
ON ULTRAHYPERELLIPTIC SURFACES

BY MlTSURU OZAWA

§ 1. Let R be an open Riemann surfaces. Let yfl(R) be a family of non-constant
meromorphic functions on R. Let /be a member of %R(R). Let P(f) be the number
of Picard's exceptional values of /, where we say a a Picard's value of / when a is
not taken by / on R. Let P(R) be a quantity defined by

sup P(f).

In general P(R)^2. In [4] we showed that this was an important quantity belonging
to R for a criterion of non-existence of analytic mapping.

Now let R be an ultrahyperelliptic surface, which is a proper existence domain
of a two-valued algebroid function */ g(z) with an entire function g(z) of z whose
zeros are all simple and are infinite in number. Then by Selberg's generalization
of Nevanlinna's theory we have P(R)^. Further we showed that P(R) was equal
to 2 in almost all cases of ultrahyperelliptic surfaces, that is, we had the following
result: If g(z) is of non-integral finite order, then P(R)=2. In the present paper
we shall establish the existence of an ultrahyperelliptic surface R with P(R)=3.
The existence of the surfaces with PCR)=4 is evident, however we need a chara-
cterization of these surfaces with P(R)=4: for our purpose. We do not give any
characterization of the ultrahyperelliptic surfaces with P(R)=3.

§2. A lemma on the number of simple zeros of the function eh^— v. In the
sequel we need a property of the function eh— v on the number of simple zeros
several times. Let Γ, m, N, N1} N and S be the quantities defined in Nevanlinna's
theory [3]. Let N2(r, a, /) and NΊ(r, a, /) be the TV- functions with respect to the
simple ^-points and to the multiple ^-points of the indicated function /, which is
counted only once, respectively.

LEMMA. Let h be an arbitrary given entire function of z. Then we have

— - N2(r, v, eh)

for every non-zero constant v.

Proof. By Nevanlinna's second fundamental theorem we have

T(r, eh)<N(r, 0, eh)+N(r, oo, eh)+N(r, v, e^-N^r] eh)+S(r\

rΊ\r, eh))
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with some suitable exceptional intervals. In this case N(r\ 0, eh)=N(r\ oo, eh)=Q.
On the other hand we have

m(r, h')=m(r, h'eh/eh)=O(log rT(r, eh))

with some exceptional intervals. Since hr is an entire function, we have

T(r, h')=m(r, h').

Thus we have

N(r, 0, h')^T(ry h')=O(log rT(r, eh)).

However we have

Nι(r, eh)=N(r, 0, ti\

Since there are relations

N(r, v, eh)—N(r\ v, eh)=Nι(r, v, eh)^Nι(r\ eh\

we have

Nι(r, v, eh)^N±(r\ v, eh)=O(log rT(r, eh)\

Therefore by the second fundamental theorem we have

-—- N(r\ v, eh)—Nι(r\ v, eh}—Nι(r: u, eh)
lim-

Thus we have

T(r, eh)

— - Nz(r, v, eh)
lim

= 1.

T(r, e») "

which is the desired result: If h is a polynomial, then our result is evident.

§3. We shall here give a characterization of R with P(7?)=4 by the form of
defining function g(z). Suppose that P(R)=b Then there is a two-valued entire
algebroid function / of z which is regular on R and whose defining equation is

with two single-valued entire functions fι(z) and fz(z) of z. Further we may assume
that 0, 1, a and oo are four Picard's values of /. Then, by Remoundos' reasoning
of his celebrated generalization of Picard's theorem [6] pp. 25-27, we have three
possibilities:

F(z,

where βι and /32 are non-zero constants and /A and H2 are two entire functions of
z satisfying Hι(Q)=H2(ty=Q and being non-constant functions.

In the first case we have
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Then we have

(a-c)(l-a)=aβιe^-β2e
H\

On the other hand the impossiblity of an identity of the form

where Ai, A2 and Az are constants, when ^43^0, is equivalent to Picard's theorem.
This is nothing but BoreΓs formulation of Picard's theorem [1], [2]. Thus we have
a=c, since <?^1. Simultaneously we have aβι=β2 and Hι=Hz. Then we have

Let b be a zero of 0(2), then we have

(l-ύr)2

that is,

Thus we have

Since #^0,1, we have γδ^Q and γ^δ. Then g(z) is equal to an expression of the
following form:

(eHί—γ)(eHί —δ)
U 2 '

where U(z) is an entire function of z which is defined in the following manner:
If the function eHl-~γ has a point z as its zero of multiplicity 2n or 2njrl, then the
function V has the point z as a zero of multiplicity n. Similarly we shall define
a function W for eHl—δ. Then we put U=VW. Thus we have

Therefore we finally have

Hence the surface R is defined by an equation of the form
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In the second case we have similarly a representation

and a defining equation of R with an entire function U defined quite similarly

In the third case we have a representation

/= ΊΓ + ίr*

-30X1-*)), 5//=-α(l-2ύf

Since α^O, we have ^"^O. If γ"=δ", then 0=1/3, since 0=^1. If #=1/3, then /
is reduced to a single- valued entire function and hence P(/)=2, which may be
omitted. Thus we have γ"*?d". Hence we have the defining equation of R

Here we should remark that the function eH—γ,γ^Q, has an infinite number of
simple zeros. This is due to the Lemma in §2, although we can prove this quali-
tatively by the ramification relation in Nevanlinna theory [2].

In every case we have a defining equation of R in the following form

£Γ(0)=0.

Here U may be omitted. This is a characterization of R with P(7?)=4. To con-
struct a .function / with P(/)=4 is easy now. In fact it is sufficient to consider
a meromorphic function

which omits evidently four values 1, —1, ^/γ/δ, —\/r/δ-

§4. We shall here prove the existence of an ultrahyperelllptic surface R with
P(R)=3. Let R be an ultrahyperelllptic surface defined by an equation

Let / be an entire algebroid function
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of z, which is an entire function on R, then / does not take three values 0, 1 and
oo on R. To this end we examine this by Remoundos' reasoning. In fact we have
that

- ~(8le^-72e^-2e2z

satisfies F(z, 0)-4>2 and F(z, l)=9e2*. Thus /^O, 1 and oo on R.

vSince we have

g(z)=(e*-ϊ)(81e*'+9e*g+7e'-l')

= 8l(e* - T)(ez - εj(e* - ε2)(e* - ε3),

\εj\*l, y=l, 2, 3; (β! - £2X5! -ε3)(ε2- ε

g(z) has no double zeros. Next we should prove that g(z) does not satisfy the
equation

where L,f and h are three entire functions of z satisfying L(0)=0 and /^O,
and U is the entire function determined as in §3. If it is not so, then the equation
holds. Let both side terms be denoled by X(z) and Y(z) for simplicity's sake. If
L is a transcendental entire function, then eL has infinite order by Pόlya's theorem
[5]. Let N8(r, 0, Y) be the N-f unction with respect to zeros of odd multiplicity of
the indicated function Y, which are all counted only once. Then Nz(r, 0, Y)
^N2(r; γ, eL)+N2(r; δ, eL) and hence it has infinite order by the Lemma. On the
other hand Λ7"3(r; 0, X)=N2(r, 0, g) has order one, which is absurd. If L is a poly-
nomial of degree p, then NB(r, 0, Y) has order p and hence p must be equal to one.
Therefore our equation reduces to the following form

since e^—γ and e^—δ have only simple zeros and U is constructed from the
multiple zeros of eL— γ and eL—δ. Since g(z) has the form

* - ε3),

y=l, 2, 3; (ei-εOfo-eβXεa-eβ

2nπi is a simple zero of g and hence

(un — γ)(un — δ) = 0, u= e^π\

Then the modulus of u is equal to 1. If u*?±l, then un*?γ and un^δ for some
integer n, which is absurd. If u=l, then β is a non-zero integer/* and γ=l or
5=1. Therefore we have
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X(z)=f(zγ(e* -ΐ)(e*'-Q,
If p*?±l, then

has at least one zero with odd multiplicity which is due to the function (epz— 1)
-*-(£*— 1). For this zero £0 we may assume that £z.=02**/pφ However the left hand

side term has it as a zero of even multiplicity. This is a contradiction. If />=!,
then

If />=—!, then we have

Both cases are absurd by the form of g(z). If u=—I, then β is a non-zero half
integer q and 7-=! and <5= — 1. Therefore we have

) = f(z}2(eqz - l)(e«z + 1) = f(z)\e2** - 1).
If #^+1/2, then

has the zero ZQ satisfying ez'=ez*il2<l, which is of odd multiplicity. However it has
at most even multiplicity in the left hand side term, which is absurd. If #=±1/2,
then

X(z)=f(z)*(e*'-l),
and hence

Yf~\

or -f(zfe~z.
e*-l

These are also absurd. Therefore we have the desired fact.
This shows that the ultrahyperelliptic surface R defined by y2=g(x) satisfies

P(R)=3. Thus the existence of the surface with P(R)=3 is established. Some
characterizations of such surfaces would be possible, though it would be very
troublesome to settle. This is an open problem.
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