ON THE EXISTENCE OF MEROMORPHIC FUNCTIONS WITH PREASSIGNED ASYMPTOTIC SPOTS

By Genkō Hiromi

In his paper [2], Heins introduced the notion of asymptotic spot of an interior transformation and then in [3], especially, he examined asymptotic spots of entire and meromorphic functions. Let f(z) be meromorphic in $|z| < \infty$, and let w_0 denote a point of the extended *w*-plane. Then σ is called an asymptotic spot over w_0 when σ is a function (a correspondence from sets to sets) whose domain is the family Φ_{w_0} of simply-connected Jordan regions containing w_0 and which satisfies: (a) for each $\Omega \in \Phi_{w_0}$, $\sigma(\Omega)$ is a component of $f^{-1}(\Omega)$ which is not relatively compact, and (b) if $\Omega_1 \subset \Omega_2$, for $\Omega_1, \Omega_2 \in \Phi_{w_0}$, then $\sigma(\Omega_1) \subset \sigma(\Omega_2)$. Let $\mathfrak{G}_{\mathcal{Q}}(w, w_0)$ denote Green's function for Ω with the pole at w_0 . We put

 $u_{\sigma(\mathcal{Q})}(z) \equiv \text{G.H.M. } \mathfrak{G}_{\mathcal{Q}}(f_{\sigma(\mathcal{Q})}(z), w_0),$

where $f_{\sigma(\Omega)}(z)$ is the restriction of f(z) to $\sigma(\Omega)$ and G.H.M. means the greatest hermonic minorant. We associate with the pair (σ, Ω) an index $h(\sigma, \Omega)$ as follows. If $u_{\sigma(\Omega)}(z) \equiv 0$, then $h(\sigma, \Omega) = 0$. If $u_{\sigma(\Omega)}(z) > 0$ and is represented as a finite sum of n mutually non-proportional minimal positive harmonic functions on $\sigma(\Omega)$, then $h(\sigma, \Omega) = n$. In the remaining case, we set $h(\sigma, \Omega) = +\infty$. The index $h(\sigma, \Omega)$ is monotone in Ω , i.e. if $\Omega_1 \subset \Omega_2$, then $h(\sigma, \Omega_1) \leq h(\sigma, \Omega_2)$. The harmonic index $h(\sigma)$ of σ is then defined as

$$\inf_{\Omega\in\phi_{w_0}} h(\sigma, \Omega).$$

Now Heins proposed the following realization problem: Let w_1, \dots, w_n denote $n(\geq 1)$ given points on the extended *w*-plane and h_1, \dots, h_n denote *n* given positive integers. Does there exist a meromorphic function f(z) in $|z| < \infty$ which satisfies: (I) the asymptotic spots of f(z) having positive harmonic indices are *n* in number, say $\sigma_1, \dots, \sigma_n$, (II) σ_k lies over w_k and $h(\sigma_k) = h_k$, (III) f(z) is of order H/2, where $H = \sum_{k=1}^n h_k$?

The object of the present paper is to give a solution for this problem.

Heins showed an affirmative answer for the special cases: (i) n=1, (ii) n=2, $h_1=h_2=2$. As a direct consequence of the method which Heins used to construct an example of the case (ii), M. Ozawa has informed to the author an affirmative answer for the case (iii) n=2, $h_1=h_2=m$. In fact, it is shown that the argument similar to the case (ii) in [3] (p. 439) remains valid in the case (iii) by considering the starting function $g(z)=e^{-iz}\cos z^m$ in place of $g(z)=e^{-iz}\cos z^2$.

Received December 10, 1964.

Here we shall give an answer for the case: $n=2, h_1, h_2, w_1$ and w_2 unrestricted and further solve the general problem affimatively.

To this end we need some preparatory considerations. Suppose that G is a Jordan region in $|z| < \infty$ and that U is a harmonic function non-negative on G which vanishes on the boundary of G. Further suppose that $\{G_k\}$ is a family of Jordan subregions of G satisfying $G_k \cap G_l = \phi$ for $k \neq l$, and that U_k is a harmonic function non-negative on G_k which vanishes continuously on the boundary of G_k and is dominated by U on G_k . Let U_k^* denote the least harmonic majorant of the sub-harmonic function which is equal to U_k on G_k and to zero on $G - G_k$. Then we get the following lemma.

LEMMA. Under the above assumption it holds

 $\sum U_k^* \leq U;$

if each U_k is minimal in G_k , then U_1^* , U_2^* , \cdots are minimal and mutually non-proportional in G.

The proof of the lemma is contained in (f) and (c) of [2] (pp. 442-445).

In [3], Heins formulated the Denjoy-Carleman-Ahlfors theorem and gave the following theorem (p. 431).

THEOREM A. Let H denote the grand total of the harmonic indices of all the asymptotic spots of a non-constant meromorphic function f in $|z| < \infty$. Let T(r; f) denote the Nevanlinna characteristic function of f. If $H=+\infty$, then

$$\lim_{r\to\infty}\frac{\log T(r;f)}{\log r}=+\infty.$$

If $2 \leq H < \infty$, then

$$\liminf_{r\to\infty} \frac{T(r; f)}{r^{H/2}} > 0.$$

If H=1 and the asymptotic spot σ_0 with index one is such that for some Ω of its domain, the complement of $\sigma_0(\Omega)$ intersects all circles $\{|z|=r\}$ with r sufficiently large, then

$$\liminf_{r\to\infty}\frac{T(r;f)}{r^{1/2}}>0.$$

Now we observe Mittag-Leffler's function

$$E_{\alpha}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(1+\alpha n)} \qquad (0 < \alpha < 2)$$

which is an entire function of order $1/\alpha$ and quote the following theorem (cf. § 3.62 in [1]):

If $0 < \alpha < 1$ there exists a constant K independent of α such that

(1)
$$\left|E_{\alpha}(z)-\frac{\exp z^{1/\alpha}}{\alpha}+\frac{1}{z\Gamma(1-\alpha)}\right| \leq \frac{K}{\alpha^2|z|^2} \text{ for } |\arg z| \leq \frac{3}{4} \alpha \pi, |z| \geq 2,$$

EXISTENCE OF MEROMORPHIC FUNCTIONS

(2)
$$\left| E_{\alpha}(z) + \frac{1}{z\Gamma(1-\alpha)} \right| \leq \frac{K}{\alpha^2 |z|^2} \quad \text{for} \quad \frac{3}{4}\alpha\pi \leq \arg z \leq 2\pi - \frac{3}{4}\alpha\pi, |z| \geq 2.$$

By using Mittag-Leffler's function $E_{\alpha}(z)$, we put

$$f_k(z) = E_{2/H}(ze^{k-1})$$
 (k=1, 2, ..., H(\ge 3)),

where ε is a primitive *H*-th root of 1: $\varepsilon = \cos(2\pi/H) - i \sin(2\pi/H)$.

PROPOSITION 1. The function

$$f(z) = \sum_{j=1}^{h_1} f_j(z) / \sum_{j=h_1+1}^{H} f_j(z)$$

has the desired properties for the case: $n=2, w_1=\infty, w_2=0$ and $H \ge 3$.

Proof. We define an asymptotic spot σ_1 over $w_1 = \infty$ as follows. For $-\pi/H \leq \arg z \leq -\pi/2H$

$$\begin{split} |f_{1}(z)| &\geq \frac{H}{2} |\exp z^{H/2}| - \frac{1}{|z|\Gamma(1-2/H)} - \frac{H^{2}K}{4|z|^{2}}, \\ |f_{H}(z)| &\leq \frac{H}{2} |\exp z^{-H/2}| + \frac{1}{|z|\Gamma(1-2/H)} - \frac{H^{2}K}{4|z|^{2}} \leq \frac{H}{2} + \frac{1}{|z|\Gamma(1-2/H)} + \frac{H^{2}K}{4|z|^{2}}, \\ |f_{j}(z)| &\leq \frac{1}{|z|\Gamma(1-2/H)} + \frac{H^{2}K}{4|z|^{2}} \qquad (j=2, \dots, H-1); \\ |f(z)| &\geq \left\{ |f_{1}(z)| - \sum_{j=2}^{h_{1}} |f_{j}(z)| \right\} \Big/ \sum_{j=h_{1}+1}^{H} |f_{j}(z)| \\ &\geq \left\{ |\exp z^{H/2}| - \frac{2}{|z|\Gamma(1-2/H)} - \frac{H^{2}K}{2|z|^{2}} \right\} \Big/ \left\{ 1 + \frac{2}{|z|\Gamma(1-2/H)} + \frac{H^{2}K}{2|z|^{2}} \right\}. \end{split}$$

For $|\arg z - 2(k-1)\pi/H| \le \pi/2H$ $(k=1, \dots, h_1)$

$$\begin{split} |zf_{k}(z)| &\geq \frac{H}{2} |\exp(z\varepsilon^{k-1})^{H/2}| - \frac{1}{\Gamma(1-2/H)} - \frac{H^{2}K}{4|z|}, \\ |zf_{j}(z)| &\leq \frac{1}{\Gamma(1-2/H)} + \frac{H^{2}K}{4|z|} \qquad (j=1,\,\cdots,\,k-1,\,k+1,\,\cdots,\,H); \\ |f(z)| &\geq \left\{ |zf_{k}(z)| - \sum_{j=1}^{k-1} |zf_{j}(z)| - \sum_{j=k+1}^{h_{1}} |zf_{j}(z)| \right\} \Big/ \sum_{j=h_{1}+1}^{H} |zf_{j}(z)| \\ &\geq \left\{ |z\exp(z\varepsilon^{k-1})^{H/2}| - \frac{2}{\Gamma(1-2/H)} - \frac{H^{2}K}{2|z|} \right\} \Big/ \left\{ \frac{2}{\Gamma(1-2/H)} + \frac{H^{2}K}{2|z|} \right\} \\ &\geq \left\{ |z\cosh(z\varepsilon^{k-1})^{H/2}| - \frac{2}{\Gamma(1-2/H)} - \frac{H^{2}K}{2|z|} \right\} \Big/ \left\{ \frac{2}{\Gamma(1-2/H)} + \frac{H^{2}K}{2|z|} \right\}. \\ \\ &\text{For } |\arg z + \pi/H - 2k\pi/H| \leq \pi/2H \ (k=1,\,\cdots,\,h_{1}-1) \end{split}$$

$$\left|zf_{\mathbf{k}}(z)-\frac{H}{2}z\exp(z\varepsilon^{\mathbf{k}-1})^{H/2}\right| \leq \frac{1}{\Gamma(1-2/H)}+\frac{H^{2}K}{4|z|},$$

$$\begin{split} \left| zf_{k+1}(z) - \frac{H}{2} z \exp(z\varepsilon^{k})^{H/2} \right| &\leq \frac{1}{\Gamma(1-2/H)} + \frac{H^{2}K}{4|z|}, \\ |zf_{j}(z)| &\leq \frac{1}{\Gamma(1-2/H)} + \frac{H^{2}K}{4|z|} \qquad (j=1,\,\cdots,\,k-1,\,k+2,\,\cdots,\,H); \\ |f(z)| &\geq \left\{ |zf_{k}(z) + zf_{k+1}(z)| - \sum_{j=1}^{k-1} |zf_{j}(z)| - \sum_{j=k+2}^{h_{1}} |zf_{j}(z)| \right\} \Big/ \sum_{j=h_{1}+1}^{H} |zf_{j}(z)| \\ &\geq \left\{ |z\cosh z^{H/2}| - \frac{1}{\Gamma(1-2/H)} - \frac{H^{2}K}{4|z|} \right\} \Big/ \left\{ \frac{2}{\Gamma(1-2/H)} + \frac{H^{2}K}{4|z|} \right\}. \\ \text{And for } \pi/2H + 2(h_{1}-1)\pi/H \leq \arg z \leq \pi/H + 2(h_{1}-1)\pi/H \end{split}$$

$$\begin{split} |f_{h_{1}}(z)| &\geq \frac{H}{2} |\exp(z\varepsilon^{h_{1}-1})^{H/2}| - \frac{1}{|z|\Gamma(1-2/H)} - \frac{H^{2}K}{4|z|^{2}}, \\ |f_{h_{1}+1}(z)| &\leq \frac{H}{2} |\exp(z\varepsilon^{h_{1}})^{H/2}| + \frac{1}{|z|\Gamma(1-2/H)} + \frac{H^{2}K}{4|z|^{2}} \\ &\leq \frac{H}{2} + \frac{1}{|z|\Gamma(1-2/H)} + \frac{H^{2}K}{4|z|^{2}}, \\ |f_{j}(z)| &\leq \frac{1}{|z|\Gamma(1-2/H)} + \frac{H^{2}K}{4|z|^{2}} \qquad (j=1,\cdots,h_{1}-1,h_{1}+2,\cdots,H); \\ |f(z)| &\geq \left\{ |f_{h_{1}}(z)| - \sum_{j=1}^{h_{1}-1} |f_{j}(z)| \right\} \Big/ \sum_{j=h_{1}+1}^{H} |f_{j}(z)| \\ &\geq \left\{ |\exp(z\varepsilon^{h_{1}-1})^{H/2}| - \frac{2}{|z|\Gamma(1-2/H)} - \frac{H^{2}K}{2|z|^{2}} \right\} \Big/ \left\{ 1 + \frac{2}{|z|\Gamma(1-2/H)} + \frac{H^{2}K}{2|z|^{2}} \right\}. \end{split}$$

From these inequalities we see that if M is sufficiently large the open set $\{z; |f(z)| > M\}$ contains the union G_1 of regions

$$\left\{ z; \ |\exp z^{H/2}| > M^2, \ -\frac{\pi}{H} < \arg z \le -\frac{\pi}{2H} \right\},$$
$$\left\{ z; \ |z \cosh z^{H/2}| > M^2, \ -\frac{\pi}{2H} \le \arg z \le \frac{\pi}{2H} + \frac{2(h_1 - 1)\pi}{H} \right\}$$

and

$$\left\{z; \ |\exp(z\varepsilon^{h_1-1})^{H/2}| > M^2, \ \frac{\pi}{2H} + \frac{2(h_1-1)\pi}{H} \le \arg z < \frac{\pi}{H} + \frac{2(h_1-1)\pi}{H}\right\}.$$

Clearly the set G_1 is an unbounded region. We define an asymptotic spot σ_1 over $w_1 = \infty$ by putting $\sigma_1(|w| > M) \equiv$ the component of $f^{-1}(|w| > M)$ containing G_1 . Clearly for every $\mathcal{Q} \in \Phi_{w_1}$, $\sigma(\mathcal{Q})$ is well defined suitably. Next we get $h(\sigma_1) \ge h_1$. In fact, for sufficiently large M the inequality

$$\log \frac{|f(z)|}{M} \ge U_k \equiv \operatorname{Re}(z \varepsilon^{k-1})^{H/2} - 2 \log M$$

holds in the region

$$arDelta_k: \Big\{ z; \ U_k(z) > 0, \ -rac{\pi}{H} + rac{2(k-1)\pi}{H} < rg z < rac{\pi}{H} + rac{2(k-1)\pi}{H} \Big\}, \ k=1, \ \cdots, \ h_1.$$

Now $\log(|f(z)|/M)$ being superharmonic, $u_{\sigma_1(|w|>M)}(z) \equiv G.H.M. \log(|f(z)|/M)$ is nonnegative and $u_{\sigma_1(|w|>M)}(z) \geq U_k(z)$ in Δ_k . Since $U_k(z)$ is minimal in Δ_k , $u_{\sigma_1(|w|>M)}(z)$ dominates at least h_1 mutually non-proportional minimal functions by Lemma. Therefore we get $h(\sigma_1, |w|>M) \geq h_1$ for every large M, and hence $h(\sigma_1) \geq h_1$.

Similarly we can find an asymptotic spot σ_2 over $w_2=0$ having $h(\sigma_2) \ge h_2$. In fact, let a set G_2 be the union of regions

$$\left\{ z; \ |\exp(z\varepsilon^{h_1-1})^{H/2}| > M^2, \ -\frac{\pi}{H} + \frac{2h_1\pi}{H} < \arg z \le -\frac{\pi}{2H} + \frac{2h_1\pi}{H} \right\}, \\ \left\{ z; \ |z\cosh z^{H/2}| > M^2, \ -\frac{\pi}{2H} + \frac{2h_1\pi}{H} \le \arg z \le \frac{\pi}{2H} + \frac{2(H-1)\pi}{H} \right\}$$

and

$$\left\{z; \ |\exp(z\varepsilon^{H-1})^{H/2}| > M^2, \ \frac{\pi}{2H} + \frac{2(H-1)\pi}{H} \le \arg z < \frac{\pi}{H} + \frac{2(H-1)\pi}{H}\right\}$$

Then the set $\{z; |f(z)| < 1/M\}$ contains G_2 . If an asymptotic spot σ_2 over $w_2=0$ is defined by putting $\sigma_2(|w| < 1/M) \equiv$ the component of $f^{-1}(|w| < 1/M)$ containing G_2 , we get $h(\sigma_2) \ge h_2$ by the argument similar to the case of σ_1 .

The order ρ of f(z) is at most H/2 since $E_{\alpha}(z)$ is of order $1/\alpha$. On the other hand, we get, by Theorem A, $\overline{H} \leq 2\rho$ for the grand total \overline{H} of the harmonic indices of all the asymptotic spots of f. Consequently we have

$$H = h_1 + h_2 \leq h(\sigma_1) + h(\sigma_2) \leq \overline{H} \leq 2\rho \leq H,$$

and hence

$$\rho = \frac{H}{2}$$
, $h(\sigma_1) = h_1$, $h(\sigma_2) = h_2$ and $\overline{H} = H$.

We thus obtain the desired result.

For arbitrary w_1 and w_2 , if $w_1 \neq w_2$ it suffices to consider a function $L \circ f$ where L is a linear fractional transformation satisfying $L(\infty) = w_1$, $L(0) = w_2$, and if $w_1 = w_2$ it suffices to consider a function f+1/f or $1/(f+1/f)+w_1$ according to $w_1 = \infty$ or $w_1 \neq \infty$. Here we remark that a set $\{z; |f+1/f| > M\}$ has two desired unbounded components. For on the half rays $\{z; \arg z = -\pi/H\}$ and $\{z; \arg z = \pi/H + 2(h_1 - 1)\pi/H\}$ we get $|f+1/f| \leq 3$ for every large |z|.

The assumption $H \ge 3$ is not essential. For if H=2 and n=2 we have a particular function $\exp z$ as the above f.

Now we shall treat the general problem. Let w_1, \dots, w_n $(n \ge 3)$ denote n given points in the extended w-plane, and h_1, \dots, h_n denotes n given positive integers. We suppose without loss of generality that the set $\{w_k; k=1, \dots, n\}$ does not contain the point at infinity. For the required properties are invariant under any linear fractional transformation of values of an admissible function.

Again by using Mittag-Leffler's function, we put

$$f_j(z) = E_{2/H}(z\varepsilon^{j-1})$$
 $(j=1, \dots, H(=h_1 + \dots + h_n \ge 3)),$

where ϵ is a primitive *H*-th root of 1: $\epsilon = \cos(2\pi/H) - i\sin(2\pi/H)$. From $f_j(z)$ we construct a function $\tilde{f}_k(z)$ associated with h_k as follows. If $h_k=1$, we put

 $\widetilde{f}_k(z) = f_1(z).$

If $h_k > 1$ we put

$$\widetilde{f}_k(z) = \left(\sum_{j=1}^{h_k} f_j(z)\right) g_k(z),$$

where $g_k(z)$ is defined by

$$g_{k}(z) = \begin{cases} E_{2h_{k}/H}(z\varepsilon^{(h_{k}-1)/2}) & \text{for } 2h_{k} < H, \\ E_{2(H-h_{k})/H}(z\varepsilon^{H+h_{k}-1})^{-1} & \text{for } 2h_{k} > H, \\ \exp z\varepsilon^{(h_{k}-1)/2} & \text{for } 2h_{k} = H. \end{cases}$$

PROPOSITION 2. The function

$$f(z) = \left\{ \sum_{k=1}^{n} w_k \tilde{f}_k(z \varepsilon^{h_1 + \dots + h_{k-1}}) + A \right\} / \sum_{k=1}^{n} \tilde{f}_k(z \varepsilon^{h_1 + \dots + h_{k-1}})$$

has the required properties provided A is a sufficiently large number.

Proof. We first examine the properties of $f_k(z)$. From the estimations obtained in (1) and (2) we get

$$\begin{split} \left|\sum_{j=1}^{h_{k}} f_{j}(z)\right| &\geq \frac{H}{2} \left|\cosh z^{H/2}\right| - \frac{H}{|z|\Gamma(1-2/H)} - \frac{H^{3}K}{4|z|^{2}} \\ & \text{for } -\frac{\pi}{H} \leq \arg z \leq -\frac{\pi}{H} + \frac{2h_{k}\pi}{H}, \\ \left|\sum_{j=1}^{h_{k}} f_{j}(z)\right| &\leq \frac{H}{2} \left|\exp\left(z\varepsilon^{h_{k}-1}\right)^{H/2}\right| + \frac{H}{|z|\Gamma(1-2/H)} + \frac{H^{3}K}{4|z|^{2}} \\ & \text{for } -\frac{\pi}{H} + \frac{2h_{k}\pi}{H} \leq \arg z \leq -\frac{\pi}{2H} + \frac{2h_{k}\pi}{H}, \\ \left|\sum_{j=1}^{h_{k}} f_{j}(z)\right| &\leq \frac{H}{|z|\Gamma(1-2/H)} + \frac{H^{3}K}{4|z|^{2}} \\ & \text{for } -\frac{\pi}{2H} + \frac{2h_{k}\pi}{H} \leq \arg z \leq 2\pi - \frac{3\pi}{2H}, \\ \left|\sum_{j=1}^{h_{k}} f_{j}(z)\right| &\leq \frac{H}{2} \left|\exp z^{H/2}\right| + \frac{H}{|z|\Gamma(1-2/H)} + \frac{H^{3}K}{4|z|^{2}} \\ & \text{for } -\frac{3\pi}{2H} \leq \arg z \leq -\frac{\pi}{H}. \end{split}$$

Hence for sufficiently large |z| we have

EXISTENCE OF MEROMORPHIC FUNCTIONS

(3)
$$\left|\sum_{j=1}^{h_k} f_j(z)\right| \ge \frac{H}{4} \left|\cosh z^{H/2}\right| \quad \text{for } -\frac{\pi}{H} \le \arg z \le -\frac{\pi}{H} + \frac{2h_k\pi}{H},$$

(4)
$$\left|\sum_{j=1}^{hk} f_j(z)\right| \leq H$$
 for $-\frac{\pi}{H} + \frac{2h_k\pi}{H} \leq \arg z \leq 2\pi - \frac{\pi}{H}$.

Concerning $g_k(z)$ we have

$$\begin{split} |g_{k}(z)| &\geq \frac{H}{2h_{k}} |\exp(z\varepsilon^{(h_{k}-1)/2})^{H/2h_{k}}| - \frac{1}{|z|\Gamma(1-2h_{k}/H)} - \frac{H^{2}K}{4h_{k}^{2}|z|^{2}} \\ & \text{for} - \frac{\pi}{H} \leq \arg z \leq -\frac{\pi}{H} + \frac{2h_{k}\pi}{H}, \\ |g_{k}(z)| &\leq \frac{H}{2h_{k}} |\exp(z\varepsilon^{(h_{k}-1)2})^{H/2h_{k}}| + \frac{1}{|z|\Gamma(1-2h_{k}/H)} + \frac{H^{2}K}{4h_{k}^{2}|z|^{2}} \\ & \text{for} - \frac{\pi}{H} - \frac{h_{k}\pi}{2H} \leq \arg z \leq -\frac{\pi}{H} \text{ and for } -\frac{\pi}{H} + \frac{2h_{k}\pi}{H} \leq \arg z \leq -\frac{\pi}{H} + \frac{5h_{k}\pi}{2H}, \\ |g_{k}(z)| &\leq \frac{1}{|z|\Gamma(1-2h_{k}/H)} + \frac{H^{2}K}{4h_{k}^{2}|z|} \\ & \text{for} - \frac{\pi}{H} + \frac{5h_{k}\pi}{2H} \leq \arg z \leq 2\pi - \frac{\pi}{H} - \frac{h_{k}\pi}{2H} \end{split}$$

$$\begin{aligned} \text{if } 2h_k < H. \quad \text{If } 2h_k > H, \text{ then we have} \\ |g_k(z)| &\geq \left\{ \frac{H}{2(H-h_k)} |\exp(z\varepsilon^{(H+h_k-1)})^{H/(2H-2h_k)}| + \frac{1}{|z|\Gamma(2h_k/H-1)} + \frac{H^2K}{4(H-h_k)^2|z|^2} \right\}^{-1} \\ &\quad \text{for } 2\pi - \frac{\pi}{H} \leq \arg z \leq \frac{5\pi}{2} - \frac{\pi}{H} - \frac{h_k\pi}{2H} \text{ and} \\ &\quad \text{for } -\frac{\pi}{2} - \frac{\pi}{H} - \frac{5h_k\pi}{2H} \leq \arg z \leq -\frac{\pi}{H} + \frac{2h_k\pi}{H}, \\ |g_k(z)| &\geq \left\{ \frac{1}{|z|\Gamma(2h_k/H-1)} + \frac{H^2K}{4(H-h_k)^2|z|^2} \right\}^{-1} \\ &\quad \text{for } \frac{\pi}{2} - \frac{\pi}{H} - \frac{h_k\pi}{2H} \leq \arg z \leq -\frac{\pi}{2} - \frac{\pi}{H} + \frac{5h_k\pi}{2H}, \\ |g_k(z)| &\leq \left\{ \frac{H}{2(H-h_k)} |\exp(z\varepsilon^{(H+h_k-1)})^{H/(2H-2h_k)}| - \frac{1}{|z|\Gamma(2h_k/H-1)} - \frac{H^2K}{4(H-h_k)^2|z|^2} \right\}^{-1} \\ &\quad \text{for } -\frac{\pi}{H} - \frac{2h_k\pi}{H} \leq \arg z \leq 2\pi - \frac{\pi}{H}. \end{aligned}$$

Further if $2h_k = H$, then we have

$$|g_k(z)| = |\exp z\varepsilon^{(h_k-1)/2}|.$$

Thus, if $2h_k < H$, then we have for sufficiently large |z|

GBNKÕ HIROMI

(5)
$$|g_k(z)| \ge \frac{1}{2} \exp(z \varepsilon^{(k_k-1)/2})^{H/2h_k} |$$
 for $-\frac{\pi}{H} \le \arg z \le -\frac{\pi}{H} + \frac{2h_k \pi}{H}$,

(6)
$$|g_k(z)| \leq H$$
 for $-\frac{\pi}{H} + \frac{2h_k\pi}{H} \leq \arg z \leq 2\pi - \frac{\pi}{H}$.

If $2h_k > H$, then we have for sufficiently large |z|

(7)
$$|g_k(z)| \ge \left\{ H |\exp(z\varepsilon^{(H+h_k-1)})^{H/(2H-2h_k)}| + \frac{1}{|z|} \right\}^{-1}$$

for $2\pi - \frac{\pi}{H} \le \arg z \le \frac{5\pi}{2} - \frac{\pi}{H} - \frac{h_k\pi}{2H}$ and
for $-\frac{\pi}{2} - \frac{\pi}{H} + \frac{5h_k\pi}{2H} \le \arg z \le -\frac{\pi}{H} + \frac{2h_k\pi}{H}$,

(8)
$$|g_k(z)| \ge |z|$$
 for $\frac{\pi}{2} - \frac{\pi}{H} - \frac{n_k \pi}{2H} \le \arg z \le -\frac{\pi}{2} - \frac{\pi}{H} + \frac{3n_k \pi}{2H}$,

(9)
$$|g_k(z)| \leq 1$$
 for $-\frac{\pi}{H} + \frac{2h_k\pi}{H} \leq \arg z \leq 2\pi - \frac{\pi}{H}$.

If $2h_k = H$, then we have

(10)
$$|g_k(z)| = |\exp z\varepsilon^{(h_k-1)/2}|$$
 for $-\frac{\pi}{H} \leq \arg z \leq -\frac{\pi}{H} + \frac{2h_k\pi}{H}$,

(11)
$$|g_k(z)| \leq 1$$
 for $-\frac{\pi}{H} + \frac{2h_k\pi}{H} \leq \arg z \leq 2\pi - \frac{\pi}{H}$.

Therefore from (3) and (5), for sufficiently large M, the set $\{z; |\tilde{f}_k(z)| > M\}$ contains an unbounded region

$$\widetilde{G}_k(M) \equiv \left\{ z; \ |\cosh z^{H/2} \exp(z\varepsilon^{(hk-1)})^{H/2hk}| > M^2, \ -\frac{\pi}{H} \leq \arg z \leq -\frac{2h_k\pi}{H} \right\}$$

when $2h_k < H$. Or from (3), (7) and (8), for sufficiently M, the set $\{z; |\tilde{f}_k(z)| > M\}$ contains an unbounded region $\tilde{G}_k(M)$ which is a union of regions

$$\left\{z; \ |\cosh z^{H/2}| \left\{H|\exp(z\varepsilon^{(H+h_k-1)})^{H/(2H-2h_k)}| + \frac{1}{|z|}\right\}^{-1} > M^2, \\ 2\pi - \frac{\pi}{H} \le \arg z \le \frac{5\pi}{2} - \frac{\pi}{H} - \frac{h_k\pi}{2H} \text{ and } -\frac{\pi}{2} - \frac{\pi}{H} + \frac{5h_k\pi}{2H} \le \arg z \le -\frac{\pi}{H} - \frac{2h_k\pi}{H}\right\}$$

and

$$\left\{z; |z \cosh z^{H/2}| > M^2, \frac{\pi}{2} - \frac{\pi}{H} - \frac{h_k \pi}{2H} \le \arg z \le -\frac{\pi}{2} - \frac{\pi}{H} + \frac{5h_k \pi}{2H}\right\}$$

when $2h_k > H$. Or from (3) and (10), for sufficiently large M, the set $\{z; |\tilde{f}_k(z)| > M\}$ contains an unbounded region

$$\widetilde{G}_k(M) \equiv \left\{ z; \ |\cosh z^{H/2} \exp(z\varepsilon^{(h_k-1)/2})| > M^2, \ -\frac{\pi}{H} \leq \arg z \leq -\frac{\pi}{H} + \frac{2h_k\pi}{H} \right\}$$

when $2h_k = H$. Moreover we have

(12)
$$|\tilde{f}_k(z)| \ge |\cosh z^{H/2}|$$

in the set $\{z; |\cosh z^{H/2}| > M^2, -\pi/H < \arg z < -\pi/H + 2h_k\pi/H\}$ which is contained in $\tilde{G}_k(M)$ for every k. Further from (4), (6), (9) and (11) we have

(13)
$$|\tilde{f}_k(z)| \leq H^2$$
 for $-\frac{\pi}{H} + \frac{2h_k\pi}{H} \leq \arg z \leq 2\pi - \frac{\pi}{H}$

for every k.

Now we define an asymptotic spot σ_k over w_k as follows. Let G_k be the obtained from \tilde{G}_k by the rotation $z \rightarrow z \varepsilon^{h_1 + \cdots + h_{k-1}}$. Then for $z \in G_k(M^2)$ we have

$$|\tilde{f}_k(z\varepsilon^{h_1+\cdots+h_{k-1}})|>M^2$$

and

$$|\tilde{f}_{j}(z\varepsilon^{h_{1}+\cdots+h_{j-1}})| < H^{2}$$
 $(j=1, \dots, k-1, k+1, \dots, n),$

and hence for a sufficiently large M

$$|f(z) - w_{k}| \leq \left\{ \sum_{j \neq k} |w_{j} - w_{k}| |\tilde{f}_{j}(z\varepsilon^{h_{1} + \dots + h_{J-1}})| + |A| \right\} / \left\{ |\tilde{f}_{k}(z\varepsilon^{h_{1} + \dots + h_{k-1}})| - \sum_{j \neq k} |\tilde{f}_{j}(z\varepsilon^{h_{1} + \dots + h_{J-1}})| \right\}$$
$$\leq \left\{ \sum_{j \neq k} |w_{j} - w_{k}|H^{2} + |A| \right\} / (M^{2} - H^{3})$$
$$\leq \frac{1}{M}.$$

Therefore the set $\{z; |f(z)-w_k| < 1/M\}$ contains the region $G_k(M^2)$. We then define $\sigma_k(|w-w_k| < 1/M)$ as the component of $\{z; |f(z)-w_k| < 1/M\}$ containing $G_k(M^2)$. Further we see that all the spots σ_k , $k=1, \dots, n$, are different each other. In fact, by (13) we have

$$|f(z) - w_{k}| \geq \left\{ |A| - \sum_{j \neq k} |w_{j} - w_{k}| |\tilde{f}_{j}(z \varepsilon^{h_{1} + \dots + h_{J-1}}) / \right\} / \sum_{j=1}^{n} |\tilde{f}_{j}(z \varepsilon^{h_{1} + \dots + h_{J-1}})|$$
$$\geq \left\{ |A| - \sum_{j \neq k} |w_{j} - w_{k}| H^{2} \right\} / nH^{2}$$

on the half rays $\{z; \arg z = -\pi/H + 2(h_1 + \dots + h_{k-1})\pi/H\}$ and $\{z; \arg z = -\pi/H + 2(h_1 + \dots + h_k)\pi/H\}$ and if A is a sufficiently large constant there exists a positive number d such that $|f(z) - w_k| > d > 0$.

We next show that $h(\sigma_k) \ge h_k$. In $G_k(M^2)$ we have

$$\frac{1}{M|f(z)-w_k|}$$

$$\geq \left\{ \left| \tilde{f}_{k}(z\varepsilon^{h_{1}+\dots+h_{k-1}}) \right| - \sum_{j\neq k} \left| \tilde{f}_{j}(z\varepsilon^{h_{1}+\dots+h_{j-1}}) \right| \right\} / M \left(|A| + \sum_{j\neq k} |w_{j}-w_{k}| |\tilde{f}_{j}(z\varepsilon^{h_{1}+\dots+h_{j-1}}) \right)$$

$$\geq \left\{ \left| \tilde{f}_{k}(z\varepsilon^{h_{1}+\dots+h_{k-1}}) \right| - nH^{2} \right\} / M \left(|A| + \sum_{j\neq k} |w_{j}-w_{k}|H^{2} \right)$$

$$\geq \left| \tilde{f}_{k}(z\varepsilon^{h_{1}+\dots+h_{k-1}}) \right| / M^{2}$$

for a sufficiently large M. By (12) and by Lemma, the function

$$u_{\sigma_k(|w-w_k|<1/M)}(z) \equiv \text{G.H.M.} \frac{1}{M|f(z)-w_k|}$$

dominates at least h_k mutually non-proportional minimal functions. Therefore $h(\sigma_k, |w-w_k| < 1/M) \ge h_k$ and hence $h(\sigma_k) \ge h_k$.

The order ρ of f(z) is at most H/2 since $f_j(z)$ is at most of order H/2 and $g_k(z)$ is of order $H/2h_k$ or $H/(2H-2h_k)$. On the other hand, we get, by Theorem A, $\overline{H} \leq 2\rho$ for the grand total \overline{H} of the harmonic indices of all the asymptotic spots of f. Consequently we have

$$H = h_1 + \dots + h_n \leq h(\sigma_1) + \dots + h(\sigma_n) \leq \overline{H} \leq 2\rho \leq H,$$

and hence

$$\rho = \frac{H}{2}$$
, $h(\sigma_1) = h_1$, ..., $h(\sigma_n) = h_n$, and $\overline{H} = H$.

We thus have the desired result.

Finally as a direct consequence of Propositions 1 and 2, we have the following theorem:

THEOREM. Let w_1, \dots, w_n denote $n(\geq 1)$ given points on the extended plane and h_1, \dots, h_n denote n given positive integers. Then there exists a meromorphic function f(z) in $|z| < \infty$ which satisfies (I) the asymptotic spots of f(z) with positive harmonic indices are n in number, say $\sigma_1, \dots, \sigma_n$, (II) σ_k lies over w_k and $h(\sigma_k) = h_k$, (III) f(z) is of order H/2, where $H = \sum_{k=1}^n h_k$.

The author wishes to express his thanks to Professor M. Ozawa who gave him valuable advices.

References

- [1] CARTWRIGHT, M. L., Integral functions. Cambridge (1962).
- [2] HEINS, M., On the Lindelöf principle. Ann. of Math. 61 (1955), 440-473.
- [3] HEINS, M., Asymptotic spots of entire and meromorphic functions. Ann. of Math. 66 (1957), 430-439.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.