential equation corresponds to the case e()=0, will be
considered as well as the existence problem for

(2) 2’ =f(t, x, Tx).
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§1. Existence theorem.

1. Existence theorem. As a preparation for §2, we first consider briefly the
existence problem of solutions for (2) in the introduction.

Let I be an interval 0=¢<#, D, and D, the domains |z—a,|=a¢ and |y]=b in
Rn respectively.® Let f(4 x,¥) be a continuous function of ¢ x, ¥ defined on
IXDixDs, and |f (¢ x, y)| =M be satisfied on IXD;X Ds.

Next, we introduce a family of functions x(f) continuous on the interval I
0=t=<to=min ({1, /M) and contained in D,. If we denote the family by I, it is
clear that M is a convex set. With this definition of MM, we define an operator 7'
which satisfies the following conditions:

(i) for any x in M, Tz is a continuous vector function on I, contained in Dy;

(ii) for any sequence {zn(#)} in M uniformly convergent to z(f) (tely) in M,
(Tzw)(®) also uniformly converges to (7x)({) (tel,).?

Then, if we introduce a second operator U such that

Un=a0+ S‘f(s, a(s), (Tw)s)ds, e,
0

for any x in M, it is casily observed that the family UM is a convex subset of .
From the hypotheses on /" and [y, it is easily shown that the inequality |Uz|= ||t |¢]
is satisfied for any element in UR, that is, every element in UMt is uniformly
bounded. Furthermore, for any points ¢, ¢/ in I,, we have

e~z || 5 oo, (Enas| < piur—v),

which implies the equi-continuity of Uzx. Since I and UM are convex sets, U is
the contraction operator, and every clement in UI is uniformly bounded and cqui-
continuous, then it follows that therc exists at least a fixed point in 9 such that
Uz=2x2. It is easily observed that this fixed point corresponds to a continuous
solution of the equation

x(l‘)=xo+S:f(s, a(s), (Tw)(s))ds,

or equivalently, z(f) is a solution of a functional-differential equation
1.1 z'=f{, x, Tx), 2(0) =x,, tely.
Thus, we have the following

Tueorem 1. Let f(t, x,v) be « conlinwous function of l,x,y and |f|=M on
IX D1 XD, and T @ continuous operator defined above. Then, there exists ai least «

1) In this paper, it is supposed that, for any scalar function &, Tz is also scalar and the
norm of z is as usual the sum of the absolute values of each element.

2) Since the operator T is always supposed to be continuous, some class of equations,
for example, difference-differential equations of neutral type will be excluded.
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continuous solution of the functional-differeniial equation (1.1) on 0=/=min ({1, a/M).

2. Maximal and minimal solutions. It may not be expected that the uniqueness
of solutions is established, even if f(¢4, x, %) is continuous on Iy x D;XD,. From this
reason, it is useful to introduce the maximal and minimal solutions of (1.1) as in
the theory of differential equations.

In this paragraph, all variables are supposed to be scalar, and we first prepare
a following

LemMa 1. In the lwo equations
(1‘ 2) J’./:/‘(L ';U: TJ/), "L(O);J;U)
1.3) y' =g, y, Ty), 2(0) =1,

suppose thal &, x,v) and 9, x,y) are continuous on Ly XDy XDy and the existence
of continuous solutions of (1.2) and (1. 3) on 1, is already established.

Then, if xo=yo, and if [, u,v)<y(t,u,v) is salisfied on IyXDyXDs, every so-
lution of (1. 2) is not grealer than any solution of (1.3) on I,.

The proof of this lemma is so similar to that in the theory of differential
equations that it is omitted.

Corresponding to the equation (l.1), for any constant ¢>0 we consider an
equation

1.4 x'=f{, x, Tx)+e, 2(0)=2,.

Then, it follows from Theorem 1 that there exists al least a continuous solution of
(1.4) on an interval [: 0=¢=t¢.=min (%, @/(M--e¢)). It is apparent that 7. tends to
I, as ¢«—+0. Since the solution may depend on ¢, we denote it by x(f,¢). From
the above Lemma 1, we obtain that any continuous solution z(f) of (1.1) is nol
greater than z(/,¢) on 7, that is, we have an incquality z()=z(,¢) on L. By a
wellknown theorem of Dini, as e—-0, the function «(/, ¢) uniformly converges to a
function @(#) which is a continuous solution of (1.1) on Z,. Hence, the inequality
2(f)=@(t) remains valid on 7, for any solution z(?) of (1. 1).
Similarly, if we consider an equation

' =f(t, x, Tx)—e¢, 2(0)=u1,

for ¢>0, there exists a continuous solution ¢(/) of (1.1), for which the inequality
o) <z()=@(t) is fulfilled on [, for any solution z(/) of (1. 1). Thus, we obtain two
continuous solutions @) and ¢(f) which are called the maximal and minimal solu-
tions respectively. -

§ 2. Functional-differential inequalities.

In order to derive the uniqueness theorem for (1.1), we first deal with the
{unctional-differential inequalities such that

@1 "=t @, To)| =eul),  x(0)==z: (=1,2)
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on I, which is reduced to the equation (1.1), if ¢()=0. Since every solution of
(2. 1) may depend on z;, we denote it by xz(¢, x,), or sometimes it will be abbreviated
by z(#).

In the sequel, it is supposed that f and T be the same as defined in §1, and
&) ((=1,2) continuous on J,. Then, we introduce a V-function as follows.

Let V(¢ x) be a function of # and z satisfying the following conditions:

(i) V(¢ x) is continuous and non-negative for fel, and |x|< co;

(ii) V(@ x)=0 implies =0 uniformly in

(ili) V' (¢, x) satisfies the Lipschitz condition such that

where k(!) is continuous on /.
Corresponding to such a function V (¢, ), we define two quantities

bV(t: X1, Y1, T2y ?/2)) DV([y .Z'(l)—*’]/(l))

by setting
oV, x1 91, 22, Y2)
=Hm— (V@ 21— +-h(f U 21, 20— U v, 9) = V (G 21— 92)
DV (¢, x@®)—y@®)
@2.3)

— 1 }
=;11_r)r01 —h—(V(t‘ +h, o+ —y(U+1)— VL, w(O)—y()
for any i, v, £ and any continuous functions z((), y(¢) (¢ely).

LEMMA 2. For any solutions x,v of (2. 1), the inequalily
2.4 PV, »,y, Tx, Ty)—DV (¢, z—y)| k) (e2(5) +e(D)

remains valid on I.

Proof. By the definitions of (2.2) and (2. 3), it follows that
DV, z,y, Tx, Ty)—DV (¢, z—1y)|

élhl'z_roll—zl k@+n)(|wt+hm)—z(t)—hf (&, @0, (T2))|+ v+ —yO)—hf & yO),(Ty)D))

=k(@#)(e1(®)+ex())-

Now, we choose a function w(, x,¥) such that it is a continuous and non-
negative function of ¢ z,y for tel,, 0=x<co, |y|<oco. Furthermore, it is supposed
that (¢, x, y) is monotone increasing with respect to v for any fixed # and x. With
this choice of the function w(, x, v), we consider a functional-differential equation
2.5) v =w(t, v, T+ k) (e1(d) -+ ).

Here, it is necessary to re-define the operator 7" with some additional conditions.
Suppose that the operator T satisfies the following conditions:
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(i) for any continuous function z on I,, T is also a continuous function on I;

(ii) T is a continuous operator;

(iii) for any continuous functions z and y on 0=¢/<s, where s is an arbitrary
constant not greater than #, if =y for 0=¢<s, then Tx=Ty holds good for f=s.

From the above definition, it is observed that there exists at least a continuous
solution of (2.5) on a certain interval (0=¢=# (=4#)). Hence, in the following, it
is supposed that 7, is the existence interval of continuous solutions of (2. 5).

THEOREM 2. Let 7o(t) be the maximal solution of (2.5) under the inilial con-
dition v(0)=V (0, x1—xz). Then, if

@.6) 0V (%, y, Tx, Ty)=o(t, V(E, 2—y), (TV)(E, z—1v))
Sor any continuous functions x,y on I, we obtain the following estimation
(2. 7) V(t, J/'(t, xl)—x(t, .Z‘z))gfo(t), te[o.

Proof. Corresponding to the equation (2.5), we consider an equation
2.8 r'=w(t, 7, Tr)+ k@) () +e2() + p, p>0.

Let 7, be a continuous solution of (2. 8) under the initial condition #(0)
=V(0, z1—x2)+p. Since V(0, x,—x:)<7,(0), it follows {rom Lemma 1 and the conti-
nuity of V7 and 7, that there exists an interval 0=<¢{=#, on which the inequality
V (¢, 2(¢, x1)—x(t, 22)) =7,(!) remains valid. Then, if we denote by £ the supremum
of #, and if #;<#, it turns out that

V(ts, (ts, 21) —2(ts, 2)) =7,(ts),

rity) = lim Je D=7

t—ot3 t— tg
—— V(& 2O —2°@)— V ({ts, 2'(ts) —2°(ls))
=lim I—t

=DV (t5, '(ts) — 2*(2s))-
Hence, from the above relations and the properties of w and 7, it follows that
(ts, V(ts, ' (ts) —2*(ts)), (TV (s, 2 (ts)— 2°(E:)) +-Ee(ls)(ea(t) Feolt)) + 0
=o(ts, 75(ts), (Tr,)(ta)) +R(E)(er(ts) +-e2(t:) +p
=7;(ts)
=DV (ts, x'(ts)—2*(ts))
=0V (ts, 21 (), #°(ts), (T2")(ts), (T5)(#5))+E(E:)(ea(ts) Fea(ts))
=w(ts, V(ts, £'(ts) —2*(ts)), (TV)(ts, 2'(£3) — 2%(t:))) + k(Es)(e1(8s) +e2(f)),
which is a contradiction, since p>0. Hence, the inequality
V (¢, x(t, x1)—a(t, x2)) =7,()

remains valid on the whole interval I, Since 7,(/) uniformly converges to the
maximal solution 7,(?) of (2.5) as p—--0, we obtain the desired inequality (2. 7),
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which completes our proof.
In the above result, if «(#)=0 (i=1, 2), we can apply Theorem 2 to the unique-
ness problem for the functional-differential equation (1. 1).

THEOREM 3. Under the hypotheses of Theorem 2, if the equation (2.5) has only
the zero solution, the uniqueness of solutions of (1.1) 1s established.

Proof. Let z:(f) and x:(f) be two solutions of (1.1). Then, it follows from
Theorem 2 that

V (¢, 2:(8)—2()) = 70(1) =0, tel.

Since V=0 and V(¢ 2)=0 implies =0 uniformly in /, we have x,(/)=m.(/), which
proves the uniqueness of solutions.
If V=|z|, the inequality (2. 6) is replaced by

(2' 9) 1f(ty x, Tx)_f(t’ Y, TZ/)[ _—(;Ct)(t, (/)) Tgb): ¢E V(t) .??—?/).

Then, we have the following corollary which corresponds to a theorem of Perron
in the theory of differential equations.

COROLLARY 1. If the inequalily (2.9) is satisfied, and if the equalion (2.05)
has only the zevo solution, the uniqueness of solutions of (1. 1) is established.

On the other hand, let M(») be a function satisfying the following conditions:

(i) M) is defined and continuous for 0=r<oo;

(ii) M@©0)=0 and M(r) is non-decreasing for 0 =r<oo, and M(#)=0 if and only
if r=0;

. (" dp

iii lim

i) 3 M(p)

e—>+0

=00,

Then, we obtain the following

CoRrROLLARY 2. Suppose that M) is the same function defined as above and
the inequality

Lf (&, @, To)—f (&, y, Ty)| =M (|w—y)+M(T|z—y])

is fulfilled for any t and any continuous functions z,y on L. Then, 1f T is a
bounded operator, the uniqueness of solutions is established.

§3. Applications.

1. Integro-differential equations. In (2. 1), if /' (4, 2, %) is of the form
Tz, =09, o)+,
and if the operator 7 is defined by

To— SLK(f, 5, 2($)ds,
0
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the inequality (2. 1) is considered to be an integro-differential inequality such that

3.1 Zeid), 2(0)=w,

t
& —q(t, x)——S K, s, 2(s))ds
0
and the equation (1.1) becomes an integro-differential equation such that
t
3.2 x'=g(¢, x)+g Kt s, 2(s))ds, 2(0) =,
0

which is called the integro-differential equation of Volterra type. TFor these ine-
quality and equation, we can apply every result as already shown in the preceding
sections. As an example, we consider a particular casc with strong conditions that
¢ and K satis{y the Lipschitz conditions such that

]g(t’ xl)—g(t; xz)l ngwl_le,
K, s, y)— K@, s, y2)| =M |y —2l,

where L and M are positive constants. Then, if we choose a function
13
o=Lr(H+M S ¥(s)ds
0

as an w-function, the result in Theorem 2 yiclds the estimation

|2 (t, £1)— 22, 12)|

= ~—:¥_?M: (lxl—le((z‘l‘—e%‘)—l— S:k(s)e(s)(e—‘xs—e‘m)ds), :

where
le—;—(L+JWM), 22=%(L—Jm), e(D=e1(t)+e:(D).

From the above estimation, it follows that, il &()=0 (/=1,2), the uniquencss
of solutions of (3.2) is established, and furthermore, every solution of (3.2) is a
continuous function of initial values.
2. Difference-differential equations. In (2. 1), if T is defined by
Tx=ux(s),

where s ranges over a=<s={, we obtain the functional-differential inequality and
equation respectively such that

2" =1 (¢, @, 2(s)| ==(7)
and
x'=f(t, x, x(s)).
On the other hand, if 7 is defined by
Ty {x(t~h) (h=2),
o) (—=h=tL0),
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where % is a positive constant, we obtain the difference-differential inequality and
equation such that

and

|l () —f (¢, (D), 2(t—R))| =<()

@' (@) =1 &, (1), x(t—h)).

These functional-differential inequalities and equations have been already investi-
gated in detail, for example, Cf. [3,4,6, 7]
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