
ON THE EXISTENCE OF ANALYTIC MAPPINGS

BY MITSURU OZAWA

1. Let R and S be two ultrahyperelliptic surfaces defined by the equations
V2=G(z) and u2=g(w), respectively, where G and g are two entire functions having
no zero other than an infinite number of simple zeros. Let Sβs and ϋβΛ be the
projection maps (w, u)-^w and (z, y)-*z, respectively. Let φ be an analytic mapping
from R into S. Let Φ be the sifted mapping ψs°<p, then Φ is an entire function
on R.

DEFINITION 1. // ψ satisfies ^>soφ{p)=^>soφ{q) for p±?q, ^RP^^RQ, then we
say that ψ satisfies the rigidity of projection map or φ is a rigid analytic mapping
from R into S. Similarly we can define the rigidity of projection map for an analytic
function on R. If it is not the case, then we say that Φ is a non-rigid analytic
mapping or function.

Is there any non-rigid analytic mapping from R into S?

This is one of the most important problems in the analytic mapping theory in
our case and we shall give here a negative answer for this problem. Although we
conjectured that this problem would be solved by Sario's result [5] in our previous
paper [4], we shall adopt a quite different way of proof. We shall make use of
Nevanlinna-Selberg's theory on algebroid functions [6]. If S is a hyperelliptic sur-
face of lower genus, then there are pairs of R and S which admit non-rigid analytic
mappings. We shall show this by two examples.

2. We shall prove the following non-existence theorem of non-rigid analytic
mapping.

THEOREM 1. There is no non-rigid analytic mapping from an ultrahyperelliptic
surface R into another such surface S.

In order to prove this theorem we need a lemma on algebroid functions.

LEMMA 1. There is no solution of an equation of the following form

Q o {h,{z) + A 2 (2)Λ/G(Z)) = {Uiz)+L2(z)>v/G(2))8

for any two entire functions Lλ and L2 of z, where hi and h2 are two entire functions
of z and
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Proof. Since g has only simple zeros {wμ}, the equations

hiz)= ) =wμ

must have an infinite number of zeros {zμv} excepting at most four values wu w2,
w3 and w4. All the zμv are at least double zvpoints of K*) a n d there is no other
zero of g°h(z). Thus h(z) has an infinite number of perfectly branched values wμ.
On the other hand by Nevanlinna-Selberg's second fundamental theorem and by the
ramification theorem, which remains true in our case,

where

N(r, w, h)
T(r,h)

If w is a perfectly branched value of h, then Θ(w)^l/2. Thus there are at most
eight perfectly branched values {wμ} of h. This is a contradiction. Thus we have
the desired result.

Proof of Theorem 1. Every ultrahyperelliptic surface admits two univalent
conformal mappings onto itself, that is, the identity map and its sheet-exchanged
map. Correspondingly there is another analytic function or mapping ά when there
is an analytic function or mapping a. Evidently ψ is rigid if and only if Φ=Φ. Φ
can be represented by a two-valued algebroid entire function hoi z in the following-
manner:

or their sheet-exchanged forms with two entire functions hi and h2. Let \Z0* be
an analytic function on S corresponding to the two-valued algebroid entire function
\/g(w) of wy that is, \/g* =\/9oί$s. Then \/g*°φ is an analytic function on R.
Therefore it must be represented in the following
manner: jg ^ > g

with two entire functions of z. However we have

It should be remarked that some modifications should be made in the above dis-
cussions. The choices of analytic branches of ψ^1 and φ^1 are free unless they are
fixed suitably. However, then, it is sufficient to consider some suitable sheet-
exchanged functions or mappings as the cases may be and we arrive at the same
conclusion
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Since ψ is not rigid, A2^0. By Lemma 1 the above equation has no solution, which
is untenable. This completes the proof of theorem 1.

3. By theorem 1 and by our previous result in [4], we can conclude the follow-
ing perfect condition for the existence of analytic mapping from R into S.

THEOREM 2. If there exists an analytic mapping φ from R into S, then there
exists a pair of two entire functions h(z) and f(z) of z satisfying an equation

f(z)*G(z)=goh(z)
and vice versa.

Sufficiency part can be proved in the following manner. Let ψ be an analytic
mapping defined by

Then φ is evidently rigid analytic mapping from R into S, since every branch point
of R corresponds to a branch point of S by \/^)°h = ±f\/G.

This theorem gives a powerful tool in order to investigate the existence problem
and the growth problem of analytic mappings in our case. However to solve the
equation

f(z)2G(z)=goh(z)

is quite difficult.

4. We shall solve the problem 2) in [4].

THEOREM 3. Let R and S be two ultrahyperelliptic surfaces. Suppose that there
exists an analytic mapping φ from R into S. Then ψ is a semi-degenerate analytic
mapping, that is,

iίS T(r,Φ) > '
where N(r, R) is the quantity N(r, 36) defined in [6]. Further it satisfies

— N(r, R) _
™ T(r ,Φ)-° ° '

Proof. By theorem 2 we may consider the possibility of an equation of the
form F2G=g°h with two suitable entire functions F and h of z. Since g has no
zero other than an infinite number of simple zeros, we have

N(r; 0, goh)=N2(r; 0,0°A)+M(r; 0, goty+N^r, 0, g°h),

Ni(r; 0, goA)^iVi(r, 0, g<>h)^N(r; 0, hf)^m{r, h')

I hf \lr, -γ\ =I h \
mlr, -γ\ =O(logrm(r, A)),
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where N2(r;0,f) is the N-ίunction of simple zeros of /. Therefore we have

N(r; 0, goh)-2m(r, h)+O(log rm(r, h))

^N2(r; 0, goh)=N2(r; 0, F2G)^N(r; 0, G)

=2N(r,R)+O(logr).

Let {wμ} be a set of an arbitrary finite number p of zeros of g. Then we have

N(r, 0, goh)^Σ N(r, wμ}h),

where the summation is taken over all p zeros {wμ} of g and r is a sufficiently
large number. By the second fundamental theorem for h

Σ N(r; wμ, h)^(p-2)m(r, h)+O(logrm(r, h)).

Therefore

2N(r,R)+O(}ogr)

^(p-2)m{r, h)~2mir, h)+O(logrm(r, h)).

If h is a polynomial, then m(r, h)=O(logr). Hence

Γ — 2iV(r,Λ)
hm—γ^γ-^p-k.
r->oo m{r, h)

If ^ is a transcendental entire function, then

Since /> may be an arbitrary finite number by the assumption on the number of
simple zeros of g, the desired result

hm / =oo
r-̂ oo m{r, h)

holds as Ί\r1Φ)=m(rJh).

5. Let h(z) be again a two-valued meromorphic function of the following form

where hi and h2 are two meromorphic functions of z. Let (̂2) be a polynomial

Π (*-*.).
V = l

LEMMA 2. 2%βr̂  is no solution of an equation

for any meromorphic functions Lλ and L2, when p^5.

Proof, g has 2/>(^10) simple zeros aί} ~ ,a2P. This implies that every root of
h(z)=a must be of even multiplicity whenever it exists. Thus
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holds for every avt where Θ(w) has already been defined. On the other hand by the
second fundamental theorem on algebroid functions

This is untenable for 2/>>8.

THEOREM 4. Let R be an ultrahyperelliptic surface and let S be a hyperelliptic
surface of genus p—1, p^5. Then there is no non-rigid analytic mapping from R
into S. If there is an analytic mapping ψ from R into S, then it is rigid and
satisfies

^N(r,R) <

and there exist two meromorphic functions h{z) and F{z) of z in such a manner that
a functional equation of the following form

F(z)2G(z)=goh(z)
remains true.

The following fact is another interpretation of the above theorem. For every
hyperelliptic curve y2=P(x) of genus greater than 3, there is no pair of two-valued
algebroid functions x(f), y(t) on an ultrahyperelliptic surface in such a manner that
y(t)2==P(x(t)).

If the genus of S is less than four, then the first part of the above theorem
does not hold in general. Here we shall give two examples. Let $(z) be Weierstrass'
elliptic function. Then it is well known that

Let R be the proper existence domain of \/$(z), then it is an ultrahyperelliptic
surface. Let S be a hyperelliptic surface defined by

Evidently we have

which shows that there is a non-rigid analytic mapping φ from R into S, which
corresponds to \/Y(z), that is, <$SO<PO<$R1(Z)=A/$(Z). Thus the first part of theorem
4 does not hold when the genus of S is equal to 2.

Let sn z be Jacobi's elliptic function. Then it is well known that

— snz) =(1—sn22)(l—k2 sn2 z).

Let R be the proper existence domain of \/sn z, then it is an ultrahyperelliptic
surface. Let S be a hyperelliptic surface defined by
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-r-sn z) = ( 1 — A / S Ϊ Ϊ Ϊ ) ( 1 + \ / S Ϊ Γ Ϊ ) ( 1 — i \ZsrTz)(l+i \/snz)
az I

Then

This equation shows that there is a non-rigid analytic mapping ^ from R into S
which corresponds to */snz, that is, ($s°φ

o<$R1(z)=\/§Ώ~z. Thus the first part of
theorem 4 does not hold, when the genus of S is equal to 3. For these two ex-
amples we have

—i\/k\/sn z)(l+i*/k*/sn z).

This fact is easy to prove.

6. In the theory of analytic mappings between two-sheeted surfaces there
remain some unsettled problems. Here we shall list them.

Let %R(R) be the class of non-constant meromorphic functions on R. Let P(f)
be the number of exceptional values, where we say a value a an exceptional value
when it is never taken by / in R. Let P(R) be the supremum of P(f), that is,

^sup^POO.

1) Determine all the ultrahyperelliptic surfaces with P(R)—3.
It is very plausible to conjecture that the surface R defined by

with non-constant entire functions Hx and H2 has P(R)=3 unless Hι=Hz or HX=2H2

and^i^ftVlβor i7 2=2#i and β2=βl/16. It is not difficult to prove that the surface
P(R)=3 must have the above form. If it reduces to the following form

f2(eH-r)(eH-δ),

with an entire function H and a meromorphic function / and two constants γ and
δ, then P(R)=i and vice versa [3].

2) Is there any example of analytic mapping from an ultrahyperelliptic surface
R with P(R)=A into another S with P(S)=3?

This would be negative and depend on the problem 1).
3) Is there any example of analytic mapping from an ultrahyperelliptic surface

R with P(R)=3 into another S with P(S)=2?
This would be again negative.
4) Is there any rigid analytic mapping together with a non-rigid analytic

mapping from an ultrahyperelliptic surface R into a hyperelliptic surface S?
This would be also negative.
5) Determine all the hyperelliptic surfaces S into which a non-rigid analytic

mapping is possible from a suitable ultrahyperelliptic surface.
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This would depend on the ramification relation in the Nevanlinna theory and
its generalization to the algebroid functions. There would rarely exist such ex-
amples among all the hyperelliptic surfaces of genus less than 4. Our two examples
of non-rigid analytic mappings show that the non-rigidity of analytic mapping ψ is
eliminated by composing to the defining function of the surface S and then the
rigidity holds, that is,

satisfies the rigidity of projection map. This would be worth while to notice.
All of our problems would demand the several different considerations in the

classical value distribution theory. Especially it is necessary to study the value
distribution of a composite entire function. This is the problem 3) in our previous
paper [4].
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