ON ULTRAHYPERELLIPTIC SURFACES

By Mitsuru Ozawa

\S 1. Let R be an open Riemann surfaces. Let $\mathfrak{M}(R)$ be a family of non-constant meromorphic functions on R. Let f be a member of $\mathfrak{M}(R)$. Let $P(f)$ be the number of Picard's exceptional values of f, where we say α a Picard's value of f when α is not taken by f on R. Let $P(R)$ be a quantity defined by

$$
\sup _{f \in \mathbb{M}(R)} P(f) .
$$

In general $P(R) \geqq 2$. In [4] we showed that this was an important quantity belonging to R for a criterion of non-existence of analytic mapping.

Now let R be an ultrahyperelliptic surface, which is a proper existence domain of a two-valued algebroid function $\sqrt{g(z)}$ with an entire function $g(z)$ of z whose zeros are all simple and are infinite in number. Then by Selberg's generalization of Nevanlinna's theory we have $P(R) \leqq 4$. Further we showed that $P(R)$ was equal to 2 in almost all cases of ultrahyperelliptic surfaces, that is, we had the following result: If $g(z)$ is of non-integral finite order, then $P(R)=2$. In the present paper we shall establish the existence of an ultrahyperelliptic surface R with $P(R)=3$. The existence of the surfaces with $P(R)=4$ is evident, however we need a characterization of these surfaces with $P(R)=4$ for our purpose. We do not give any characterization of the ultrahyperelliptic surfaces with $P(R)=3$.
§ 2. A lemma on the number of simple zeros of the function $e^{h(z)}-\nu$. In the sequel we need a property of the function $e^{h}-\nu$ on the number of simple zeros several times. Let T, m, N, N_{1}, \bar{N} and S be the quantities defined in Nevanlinna's theory [3]. Let $N_{2}(r ; a, f)$ and $\bar{N}_{1}(r ; a, f)$ be the N-functions with respect to the simple a-points and to the multiple a-points of the indicated function f, which is counted only once, respectively.

Lemma. Let h be an arbitrary given entire function of z. Then we have

$$
\varlimsup_{r \rightarrow \infty} \frac{N_{2}\left(r ; \nu, e^{h}\right)}{T\left(r ; e^{h}\right)}=1
$$

for every non-zero constant ν.
Proof. By Nevanlinna's second fundamental theorem we have

$$
\begin{gathered}
T\left(r, e^{h}\right)<N\left(r ; 0, e^{h}\right)+N\left(r ; \infty, e^{h}\right)+N\left(r ; \nu, e^{h}\right)-N_{1}\left(r ; e^{h}\right)+S(r), \\
S(r)<O\left(\log r T\left(r, e^{h}\right)\right)
\end{gathered}
$$

Received December 3, 1964.
with some suitable exceptional intervals. In this case $N\left(r ; 0, e^{h}\right)=N\left(r ; \infty, e^{h}\right)=0$. On the other hand we have

$$
m\left(r, h^{\prime}\right)=m\left(r, h^{\prime} e^{h} / e^{h}\right)=O\left(\log r T\left(r, e^{h}\right)\right)
$$

with some exceptional intervals. Since h^{\prime} is an entire function, we have

$$
T\left(r, h^{\prime}\right)=m\left(r, h^{\prime}\right)
$$

Thus we have

$$
N\left(r ; 0, h^{\prime}\right) \leqq T\left(r, h^{\prime}\right)=O\left(\log r T\left(r, e^{h}\right)\right) .
$$

However we have

$$
N_{1}\left(r ; e^{h}\right)=N\left(r ; 0, h^{\prime}\right) .
$$

Since there are relations

$$
N\left(r ; \nu, e^{h}\right)-\bar{N}\left(r ; \nu, e^{h}\right)=N_{1}\left(r ; \nu, e^{h}\right) \leqq N_{1}\left(r ; e^{h}\right),
$$

we have

$$
\bar{N}_{1}\left(r ; \nu, e^{h}\right) \leqq N_{1}\left(r ; \nu, e^{h}\right)=O\left(\log r T\left(r, e^{h}\right)\right) .
$$

Therefore by the second fundamental theorem we have

$$
\varlimsup_{r \rightarrow \infty} \frac{N\left(r ; \nu, e^{h}\right)-N_{1}\left(r ; \nu, e^{h}\right)-\bar{N}_{1}\left(r: \nu, e^{h}\right)}{T\left(r, e^{h}\right)}=1 .
$$

Thus we have

$$
\varlimsup_{r \rightarrow \infty} \frac{N_{2}\left(r ; \nu, e^{h}\right)}{T\left(r, e^{h}\right)}=1,
$$

which is the desired result: If h is a polynomial, then our result is evident.
§3. We shall here give a characterization of R with $P(R)=4$ by the form of defining function $g(z)$. Suppose that $P(R)=4$. Then there is a two-valued entire algebroid function f of z which is regular on R and whose defining equation is

$$
F(z, f) \equiv f^{2}-2 f_{1}(z) f+f_{1}(z)^{2}-f_{2}(z)^{2} g(z)=0
$$

with two single-valued entire functions $f_{1}(z)$ and $f_{2}(z)$ of z. Further we may assume that $0,1, a$ and ∞ are four Picard's values of f. Then, by Rémoundos' reasoning of his celebrated generalization of Picard's theorem [6] pp. 25-27, we have three possibilities:

$$
\left(\begin{array}{l}
F(z, 0) \\
F(z, 1) \\
F(z, a)
\end{array}\right)=\left(\begin{array}{c}
c \\
\beta_{1} e^{H_{1}} \\
\beta_{2} e^{H_{2}}
\end{array}\right) \text { or }\left(\begin{array}{c}
\beta_{1} e^{H_{1}} \\
c \\
\beta_{2} e^{H_{2}}
\end{array}\right) \text { or }\left(\begin{array}{c}
\beta_{1} e^{H_{1}} \\
\beta_{2} e^{H_{2}} \\
c
\end{array}\right),
$$

where β_{1} and β_{2} are non-zero constants and H_{1} and H_{2} are two entire functions of z satisfying $H_{1}(0)=H_{2}(0)=0$ and being non-constant functions.

In the first case we have

$$
\left\{\begin{array}{c}
f_{1}^{2}-f_{2}^{2} g=c \\
1-2 f_{1}+f_{1}^{2}-f_{2}^{2} g=\beta_{1} e^{H_{1}} \\
a^{2}-2 a f_{1}+f_{1}^{2}-f_{2}^{2} g=\beta_{2} e^{H_{2}}
\end{array}\right.
$$

Then we have

$$
(a-c)(1-a)=a \beta_{1} e^{H_{1}}-\beta_{2} e^{H_{2}} .
$$

On the other hand the impossiblity of an identity of the form

$$
A_{1} e^{H_{1}}+A_{2} e^{H_{2}}=A_{3}
$$

where A_{1}, A_{2} and A_{3} are constants, when $A_{3} \neq 0$, is equivalent to Picard's theorem. This is nothing but Borel's formulation of Picard's theorem [1], [2]. Thus we have $a=c$, since $a \neq 1$. Simultaneously we have $a \beta_{1}=\beta_{2}$ and $H_{1} \equiv H_{2}$. Then we have

$$
(1-a)^{2}-2(1+a) \beta_{1} e^{H_{1}}+\beta_{1}^{2} e^{2 H_{1}}=4 f_{2}^{2} g
$$

Let b be a zero of $g(z)$, then we have

$$
(1-a)^{2}-2(1+a) \beta_{1} e^{H_{1}(b)}+\beta_{1}^{2} e^{2 H_{1}(b)}=0,
$$

that is,

$$
\beta_{1} e^{H_{1}(b)}=1+a \pm \sqrt{ } a
$$

Thus we have

$$
\begin{aligned}
4 f_{2}^{2} g & =\left(\beta_{1} e^{H_{1}}-\beta_{1} e^{H_{1}(b)}\right)\left(\beta_{1} e^{H_{1}}+\beta_{1} e^{H_{1}(b)}-2-2 a\right) \\
& =\beta_{1}{ }^{2}\left(e^{H_{1}}-\gamma\right)\left(e^{H_{1}}-\delta\right), \\
\gamma & =(1+\sqrt{ } \bar{a})^{2} / \beta_{1}, \quad \delta=(1-\sqrt{a})^{2} / \beta_{1} .
\end{aligned}
$$

Since $a \neq 0$, 1 , we have $\gamma \delta \neq 0$ and $\gamma \neq \delta$. Then $g(z)$ is equal to an expression of the following form:

$$
\frac{\left(e^{H_{1}}-\gamma\right)\left(e^{H_{1}}-\delta\right)}{U^{2}}
$$

where $U(z)$ is an entire function of z which is defined in the following manner: If the function $e^{H_{1}}-\gamma$ has a point z as its zero of multiplicity $2 n$ or $2 n+1$, then the function V has the point z as a zero of multiplicity n. Similarly we shall define a function W for $e^{H_{1}}-\delta$. Then we put $U=V W$. Thus we have

$$
f_{2}= \pm \frac{\beta_{1}}{2} U, \quad f_{1}=\frac{1+a}{2}-\frac{\beta_{1}}{2} e^{H_{1}} .
$$

Therefore we finally have

$$
f=\frac{1+a}{2}-\frac{\beta_{1}}{2} e^{H_{1}} \pm \frac{\beta_{1}}{2} \sqrt{\left(e^{H_{1}}-\gamma\right)\left(e^{H_{1}}-\delta\right)}
$$

Hence the surface R is defined by an equation of the form

$$
\begin{gathered}
y^{2}=\left(e^{H_{1}(x)}-\gamma\right)\left(e^{H_{1}(x)}-\delta\right) / U^{2}(x), \\
\gamma \delta \neq 0, \quad \gamma \neq \delta .
\end{gathered}
$$

In the second case we have similarly a representation

$$
\begin{gathered}
f=\frac{a}{2}+\frac{\beta_{1}}{2} e^{H_{1}} \pm \frac{\beta_{1}}{2} \sqrt{\left(e^{H_{1}}-\gamma^{\prime}\right)\left(e^{I_{1}}-\delta^{\prime}\right)}, \\
\gamma^{\prime}=(1+\sqrt{1-a})^{2} / \beta_{1}, \quad \delta^{\prime}=(1-\sqrt{1-a})^{2} / \beta_{1}, \quad \gamma^{\prime} \delta^{\prime} \neq 0, \quad \gamma^{\prime} \neq \delta^{\prime}
\end{gathered}
$$

and a defining equation of R with an entire function U defined quite similarly

$$
y^{2}=\left(e^{H_{1}(x)}-\gamma^{\prime}\right)\left(e^{H_{1}(x)}-\delta^{\prime}\right) / U^{2}(x)
$$

In the third case we have a representation

$$
\begin{gathered}
f=\frac{1}{2}+\frac{\beta_{1}}{2 a} e^{H_{1}} \pm \frac{\beta_{1}}{2 \sqrt{a}} \sqrt{\left(e^{H_{1}}-\gamma^{\prime \prime}\right)\left(e^{H_{1}}-\delta^{\prime \prime}\right)}, \\
\gamma^{\prime \prime}=-a\left(1-2 a+\sqrt{(1-3 a)(1-a)),}, \delta^{\prime \prime}=-a(1-2 a-\sqrt{(1-3 a)(1-a))} .\right.
\end{gathered}
$$

Since $a \neq 0$, we have $\gamma^{\prime \prime} \delta^{\prime \prime} \neq 0$. If $\gamma^{\prime \prime}=\delta^{\prime \prime}$, then $a=1 / 3$, since $a \neq 1$. If $a=1 / 3$, then f is reduced to a single-valued entire function and hence $P(f)=2$, which may be omitted. Thus we have $\gamma^{\prime \prime} \neq \delta^{\prime \prime}$. Hence we have the defining equation of R

$$
y^{2}=\left(e^{H_{1}(x)}-\gamma^{\prime \prime}\right)\left(e^{H_{1}(\boldsymbol{x})}-\delta^{\prime \prime}\right) / U(x)^{2} .
$$

Here we should remark that the function $e^{H}-\gamma, \gamma \neq 0$, has an infinite number of simple zeros. This is due to the Lemma in $\S 2$, although we can prove this qualitatively by the ramification relation in Nevanlinna theory [2].

In every case we have a defining equation of R in the following form

$$
\begin{aligned}
& y^{2}=\left(e^{H(x)}-\gamma\right)\left(e^{H(x)}-\delta\right), \\
& \gamma \delta \neq 0, \quad \gamma \neq \delta, \quad H(0)=0 .
\end{aligned}
$$

Here U may be omitted. This is a characterization of R with $P(R)=4$. To construct a function f with $P(f)=4$ is easy now. In fact it is sufficient to consider a meromorphic function

$$
\sqrt{\frac{e^{H}-\gamma}{e^{H}-\delta}},
$$

which omits evidently four values $1,-1, \sqrt{\gamma / \delta},-\sqrt{\gamma / \bar{\delta}}$.
§4. We shall here prove the existence of an ultrahyperelliptic surface R with $P(R)=3$. Let R be an ultrahyperelliptic surface defined by an equation

$$
y^{2}=81 e^{4 x}-72 e^{3 x}-2 e^{2 x}-8 e^{x}+1 .
$$

Let f be an entire algebroid function

$$
\frac{1}{2}\left(1+4 e^{z}-9 e^{2 z}\right)+\frac{1}{2} \sqrt{81 e^{4 z}-72 e^{3 z}-2 e^{2 z}-8 e^{z}+1}
$$

of z, which is an entire function on R, then f does not take three values 0,1 and ∞ on R. To this end we examine this by Rémoundos' reasoning. In fact we have that

$$
\begin{aligned}
& F(z, f) \equiv f^{2}-\left(1+4 e^{z}-9 e^{2 z}\right) f+\frac{1}{4}\left(1+4 e^{z}-9 e^{2 z}\right)^{2} \\
&-\frac{1}{4}\left(81 e^{4 z}-72 e^{3 z}-2 e^{2 z}-8 e^{z}+1\right)
\end{aligned}
$$

satisfies $F(z, 0)=4 e^{z}$ and $F(z, 1)=9 e^{2 z}$. Thus $f \neq 0,1$ and ∞ on R.
Since we have

$$
\begin{aligned}
g(z) & =\left(e^{z}-1\right)\left(81 e^{3 z}+9 e^{2 z}+7 e^{z}-1\right) \\
& =81\left(e^{z}-1\right)\left(e^{z}-\varepsilon_{1}\right)\left(e^{z}-\varepsilon_{2}\right)\left(e^{z}-\varepsilon_{3}\right), \\
& \left|\varepsilon_{j}\right| \neq 1, j=1,2,3 ;\left(\varepsilon_{1}-\varepsilon_{2}\right)\left(\varepsilon_{1}-\varepsilon_{3}\right)\left(\varepsilon_{2}-\varepsilon_{3}\right) \neq 0,
\end{aligned}
$$

$g(z)$ has no double zeros. Next we should prove that $g(z)$ does not satisfy the equation

$$
h^{2} g=f^{2} \frac{\left(e^{L}-\gamma\right)\left(e^{L}-\delta\right)}{U^{2}}, \gamma \neq \delta, \gamma \delta \neq 0,
$$

where L, f and h are three entire functions of z satisfying $L(0)=0$ and $f \neq 0, h \neq 0$ and U is the entire function determined as in §3. If it is not so, then the equation holds. Let both side terms be denoted by $X(z)$ and $Y(z)$ for simplicity's sake. If L is a transcendental entire function, then e^{L} has infinite order by Pólya's theorem [5]. Let $N_{3}(r ; 0, Y)$ be the N-function with respect to zeros of odd multiplicity of the indicated function Y, which are all counted only once. Then $N_{3}(r ; 0, Y)$ $\geqq N_{2}\left(r ; \gamma, e^{L}\right)+N_{2}\left(r ; \delta, e^{L}\right)$ and hence it has infinite order by the Lemma. On the other hand $N_{3}(r ; 0, X)=N_{2}(r ; 0, g)$ has order one, which is absurd. If L is a polynomial of degree p, then $N_{3}(r ; 0, Y)$ has order p and hence p must be equal to one. Therefore our equation reduces to the following form

$$
X(z) \equiv h(z)^{2} g(z)=f(z)^{2}\left(e^{\beta z}-\gamma\right)\left(e^{\beta z}-\delta\right) \equiv Y(z),
$$

since $e^{\beta z}-\gamma$ and $e^{\beta z}-\delta$ have only simple zeros and U is constructed from the multiple zeros of $e^{L}-\gamma$ and $e^{L}-\delta$. Since $g(z)$ has the form

$$
\begin{gathered}
81\left(e^{z}-1\right)\left(e^{z}-\varepsilon_{1}\right)\left(e^{z}-\varepsilon_{2}\right)\left(e^{z}-\varepsilon_{3}\right), \\
\left|\varepsilon_{j}\right| \neq 1, j=1,2,3 ;\left(\varepsilon_{1}-\varepsilon_{2}\right)\left(\varepsilon_{1}-\varepsilon_{3}\right)\left(\varepsilon_{2}-\varepsilon_{3}\right) \neq 0,
\end{gathered}
$$

$2 n \pi i$ is a simple zero of g and hence

$$
\left(u^{n}-\gamma\right)\left(u^{n}-\delta\right)=0, \quad u=e^{2 \beta \pi} .
$$

Then the modulus of u is equal to 1 . If $u \neq \pm 1$, then $u^{n} \neq \gamma$ and $u^{n} \neq \delta$ for some integer n, which is absurd. If $u=1$, then β is a non-zero integer p and $\gamma=1$ or $\delta=1$. Therefore we have

$$
X(z)=f(z)^{2}\left(e^{p z}-1\right)\left(e^{p z}-\zeta\right), \zeta \neq 0, \zeta \neq 1 .
$$

If $p \neq \pm 1$, then

$$
\frac{h(z)^{2} g(z)}{e^{z}-1}=f(z)^{2} \frac{e^{p z}-1}{e^{z}-1}\left(e^{p z}-\zeta\right)
$$

has at least one zero with odd multiplicity which is due to the function ($e^{p z}-1$) $\div\left(e^{z}-1\right)$. For this zero z_{0} we may assume that $e^{z} \cdot=e^{2 \pi i / p}$. However the left hand side term has it as a zero of even multiplicity. This is a contradiction. If $p=1$, then

$$
X(z)=f(z)^{2}\left(e^{z}-1\right)\left(e^{z}-\boldsymbol{\zeta}\right) .
$$

If $p=-1$, then we have

$$
X(z)=f(z)^{2}\left(e^{z}-1\right)\left(e^{z}-1 / \zeta\right) \zeta e^{-2 z} .
$$

Both cases are absurd by the form of $g(z)$. If $u=-1$, then β is a non-zero half integer q and $\gamma=1$ and $\delta=-1$. Therefore we have

$$
X(z)=f(z)^{2}\left(e^{q z}-1\right)\left(e^{q z}+1\right)=f(z)^{2}\left(e^{2 q z}-1\right) .
$$

If $q \neq \pm 1 / 2$, then

$$
\frac{X(z)}{e^{z}-1}=f(z)^{2} \frac{e^{2 q z}-1}{e^{z}-1}
$$

has the zero z_{0} satisfying $e^{z_{0}}=e^{2 \pi i / 2 q}$, which is of odd multiplicity. However it has at most even multiplicity in the left hand side term, which is absurd. If $q= \pm 1 / 2$, then

$$
X(z)=f(z)^{2}\left(e^{ \pm z}-1\right),
$$

and hence

$$
\frac{X(z)}{e^{z}-1}=f(z)^{2} \quad \text { or } \quad-f(z)^{2} e^{-z}
$$

These are also absurd. Therefore we have the desired fact.
This shows that the ultrahyperelliptic surface R defined by $y^{2}=g(x)$ satisfies $P(R)=3$. Thus the existence of the surface with $P(R)=3$ is established. Some characterizations of such surfaces would be possible, though it would be very troublesome to settle. This is an open problem.

References

[1] Borel, E., Mémoire sur les zéros des fonctions entières. Acta Math. 20 (1897), 357-396.
[2] Nevanlinna, R., Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen. Acta Math. 48 (1926), 367-391.
[3] Nevanlinna, R., Eindeutige analytische Funktionen. Berlin 1936.
[4] Ozawa, M., On complex analytic mappings. Kõdai Math. Sem. Rep. 17 (1965), 93-102.
[5] Polya, G., On an integral function of an integral function. Journ. London Math. Soc. 1 (1926), 12-15.
[6] Rémoundos, G., Extension aux fonctions algébroides multiformes du théorème de M. Picard et de ses généralisations. Mém. Sci. Math. Paris 1927.

Department of Mathematics, Tokyo Institute of Technology.

