ON MATCHING METHODS IN TURNING POINT PROBLEMS
By TosHiniko NIsHIMOTO

§1. Introduction.

We consider here the asymptotic nature of solutions of linear differential equa-
tions of the form

dy
] ] h _4 x p
(. ) : dx ( ’@y

as the parameter ¢ tends to zero. Here A(wz,¢) is 2-by-2 matrix such that

0 1
1. 2) ( ),
x94-ed(x,e) 0

where the function ¢(x,¢) is holomorphic in the complex variables x and ¢ in a
domain of the =z, e-space defined by the inequalities

(1.3) lz] Sxe<1, 0<|e| Zeo, |arg e| <0,

and ed(x, €) has a uniformly asymptotic expansion in powers of ¢ such that
(1. 4) ed(x, €)= :4_31¢»(x)e”

as ¢ tends to zero in the domain (1. 3) with the coefficients ¢,(xz) holomorphic for
|x| = a0

(1.5 G@= 3 Gt fum, %0,
p=my

where m,=0.

The quantities # and ¢ are positive integers. Thus the equation (1. 1) has a
turning point at the origin. When %#=1 and g=1 or ~2=1 and ¢=2, the asymptotic
solutions of the equation (1. 1) were constructed by Langer [3] and Mckelvey [4].
Their methods are the reductions of the given equations to simpler related problems
which can be solved by explicit technique. And for =1 and any positive integers
g, Sibuya [2] found some simpler related equations, but the analyses of them are
seen not to be completed. On the other hand, Wasow [6], [7] claimed that the
matching methods are also fruitful in fairly general cases. He treated the system
(1. 1) with =1 and an n-by-n matrix Az, ¢). The matrix A(x, ¢) has an asymptotic
expansion
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Alz, &)= i Az)er

where the coefficieuts A,(x) are holomorphic #-by-»% matrices in the domain (1. 3) and
0, 1
0

A= O C | [Feae@,  exo.

azx, Qan-1x, -, AT

Here the coefficient A{®(x) is holomorphic for |x| =x,, and the quantities @, an-1, -+, @1
are constants. At first he calculated the two types of formal solutions and then
proved that there exist fundamental solutions whose asymptotic expansions coincide
with the formal solutions in some neighborhoods of the turning point which overlap
the full neighborhood of the turning point even for arbitrary small e.

Now it will be proved here that the equation (1. 1) with (1. 2) can be treated by
the matching methods employed by Wasow. The quantities /% and g are arbitrary
positive integers, but it requires the fundamental assumption which will be described
below. We introduce the quantity

2h
1.6 o=
The fundamental assumption is
a7 my—q+% >0 =1

Under this condition, we can obtain the asymptotic representations of the
fundamental solutions explicitly.

Sections 2 and 3 contain the calculations of the formal solutions and in Sections
4, 5 and 6, we prove that there exist fundamental solutions whose asymptotic ex-
pansions coincide with the formal solutions in several subdomains which overlap
the full neighborhood of the turning point.

§2. Formal solutions for x=0.

The linear transformation

1 0
@1 y=( )u

changes (1. 1) into

0 1
du
op—q/2 — —
(2 2) [ dx ( 1-|—8¢0(.Z‘, e)x‘q, 0 ) O, g ehx—q/z—l

By (1. 4) and (1. 5) we have
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1+ed(x, )x—1=1+ i i dopxr—ae”
@.3) ol
:1+ Z Z ¢up[x—lea]u/axp—q+v/a‘
V=1 p=m,

We remark here that by virtue of (1.7), p—g+v/a>0 for v=1 and pg=m,, and

q /2 q
) el q/2 1=7[x—lsa]h/a’ shx—q/zz[x_lsa]h/ax.

Then (2. 2) can be written

@. 4 [z~ Yoe)ia j”

- = B(x, &)u,

where

B(x, &)~ < (1) (1) ) -+ ;::1 B.(z)[x~%]>

and B,(x) are holomorphic matrices functions of z*/¢. This means that for every i,

Bwa=(] )5 B@le e =Eate ol

where En(x,¢) is bounded in the domain (1. 3).
Here we put

2.5) r=t%

then (2. 4) becomes

2.6) [ele 22 = e, e
where E(z,¢) is holomorphic for = and ¢ in the damain defined by the inequalities
2.7 7| =7, 0<]e| =eo, larg e| =do,
and has an asymptotic expansion when ¢ tends to zero:
2.8 E(z,e)= 2} E(o)[z7%].
=0

The matrices functions E,(z) are holomorphic for |¢|=7,, and

0 a
2.9 Ey(r)= )

a 0

Since the characteristic roots of E,(z) are distinct, there exists a linear transfor-
mation

2.10) u=~P(z, e)z

which changes the equation (2. 6) into
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@.11) [c-1e]te Z"‘

=D(z, e)z

T

with the following properties:
a) D(z,¢) is holomorphic in both variables r and ¢ for

Ifléfo, Jarg T—aO}é'-Z%r 0<I€l§60,

(2.12)
|arg ¢| =do, 0< |z | = b,

for sufficiently small b, and arbitrary a.
b) As |r7%| tends to zero, we have

@. 13) D(z, )~ g;opy(r)[f—le]v,

uniformly in (2. 12).
¢) The matrices D,(r) are diagonal and holomorphic for |z|=z,.

d D,,(f)=<g _0 )

a
e) The matrix P(z,¢) is holomorphic in the domain (2. 12) and

@. 14) P(c, )~ i Pyoete],

where Py(z) is nonsigular constant matrix and P,(z) holomorphic.
This will be proved as follows. At first, if we transform the equation (2. 6) by

1 -1
U= )u*
1 1

du*
-1
(2. 6)* [c7te]rr i

then (2. 6) becomes

= E*(t, e)u*,
where E*(zr,¢) has the same properties as E(z, ¢):

E*(z,e)~ g;o Ey(z)[c )%,

a 0
E;k(‘f)=( )
0 —a

Now let us define the matrix Ti(z, ¢) by the formula
Tk(Tr 5)=I+ [T_IE]QIC(T): k=1; 2) RS

where 7 is 2-by-2 unit matrix and Qx(r) is 2-by-2 matrix which is to be determined
successively. The transformation

w¥=Ty(z, e)u*

changes the equation (2. 6)* into
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[c-%]te dLT =E¥(z, &)ut

where
EXz, &)= {I+[c 7 e]*Qu(z)} T E*(z, ) { I+ [c]*Qu(7)}

e QU i ([ 6],

If we replace {/+4[r7'e]*Qx(z)}~! by its geometric series, we have
E¥z, e )~E¥(@)+ -+ [ EX ()
FEF@©)+EF)Qu() —Qu(m) EF(0)][c e]*-- -

Since E¥(z) is diagonal and has distinct characteristic values, Qi(zr) can be chosen
so as to make the coefficient of [¢—*¢]* diagonal. The infinite product 7Ti(z,¢)- Ta(z, €)---
determines a formal series Y12, P,(¢)[c-1]* with the holomorphic coefficients. By a
Borel-Ritt theorem, we can construct a matrix function P(z, ), p=t"%, such that
a) P(z, p) is holomorphic in z and p for
|t| =70, 0< || =bo, and arbitrary sector I of p.
b) As p tends to zero

p(T’ F‘): yﬁ: pv(r)ﬂv’ pO(T)zL

P 5 dP)
dc y; ’

P, it goéxrw,

where Q,(r) can be calculated from P,(r) (u=v) formally.
Thus the transformation

1 -1
u=< )p(z', wz=P(r, &)z
1 1

changes the differential equation (2. 6) into the equation (2.11) with the desired

properties.
Since all the matrices D,(r) of (2.13) are diagonal, it is easy to calculate a
formal series solution of the differential equation (2. 11).

THEOREM 1. The differential equation (2. 6) possesses a formal matrix solution
of the form

(2. 15) U~ Z eu, (1) exp[i s*"’bFr(r)—l

v=0 r=0
with the following properties:
(2. 16) u,(7) =77"1,(7)
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where the 4.(t) are polynomials of degree v, at most, in log t whose coefficients are
holomorphic in |t|=z,, and bounded in the domain (2. 12).

F,(t)=t"F(7) if v=h—1
2. 17) A
Fh(‘l')———fh log r-l—Fn(z‘),

where F.(c) (v=0,1, ---, %) are holomorphic in |t|=t,, and fu is a constant matrix.

Proof. If the series (2. 13) were convergent,

(2. 18) 2~ exp[i} e”"LFu(r)]
with
2. 19 F(o)= SD,,(r)rh““ldf

would be an actual solution of (2. 12). If the determinations of the integrals (2. 19)
are chosen whose series expasions have no constant terms, then F,(r) have the
following properties:

(2. 20) F,,(r):z'""‘ﬁ‘”(z') if v<h,
2.21) F,(v)=Ff, log t+c~F(7) if v=h,

where F',() are holomorphic in |¢|=t, and f, are constant matrices. Then F,(r)
have the properties (2. 17).
Also in the convergent case we may write

exp [e"‘ éo e F,(7) ]= exp [e‘h V:Z;,'H BINE) ] exp [e"‘ é e Fi(z) ]

2. 22)
oo 13
= é(}s”Gv(z') exp [E) e’“"Fr(r):I.
Here
2. 23) Gv(T) = T—yév(f)’

where G,(r) are polynomials of degree v at most in logr with holomorphic coef-
ficients and G,(c) are bounded at r=0.

Clearly (2. 22) is a formal solution of (2.11). The expression (2. 15) is obtained
by multiplying the last member of (2.22) to (2. 14) from the right and collecting
the same powers of e. Thus (2. 16) follows at once.

§3. Formal solutions in the neighborhoods of x=0.

The transformation
3.1 x=p%s,

1 0
3.2) y=< )v
0 ehe
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with p=eV@® >0 for arge=0, takes the differential equation (1.1) into
0 1
3. 3) %:( )v,
s s14-¢(s,0) 0

where

gb(s, {7)2 Z Z ¢w‘pv(q+2)+2h(p-q)s”.

v=1 u=my

We notice here that v(g+2)+24(p—q)=2h(r—q+va=")>0. If we put
P(s, p)= g}l d.(s)p,
then

d(8)=5sDdX(s),

where c(v)=v/2h+qg—1/a and d¥(s) are bounded at s=co.
Write the equation (3. 3) as

dav

3. 4) T =H(s, p)v
where

(s, p)= VZ_IO H,(s)o"
with

0 1 0 0 0 0
T S (P ot
s¢ 0 dJSs) 0 d¥s) 0

If we introduce a matrix £(s) by

1 0
2(s) =( )
0 s

then the matrix H.,(s) can be written
3.5) Hv(s)=sc(u)-q/zg(s)Hﬂs)Q(s_l)

where HZ*(s) is bounded at s=oco.
Let us consider the asymptotic properties of H(s, p), and we put

Hs, o)— % H(5)0*=En(s, 0)-

Clearly in the domain (1. 3) and [s|=s, for arbitrary S,
3. 6) En(s, p)=p""'E1,m(s, p)
where Ei,u(s, p) is bounded there. Now if we denote mj/(g+2)+aq by d(m),
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m
&(s, 0)— L d(S)er= 1 F 2 F e @D TR
y=1

v<d(m) p<e(m)

+ Z Z ¢y’lpu(q+2) +2h(;1—q)s;z
(3 7) y>d(m) p=c(m)

+ Z Z ¢wp(q+2)(v+2(u—h)]xp
vEd(m) u>ce(m)

¢wp(q+2){v FZ(a—h)}x/z,
v>d(m) p>c(m)
where X}* 3* involves the summation of the terms of powers of p higher than p™.
The first and second sums of the right members of (3. 7) can be written p"*is*™FE¥,,
in the domain (1. 3) and |s|>s,, where E}, is bounded there, and the remainder
terms can be written pm+isem+DE¥ . in the domain (1. 3), where E¥, is bounded
there. Then in the domain (1. 3) and |s]>s,, we have

(3. 8) En(s, p)=sY*Y00(8) Ean(s, 0)2(s")[s*/2rp]m+!
where Eun(s, p) is bounded.

Let
(3.9 v~ Z_Iovu(S)o”

be a formal solution of (3.4). Then ».(s) must satisfy the following equations:

dve B 0 1 B
3. 10) o _( “ >110‘~H0(s)vo,
3. 11) %’—“- =Hy(s)0,+ 3] ()0,
S =1

The asymptotic solution of (3.10) can be obtained from a result of Turrittin
[5]. Let S be the sector defined by

3.12 " - <_ "
©-12) 5ot = 8= 331g

Then the differential equation (3. 10) possesses a fundamental matrix solution v,(s)
of the form

3.13) 0o(8) = s¥42(s)wo(s) exp [Q(S)],
where
@19 Q)= > <z+q>/z< oo ) ( o) 0 )
. _ s _ |
2+q 0 —1 0 o
(3. 15) wo(S) = i Wo,S~ Erov/2 as s tends to oo in S,
v=0

where w,, are constant matrices and w, is nonsingular. If w?t?=1, the matrix

((1) 3)1}0((03) is a fundamental solution of (3.10) whenever v,(s) is one. Hence
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there exist 2+4-¢g fundamental matrices solutions whose asymptotic properties as well
as their stokes multipliers are known in 2+4¢ sectors respectively.

Next we calculate the solution of the differential equation (3. 11), which is of
the form

& e

(3. 16) p

with entire coefficients. The integral
3.17) t(s)=S ) o)
res)
is a solution of (3.16) if I'(s) designates a set of paths 7;(s) in o-plane ending at

g=s for every scalar integral contained in (3. 17). The paths will be specified later.
Let us define #(s), #o(s) and F(s) by the relations

(3.18) 1(s)=12(s)E(s) exp [Q(5)],
(3.19) o(8)=2(s)Po(s) exp [Q(s)],
(3. 20) F(s)=2(s)B(s) exp [Q(s)].

Then (3. 17) becomes

3. 21) f@:ﬁo@g €2 [Q5)—QU)Ii0) @) exp [Q(0) —Q))do.

r(

Let S(so) be the domain defined by

(3. 22) S(so): seS, and |s|>so>0.

For the application we have in mind that F'(s) satisfies the condition
(3.23) B(s)s™ is bounded in S(so).

It follows then that

(3.24) Bo(s)F (s)s~**%* is bounded in S(so).

With the abbreviations
2
2+q

From (3. 21), (3. 24) and (3. 25) every element of the matrix in the integrand of
(3.21) has the form

(3. 26) Dal@)"* exp [Bu(s® 02— g ® 0],

where pj(s) is bounded in S(so).
We introduce here the auxiliary variables

(3. 27) =g@tor =5tz

The sector S in the o-plane corresponds to a half plane X in the -plane.
Clearly every line

s(2+q)/2 __:‘Bjks(2+q)/2-

(3. 25) qjx(s) =q;(s) —qu(s) =2 sign (k—)
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Re [gn(C@™®)]=Re Bul=0  (jxh),

has one half line inside ¥. Hence we can draw rays /. and /; through the origin
into the interior of X such that Re (8x{) increases monotonically to co along lix(j=k).
Denote by 2;x(&)(7xk) the straight half line in 3 which is parallel to Zx and has
one end point at a point £ of 2. Then Re (8;{) also increases monotonically to oo
along 4x(8). We define 7x(s) for j=k as the curve in the sector S of the s-plane
whose image under (3.27) is 2;x(§). Then Re [gi(s)] grows monotonically to co as
o recedes to oo along 7(s).

In order to make sure that all points of 7u(s) lie in the domain S(s,) of the o-
plane, we must limit s to a domain S(s;), where s, is sufficiently large. As to the
paths 7;;(s), it suffices to take them as segments from some point s. in S(s;) to
s€S(sy), where s, is so large that these segments lie in S(s,) for all seS(sy).

LeMmMA 1. If the differential equation (3.16) satisfies the condition (3. 23), then
it possesses a solution of the form
(3.28) Hs)=s""12(s)t*(s) exp [Q(s)],

where t*(s) is bounded as s—oo in S.

Proof. If (3.26) is integrated along 7;(s), it becomes in terms of ¢ and &

(3.29) exp [Bx(E— 0 psulo) (POt 0I @2l

757
249 Jipw
Let ¢ on 2;x(6) be expressed in the from
{=&+0ur

where 0z is a constant of modulus 1 and 7 is the arc length on 2;x(¢). Then (3. 29)
can be written

2 e v

(3. 30) m £2O-3/D/(g+D SO exp [-—ﬁjkﬁﬁcr]pjk(o)[l—}— 5jk‘5—

If jxk, then Re (Bx0;5)>0 on 4;%(€) and thus the integral in (3. 30) is a uniformly

bounded function of & for seS(s;). Hence (3. 30) is of the order O(s?—%¢*) as s—oo

in S(s1). If i=k, B;;=0 in (3.26), and then the integral of (3.26) along 7;;(s) is
O(sP-¢4+Y), It follows then that

£(5) =Bu()s"- 0+ 1£5%(s)

:sb+1t*(s)

2(0—-3q/4)/(g+2)
] dr.

where #*(s) is uniformly bounded as s—co in S, and so Lemma 1 follows from (3. 18).

LEMMA 2. The differential equation (3.11) possesses a particular solution of
the form

(3.31 v,(8)=s7*+Q(s)w.(s) exp [Q(S)],

where w,(S) is bounded as s—oo in the sector S, and
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IS S S
(3' 32) e—l*"%‘l"?"— "

Proof. We prove this by induction. For v=0, the statement in Lemma 2 is
contained in (3. 13), (3.14) and (3. 15). Assume it to be true for v<m. For v=m
the p-th term of the summation in (3. 13) has the form

H,($)0m- ()= ™ Q) H Fwi-, exp [Q(S)],
where
e 1 4
f(m, )= % + 2T, +(m—pe-+ =

The exponent f(v, ) in this expression is largest for =1, and then for v=m we
can apply Lemma 1 to the equation (3.11) with
b=f(m,1).
This leads us to the formula (3.31) for v=m, and Lemma 2 is proved.
Then we get the following theorem.
THEOREM 2. Let k(s) be defined by
0 if |s|=s
L if |s|>s0,

then the diffevential equation (3.4) has a formal matrix solution v of the form

(3. 33) k(s)=

(3. 34) VD~ i Q(sF5)ap,(5) s @ [sE®ep]v exp [Q(S)],
y=0

where w.(s) are bounded in the domain (1.3) and |s|=s, or |s|>s, according to
k(s)=0 or 1.

§4. Existence Theorem (1).

In this section we prove the following theorem.

THEOREM 3. For every sector T of the t-plane with vertex at the ovigin and central
angle less than w|h, and for every positive integer m, there exists a domain of e, t-
plane defined by

(4. 1) reT, 0<[e|=e, larg e| =0;,  cile| =l =,

(e1, 01, ¢1 and c» are certain constants independent of ) and an actual solution u(z, <)
of the differential equation (2.6) of the form

. 2) (e, =iz, €) exp[ éo e”‘hF,(r)],

which is related to the formal solution (2. 15) as
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. 3) i(r, ) — 3" u,(c)er=En(z, &)fe—em*,
v=0
where En(t,¢) is @ matrix function that is bounded in the domain (4. 1).

Proof. At first we analyze the equation (2. 11).

Let
m+h
4.9 Du(z, &)= 2, Do)z,
v=0
m-+h
4. 5) zm(z, s)=exp[ e (T) ]
v=0
Then zw(z,¢) is a fundamental matrix solution of a differential equation
dz
—10he 25
4. 6) [c=te]?e 7 Dy (z, ¢)z.
We write (2. 11) in the form
dz
@ [c7e]e e [Dn+(D—Dn))z,
4. 8) (D—Dp)=[r"1e]™*"E, (7, ¢),

where FEwn(z,¢) is bounded in (2. 12) provided ¢ is taken small enough.

209

By the method of variation of constants, any solution of the integral equation

4.9 2, 9=zn(r, e)+s“"8r( )zm(r, 9)z2n(0, &)7'[D(0, &) — Dn(o, )2(0, €)o"~'do

satisfies the given differential equation (2. 11). Here ['(z) designates a set of paths

of integration 7u(c), (4, 4=1,2) in the o-plane which are described later.
Let

(4. 10) KG, 9= 2 #F.0),

4. 11) Zm(t, &)=2m(z, ¢) exp [—¢ " K(z, ¢)],

4. 12) 2(z, e)=2(r, ¢) exp [—e " K(z, ¢)].
Then (4.6) becomes

4.13) 2(z, ©)=2mn(r, )+ L[Z(z, &)],

where

L[3(z, ¢)] =e‘hSr( )ém(z', ¢) exp{e*[K(z, e)— Ko, )]} 2m(a, €)*
(4. 14)

-[D (0, €)— Dn(a, €))4(s, ¢) exp {¢ "[K(o, &) — K(z, ¢)] } 6"~ 'do.

From (4. 10), (4.11) and Theorem 1 (2. 17), we have
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2m(z, e)=exp[ mi:hl e, ,,(r)]

v=h+

m+h

—exp| 3 80
y=h+1

where F\,(r) are bounded for [¢|<z,. Hence if, in addition, |c~%| is small enough,

for instance,

. 15) [e=1e| b,

then Zm(z,e) as well as Zn(r,¢)~! are bounded. (4. 15) is satisfied if ¢, in (4. 1) is
sufficiently large.
Let K(z,¢), j=1,2 be the diagonal elements of K{r,¢) and set

(4' 16) /-‘jk(T; 5)=KJ(T, 5)_—Kk(77 E)'
Then the j—k element of L[4(,¢)] has the form

@1 LiG, 5)1170:8 exp M () — s LislZ(0, )]+ 1o~ g,
k

7j
where Lju[2(r,¢)] is a linear form of the two components in the k-th column of
4(r,¢). By (4. 8) and boundedness of Z., 25!, the coefficients of this linear form arc
bounded if (2. 12) and (4. 15) are satisfied.

Next we choose the path 7;x(z) in such a way that the exponential function in
(4.17) remains bounded as ¢ tends to zero.

Let
4. 18) 06 =—cPalexp (k) —exp ()] (i=n/ ~1),
then after a short calculation we get
dpge, Ay -1,
4.19) e ®= i @O[N+0@)+0(z"e)].

The condition
(4. 20) reT, cilel =) =ce

determines a damain H in the r-plane which depends on e. For convenience we
introduce auxiliary variables & and { by

4. 21) E=1h,
4. 22) E=o".

Let 3 be the image of H in the &-plane under 4. 21) and in the {-plane under
(4. 22). X and H are sectors of annuli. Their central angles at the origin are less
than 7z in the &-plane and less than =/ in the z-plane.

Let 2*>X be an isosceles triangle with the same axis of symmetry as X, and
its sides passing through the endpoints of the smaller circlar arc of boundary of
2, and its base tangent to the larger circular arc of boundary of 2. (see Figure 1.)
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Without loss of generality we can assume that the base of 2* is not parallel
to the imaginary axis of &-plane. Here we choose 4, in (4.1) so small that the
base of 2* is not parallel to any ray through the origin of &-plane on which

4. 23) Re [-"£] =0

for all ¢ such that |arg ¢| <0, =d.

The size p is to be independent of ¢ and so small that any direction from the
point & or & into X* is not parallel to a ray through the origin on which (4.23)
hold for some ¢ with |arge|=0,. (see Figure 1)

If 7, and 7, are the radii of the circular arcs that bound 2, then we have

4. 24) 7’1=|C15|h<7’2202h- -
S

Since the shape of 2* is independent of
¢, there exist positive constants &, and k.
depending only on S such that

(4. 25) l§1f=k11’1, lleékz?’z.

Now ¢; and ¢, in (4.1) must be chosen
such that the inverse image H* of 2* in
the z-plane lies in the domain where (2. 12)
and (4. 15) are satisfied. 2* lies in the ring

(4. 26) 6] =18 =& Fig. 1.
Then we have

4. 27) kit le| Z o] kY.

The first of these inequalities implies that
(4. 28) [t=le| =k~ Ve

Then (4. 15) can be satisfied by taking ¢, large enough. The condition |z|=7, is
satisfied if ¢, is taken sufficiently small. In order to hold |&|<|&,], it may be
necessary to take ¢, in (4. 1) smaller than e,.

Now let us consider the domain X* in the {-plane and let {=& be some point
in 2*, From the methods that X* was constructed, the quantity

(4. 29) Re [~ uR(EY*)]=Re [e"‘% (exp wik—exp nij)]

with ¢ in place of & changes monotonically if { moves from &, along a straight
segment to & and to &. Therefore (4.29) with ¢ for & decreases along one of the
straight paths &£ or &§&. For j=Fk, let 1x(&) be one of the two segments along
which (4. 29) decreases. The inverse image in the c-plane of 2;z(§) will be our path
ri(t). For j=k, we may take either of these paths as y;;(7).

Finally we choose 7o and b so small that Re [e~*u;(o, )] also decreases along
ri(r). If b is decreased, it may be necessary to increase ¢; and to decrease e;, but
this reduction does not destroy any of the inequalities already established.
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We prove the existence of solutions of the integral equation (4.13) by the
methods of successive approximations. Define the norm of a 2-by-2 matrix
M=(mj) by

19| =max 3, .

Since Zn(r,¢) is bounded in the domain (2. 12) and (4. 15), we can assume
[|2n(z, &)| | =B

where B is some positive constant.
The successive approximations for (4.13) are the matrices {unctions given
recursively by the formulas

(4. 30) 2O0(z, &) =2n(r, ¢),
4. 31) 20D(z, &)=2n(z, &)+ L[2™(z, ¢)], n=0,1,2,---.

In order to state the existence of solution, it is sufficient to prove that

a) All 2%(z,¢) are bounded and holomorphic.

b) The sequence {£(c,¢)} is uniformly convergent to a bounded and holo-
morphic matrix function 2(z, ¢).

¢) 2(z,¢) is a solution of integral equation (4. 13).

In proving these statements, we need some estimates of the integral (4. 17).
The Re[e"pu(r,¢)] is monotonic decreasing along 7u(r) and the coefficients of
L;x(2) are bounded, then L[2(z,¢)], as defined in (4. 17), satisfies an inequality of
the form

*.32) L@l =Mlesup | o-mends
ceH* 1270
for re H*, |e¢|<e;, and |arg | =0..
The constant M; and other constants M, to be introduced below may depend
on m, &, 061, ¢1 and ¢s, but not on ¢ and <.
Using (4. 22) we have

g 0_(m+2)d0' - i S C—(m+h+1)/ndc.
Jrx(e) h 2

and prove the following lemma concerning the last integral.

LemMA 3. There exists a constant M, depending on B and m but not on ¢, b
and to such that

.39 [ irmaonazspe-ooon,
2ix(®

Proof. To fix the ideas, assume that 2;x(&) starts at &. Let 6 be the polar
angle in the {-plane. Designate by p and # the polar coordinates of the end point
of the perpendicular from =0 onto the straight line 2x(¢) and denote by ¢. the
polar angle of & Then we have
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4
2

along 2x(£). We note here that the following relations hold on the integral path
Ai(6):

(4. 34) ——HB=0,~0<

[l=p cos™* (8,—0),
sin (0,—0)d6

di€i :—Pmy
_ |df]
jkl=¢ cos? (0,—6)

Now let A%(¢) be the part of 2(£) where
10,—0] =5~ —.
If 2R2(6) is not empty,

|G|~ Cmth FDIR| G| = pCm D/ g"& [COS (01 —0,)] =" 0Ihgp,

S 1?,3(5) Jop—z/2+p

and |0¢—gp| =7/2—p so that
p=1&| cos (B:—0,)=|¢| sin B.

Hence we have

n/2—

B
(4. 35) S |g]-Gmih D gE| < (sin B)=m 1 D/k| 5|~(m+1)/h8 [cos g~ m=n+D/Ingp,
O —x/2+8

Denote by A2(¢) the complement of AR(¢) in 2(6) and assume it not emply,
then on this segment we have, |d€|<|d|]||sec B8, and therefore

h-sec ,B IS*I“("H)/IL
m—+1

(4. 36) S |g]-amarin| G| <
1R

where &* is the left end point of i®(6). Now when AR(6) is empty, £*¥=¢, and
when AR(¢) is not empty, then |£¥|>]€|, so we can replace &* in (4.36) by &.
Adding (4. 35) to (4. 36) we get Lemma 3.

With this prepapations we prove the properties a), b) and c).

a) From (4. 32) and Lemma 3, we have

4.37) [[270, [ =B+Male™'e[m 1 sup [[2(z, o),

so that we can conclude that all 2%™(r,¢) are bounded and holomorphic in the

domain H*.
b) Let 4, be defined by

Az, &) =]|2%V(z, ) — 2P(z, o).

Then we have
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Az, ) = My|clelm 1l _y(, €)
=[Ms|c—te|™ 1B,
If the constant b in (4. 15) is taken so small that
(4. 38) M1,

then the series Y 5.0 di(z, ) is uniformly convergent on f7*. Thus the scrics
80, 9+ 3 15400, 9 —59(, o)
is absolutely and uniformly convergent on H*, and consequently the partial sum
209(z, &)+ ZZ::: [E%0(z, &) —2¥(z, €)]| =2 (z, ¢)

tends uniformly on H* to a bounded and holomorphic limit matrix function 2(z, ¢).
¢) Since 2V(z,¢) converges uniformly to 2(c,¢), then from (4. 31), 2(z,¢) is
clearly a solution of the integral equation (4. 13).
Thus we get a bounded solution of the integral equation (4. 13), and this implies
that the matrix function

z(t, e)=2(r, ¢) exp [e *K(z, €)]
satisfies the differential equation (2. 11). Moreover wet get an asymptotic property:
4. 39) [12(z, &) —Zm(z, €)|| < My|z~te|m*2,

To complete the proof of Theorem 3 we have to get a similar inequality as
(4. 39) for a solution of the equation (2.6). Let us put

(4. 40) U(z, e)=P(t, &)i(z, ¢),
then the matrix function

(4. 41) u(z, e)=1i(z, €) eXp [e"h Z}j E“F,(T)_]

is a fundamental solution of (2.6). The matrix function P(r,¢) is bounded in the
domain (2. 12) which contains the domain (4. 1). Hence we have

4. 42) [|d(z, &)~ P(z, )2m(z, &)|| = M|~ 'e|™+,
where
m+h
2, e):exp[ P s”””Fy(r)].
y=h+1

If this quantity is expanded in powers of ¢, it coincides with the formal power
series Y2 eG,(r) of (2.22) up to the term ¢"Gn(r). In order to calculate the
difference

m+h m
exp| B R0 |- 5 600

v=h+1 v=0
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we write for abbreviation,

m+-h m
Wt &)= 2, e "F ()= 2, eF, (7).
y=ht1 v=1

Remembering (2. 21), we have
lleFuin(@)]| =gl e,

where ¢, is a constant, and then y(z, ¢) has the order of magnitude O(z~'¢), and hence
expy differs from the partial sum >™,x(z,¢)*/v! by an expression of order of
magnitude O[(z~%)™*1]. Since Y™, ¢’G,(z) is obtained from Y™, x(, ¢)*/v! by discarding
a finite number of terms of order of magnitude O[(z-l¢)™+!], we get in the domain
4. 1),

m

Em(r, &)— 2, eG.(7)

v=0

= Ms|cte|m*,

If we multiply the matrix P(z,¢) from the left and replace P(z,e) by its asymptotic
series (2. 14), we have

(4. 43) '

§M7lf—lslm+l-

P(z, €)idn(z, &) — i eu,(7)

Thus we conbine the inequality (4. 42) with (4. 43) and get

= Mjg|c~te|™

#(z, €)— ;30 e*u,(t)

This completes the proof of Theorem 3.

§5. Existence Theorem (2).

Corresponding to the formal series solution in Theorem 2, we prove the follow-
ing existence theorem.

THEOREM 4. For every positive wnteger m, there exists a domain of the s, p-
plane defined by

6.1 seS,  0<|p|=p;, largp|=d.,  |s®p|=cs,

(01, 02 and cs are certain constants and e is a number defined by (3.32)) and a
Sundamental matrix solution v(s, p) of the differential equation (3. 4) which is related
to the formal series solution (3.34) by the formula

(5. 2) v(s, p)— vzi%v(s)p”:3”‘”‘1/4!2(s’°“’)1’3n(s, o)[s*p]™ " exp [Q(s)],

where En(s, p) is a matrix function bounded in the domain (5. 1).
Proof. Let

5.3 Vs, )= iovv(s)pv
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be a finite sum of the series (3. 34). This satisfies a differential equation

dv ,
. — =0v'=Huwp, m=Uh UL,
(5. 4) s v v Hpn=0v,v
where v}, denotes the derivative of v, with respect to s.

Clearly vo(s) is a nonsingular matrix and all »,(s) are entire functions. Hence
if so>0 is chosen arbitrarily, vm(s, p)~* exists for

(5. 5) lol=p0,  ISI=S0,
where p, depends on s, and m. By Lemma 2, for |s|>s, and se€S, we have

(5. 6) Om(S, p)= 2% sY4Q2(s)w.(s)[s°0]* exp [Q(s)]

v=0

with bounded matrices functions w,(s). The matrix function w.(s) is nonsingular
for sx0 from (3. 13) and nonsingularity of v¢(s). Then it follows from (5. 6) that
vm(s, )~ exists for seS and

(5.7 [st0]=7no,  [S]> S0,

where 7, is sufficiently small positive number depending on s,.
Define a function wn(s, p) by the equation

(5. 8) Om(s, p)=SFOU(SE ) (s, p) exp [Q(5)],

where k(s) is defined in (3. 33). Then from the above arguments the matrix func-
tions wm(s, p) is bounded and nonsingular if s and p satisfy the condition (5. 5) or
(5.7). We write the given equation (3. 4) in the form

B s, oyo=Huls, 0yo--[H(s, 0)—In(s, )0

ds
= Hun(s, 0)0+[H(s, 0)om(s, 0)—vi(s, P)on(s, 0)~"0.

Then any solution of the integral equation

6.9 oS, 0)=0als, O+ Sm) OnS, 0)0n(0, 0) - [Hom—04lom(o, )00, p)do

satisfies the differential equation (3.4). As in the proof of Theorem 3, ['(s) is a
set of paths 7(s) ending at s.
If w(s, p) is defined by

5. 10) (s, p) = sFPUN(s (s, p) exp [Q(S)],

then the equation (5.9) becomes

5. 11) w(s, 0)=wn(s, p)+8r(s) wn(s, p) exp [Q(s) —Q(0)wn(c, p)~'2(c7(@)g-k(a

~(Hom—v7,) exp [—Q(0)]wn(a, p) "'w(s, p) exp [Q(o)—Q(s)]do.

In order to solve this equation, we need an estimate of the quantity Hvm—uv;,.
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Ms

m m
va—v/n=[ pr”+Rm] 200" — 2 vlp?
0 v=0 v=0

3
Il

(5. 12)

IngE}

v
e [EOH"OU—“_D,{]_‘— 2¥ H,opp*+ Ruom,

v=0

where the summation Y * is for
u=m, v—p=m, v >m,

and R. represents the remainder terms in the series expansion of H(s,p). The
first of the three right hand terms in (5. 12) is zero, because v, is a solution of
(3. 11). The second summation can be written

(5. 13) Sk(S)qMAQ(Sk(S)) Z* pusk(s)g(u,/z)wav_# eXp [Q(S)]
by virtue of (3.5) and (3. 31), where ¢(v, p)=p/2h+q/2—1/a+(—p)e. For each v,
the maximum power of s is attained by p=1, that is

2—/2 + -—g— — % +—pe=ve—1,

then the summation (5. 13) can be written
(5. 14) sk(s)q/«tg(sk(s))E(s, p)[sk(s)ep]m+ls—k($) eXp [Q(S)J,

where E(s, p) is bounded in (5. 5) or (5. 7) respectively, and e is a number given 1n
Theorem 4. At last, Rnv» has the same form as in (5. 14) with a different bounded
matrix function E(s, p) in the domain (1.3) and (5.5) or (5.7), because we have
from (3. 6), (3.8) and (5. 8),

R = sEOUQ(sEOY E(s, p)sk@im gm il exp [Q(s)],

where i(m)=q/2—1/a+(m~+1)/2h, and E(s,p) is a bounded function. If we notice
here that

q 1 1 i _
—2———a—+(m+1)—27;§(m FDe—1 (hz1)

then Rnvn is seen to have the form (5.14).
Inserting these results into (5. 12), we have

(5. 15) Hmvm_vyln___Sk(s)q/4g(sk(s))E(S’ p)[sk(s)ep]mﬂs—k(s) exp [Q(S)]
with another bounded function E(s, p).

Thus the integral equation (5. 11) becomes

W(s, 0)=1wn(s, )+ wn(s, ")Sp@ exp [Q(s)— Q@) wn(o, 0 Ea, 0)

“wn(s, 0)~'w(o, p) €xp [Q(a) —Q(s)][0*p] ™" o 7*do.

Since the matrices functions wm and w;! are bounded in the domain considered,
each element of the matrix which forms the integrand in (5. 16) has the form

(6.17) exp [gix(s) —gi(@]Ls[w(o, p)][a* 0] a7 ¢,

(5. 16)
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where gjx(s) is defined in (3. 25) and Lj[w] is a linear conbination of the components
in 1-st or 2-nd column of w. The coefficients of this linear conbination are functions
of ¢ and p bounded in (1. 3) and (5.5) or (5.7).

Next let us choose the paths of integrations for each element (5. 17).

As in Section}3, we map the sector S of the o-plane and s-plane into the {-plane
and é-plane respectively by

(5- 18) C:g(%q)/z, gzs(uq)/z_

Let a half plane 2 in the {-plane or &-plane be the image of the sector S and
let & be a closed half disk in & which satisfies

(6.19) |E2e/ @B p| =7,

for each p. On the circular arc of the boundary of J(, there exists for every pair
j,k (j=£k) a unique point {; at which Re [8x{] attains its maximum in JC. (see
Figure 2). The number B; is defined in (3. 25).

Then the quantity

Re [gjx(s) —gsm(o)]=Re [Bu(¢ —{)]

increases monotonically when { moves from
Cix to € along a straight segment. Here we
‘é limit ¢ to the triangular domain J(* whose
A—\ vertices are {; and two end points of the
A—\ diameter of JC. If & is any point of I*,
0 C,-} then the integral path 2x(§) is defined by
the segment joining & and {;. Thus for £
? on 4;(€), there exists a positive constant p,
& independent of j, 2 and p such that
Cu (5. 20) Re [Ba(6—0]<—pIL—|.
We take here the inverse image of (&) in

the o-plane as the integral path 7u(s) for
Fig. 2. jxk, and the path 7;(s) is to be the ray
from the origin to s.
Now, we chooge the positive constants p; and J. in (5.1) so small that the
domain
(5. 21) 0<|pl=01=p,, |arg p| =0,
satisfies the condition (1. 3). Let M(s, p) be some matrix function which is uniformly
bounded in the domain (5.21) and &=s®22¢J(*, and let M, be the least upper

bound of ||M(s, p)|| in this domain.
Consider the integral of (5.17), and write

(5. 22) 10D=\  exp 4o —gu@Lal Mool o+ do.

12720

If we change the variables s and ¢ into & and ¢, this integral becomes
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5. 23) [(M)ZS exp [Biu(€ — )L [ M2 i De=11/ @D -0/ 1) gt
2k (&)
Let us calculate this integral for each case of jxk, and j=k.
(1) j=k. First, when all the points of 7u(s) are in the domain |o|>s,, then
(5. 23) becomes by virtue of k(s)=1

(5. 24) [(M):S exp [ﬂjk(S—C)]ij(M)CZ("‘ H)c/(qu)_lpm-Hd:.

Ijk(

Then, for &edC*,

(. 25) II(M)lélol’"“CxMon P [—plE=L1[E[Pmsperarn ™ gg],

k!
where C, and C, introduced below are some constants which depend on so, 7, 70,

and J;, but are independent of p. If the path of integration is extended beyond
to infinity along a straight ray and if we put

§—l=rexpli]  (i=+/=1)
then we have
II(M)IéIp|m+1C1Mo|§|Z("‘“)c/(q*2)-1
(5. 26) &
3
Hence, if |s|>so, that is |&]>&=s@*®”2, then we have from (5.26),
| I(M)| =CoM,[£2¢/<@tD p]mH1,

Next if |s|>s, and some parts of yu(s) are contained in |o|=<s,, then in this
parts

{exp [~pr][1+

2
cos 0+ _gz_]m-u)e/)q +z)—1/2d,,_

|| = ol Cubiexp [—plé—LllIE]-a11ac]
=CiM|p|™*.

In the same way, if |s|<s, and if ru(s) is contained in |o|=s,, then I(M)
=0(lp|™"). And if [s|=s, and 7i(s) has the parts on which |o|>s, then the
contributions of this parts are O(|p|™*™).

(2) j=k. In this case we have

(5. 27) ][(M)Iépm“CsMoS |C|eor2lemd De=1)/ @D | £ | =0/ @+ | gL
258

If |&]=&,, the integral (5. 27) has the order of magnitude O(|p|™'!), and if [&]>&, 1t
iS O[{Isl2el(q+2)p}m+1].
Then we get in each case

(5. 28) |I(M)| =CsMy[| s )¢ p]m+,
Now we solve the integral equation (5. 16) which can be written
(5. 29) w(s, p)=wmn(s, p){1+Llw(o, p)I}
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where 1 is the unit matrix and

Linl=| _exp[QW)~Q)unts, 0 Ew, phon(o, p)
-w-exp [Q(0) —Q()][o* ¢ p]™** exp [ k(0)]do.

As in Section 4, we do this by the methods of successive approximations. Let
H* be the inverse image in the s-plane of J*. Since wn(s, p) is bounded, we can
suppose ||wn(s, p)||=B for some constant B.

The successive approximations for (5. 29) are
(5. 31) w®(s, p)=wm(s, o),

(. 32) w*(s, p)=wm(s, {1+ Lw® (s, o)1}

Then from (5. 28), we have

(5. 30)

”w(k+1)(s, p)| ] <B 1+C7 S}[{p I |w(/c)(3, p)l | . ]sk(s)cp|m+l .

for some constant C;. Then all w®(s, p) are bounded in (5.21) and H*, and are
holomorphic in s and p in (5. 12), H* and s<oo.
Let 4i(s, p) be defined by
di(s, p)=sup [lw*' (s, p) —w® (s, p)||.
Then
Ax(s, p) = BCsdi-1i(s, p)|s¥2ep|m it
é(BC8|sk<s)ep|)kB_

If p, and 7, are taken so small that we have in the domain (5. 21) and /7*
(5_ 33) Bcslsk(s)ep]m+1<1,

then the series Yo di(s, p) is uniformly convergent and this implies that the
sequence {w™(s, p)} converges absolutely and uniformly to a bounded matrix func-
tion w(s, p) which is clearly a solution of the integral equation (5.29) in the domain
(5. 21) and H*.

Now if ¢; in (5.1) is chosen small enough, then the domain (5. 1) is contained
in H*, so that the inequalities already established hold in the domain (5.1). Thus
we have a solution matrix (s, p) of the differential equation. (3. 4) in the domain
(5. 1) and at the same time we get an asymptotic property

(5. 34) [lw(s, o) —wn(s, p)|| =Co| ¥ ¢p|™+,
which proves Theorem 4 from (5. 8) and (5. 10).

§6. Conclusions and Remarks.

Concrusions. From Theorem 3, (2. 1) and (2. 5), it follows that the differential
equation (1.1) has a fundamental matrix solution in the domain (4.1) of the form

1 0
6.1) Y= ( )u(r, e),

0 xq/Z
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where u(z, ¢) is defined in (4. 2).
On the other hand, from Theorem 4, (4.1) and (3. 2), there exists another
fundamental matrix solution in the domain (5. 1) of the form

—-a

1 0
6. 2) y= ( >v(s, 0),
0 el

where v(s, p) is defined in Theorem 4. Now in order to state that these two so-
lutions can be patched together, it is sufficient to prove that the domains (4. 1) and
(5. 1) overlap for all sufficiently small e.

The inequality cile] =|z|=c¢. becomes in terms of x and e,
6. 3) c1®lel = x| =c.t,

and the inequality |s®p]=c; becomes

(6. 4) leécallalela~l/e(q+2),
where

EETRE SRY AR SR Ak alC AR )
o 2k * 2 a 24 >0.

We remark also that a—1/e(qg+2)>0 if 2>1, and a—1/e(qg+2)=0 if k=1 for
any positive integer q. The fact that ¢>0 assures us that the two domains (6. 3)
and (6. 4) overlap for arbitrarily small e. Thus for suitable point belonging to both
domains, we can determine the matching matrix of the two solutions (6. 2) and (6.3).

ReMARK. If the fundamental assumption (1. 7) is removed, it is more difficult
to analyze the equation (1.1). According to the results of Iwano and Sibuya [1],
the assumption (1. 7) means that the domain (1.3) is divided into only two sub-
domains in each of which the solution of the equation (1. 1) moves quite differently
as ¢ tends to zero. In near future, it will be treated more general equations.
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