RICCI’S FORMULA FOR NORMAL GENERAL
CONNECTIONS AND ITS APPLICATIONS

By TominosUKE OTsuki AND CHORNG-sui Houn

In [15], Otsuki gave a kind of Ricci’s formulas for a space with an integrable
normal general connection, that is the distribution of the tangent subspaces of the
space associated with the connection is completely integrable. In the present paper,
the authors will give a generalized Ricci’s formula without the condition of in-
tegrability and its applications for induced general connections on subspaces.

§1. Preliminaries.

Let X be an n-dimensional differentiable manifold with a general connection®
which is written in terms of local coordinates #* as
1.1 7=0u;Q(Pid*u*+Ihduw@du®),

where ou;=0d/ou’ and d*u* denotes the differential of order 2 of u.
The components of the curvature tensor of y are given by

ok ol
(1.2 Rioni= {P{(_Wk— — -51-‘-',:1‘.) +FlJnszk_Flko,,%h}P’{‘
_ajm, I:.A:Ink +57in, k/l::';'v b
where
. oP]
Ap=1"}— S

and 6%, , denote the covariant derivarives of the Kronecker’s 4}, with respect to 7.

r is called normal when the tensor P=Piou;Qdu* of type (1,1) is normal.?
Let @ be the tensor such that Q=P on the image of P and Q=P on the kernel
of P at each point of ¥ regarding P as a homomorphism of the tangent bundle
T(X) of X. The tensor field A=PQ=QP with local components A’ is called the
canonical projection of y. The components 'R;w and 7 Ri/ni of the curvature tensors
of the contravariant part y=Qy and the covariant part “y=yQ of the normal
general connection y can be written respectively as

Received October 31, 1964.
1) See [8], §6.
2) See [11], §1.
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1 7 AL
1. 3) 'Ri’hk=A{( 3;1;’,:‘ - aaf‘:i /Afn’Afnk“'Afk'Aﬁm)A'{'
and
/7 7L vyt
(1. 4) ”R,fnk—AL< aar o — aa;,,,,, +"Fg,,”l’,‘nk—”ngf'F:,m>A;". »

A tensor V of type (B, @) with local components V7::7¢ is called A-invariant if

11l
Vinde= AL Vikae=Viugie A% |
t=1,2, -, B; 0=1,2, -,

The basic covariant derivatives of an A-invariant tensor V of type (B, @) with
respect to y can be writtten as®

Vivbp= —— aV“ "" + Z:I’A;’; s Vinkas

(L. 5)
— Surs Vi,

o=1
The tensor of type (B, «+1) with local components

1. 6) Visian=Visis Al
is also A-invariant.®

§2. Ricci’s formula for spaces with normal general connections.

Making use of the notations in §1, let y be a normal general connection on an
n-dimensional differentiable manifold ¥. Let V¥ be an A-invariant tensor of type
(8, @), then we have (1.5). Since the tensor with the components Vi:i4, is A-
invariant, we have

_ q
Vet mw= Visifn e Al
p) V‘“ajﬁ
i in PUTIE T
=<—”T’u;'——+ DA Vb,

«
V4 7l " .
— 2 Ve — FILLqV{.'J,ﬁn)AIg
a=1

aV 1+ 2g|P
= (DT 1 St Vsl 5T Vi) ARAE

a =1 o=1

+ Vi Sk —aprria) s

3) See [15], §2.
4) See [11], §4.
5) See [11], Theorem 4.1.
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Making use of (1.5), the equation can be written as

ag V{:.jﬂ l l"']ﬂ
= IJ 1 Ade zm
+ Vinbaed 3/ My Tuie
auqaup ;l auq 21238y + Z:l lIl a q
/7 17323
_ Za a PuP V]!Jz ]p Z //1"1 p aVul AR zﬁ
o=1 o0u? s o=1 to 0u?

8 X
3 M Vit 3T Vi M}A;: g
=1

aAh

+ V{:fznléﬂ( —A””F,ﬁq)/lk
Hence, by virtue of (1.5), we have
Vit me— Visitmm

BNy My L,
={~ ;(7#— A T M Mo ’Akq'A'">V§,;;' i

( 3ty T,

aup a +//[’l //rm //I"}nqllrzr;p) V{:J’l‘qﬁ}A;{Ag

Y4
+ Victy| (S5 - arrse) ar— (S5 — aprad) A

Making usc of A?=A, A(7Q)=A and (Q)A=7Q.” We have

( oA _ A'z"r,sq) A

oul
0A% 0A}
(G — A M= ALt ) A

0A% 0A7

Hence the last terms of the equation can be written as

t 14
Vi {(-a—A—— D) - au g — i) g,

o0u? our
Putting Ni=0i—Af, we have

0A% ON 0A?
Visitm ol A==V E = A=V Ny = ot = =0

Hence, denoting the torsion tensor of “y by

@1 Sty= (" Th="T4),

6) “rA="y follows "A3,Al="A1,.
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the above quantity can be written as

1 13
—{ w.l.:m(ﬁl‘i"—— ONG )+evi mu”sa}A::Az.

oul ou?

Since the tensors V7% and Vi, are A-invariant and the tensor Ve, is
so with respect to @, -+, i, j1, -, 7s Dy (1.3) and (1.4) we have the following
generalized Ricci’s formula

Vit me— VIiBmm

en |- fompveres fvencn
oN} 0N}
=2V §in" Sk — Vi »t,,lL( aqu au: ) }Aﬁ/—lﬁ.

Applying this formula for A and a scalar ¢, we get

Ayme— A= [ —' Ri?pg+" Ri?pg—2A4%),,"Shy

2.3)
0N} 0N}
"‘Azll( oul T au: )}AﬁA%
and
N} ON}
@9 €0uhuk—§0uknh:—‘{Zﬁﬁul”sﬁlzq'f‘@ll( ur au; )}Aﬁfl%,

because ’Rim=A} Ri'm='R}.Al and ”Riyx=A}"Ri'nx="Ri’mAL by (1. 3) and (1. 4).

§3. Application of the Ricci’s formula.

Let ¥V and W be tensors of type (B, @) and (r, o) respectively. Then, by means
of the formula of the basic covariant differentiation of a normal general connection,”
we have

(Visis Whed Yn= Ve, AL, Ak W Al
3.1
+ AR ARV AL Al W e

Especially, when V and W are A-invariant, (3.1) can be written as
(3.2 (Vi W= Vs Wi+ Vi W g

Let ¥ be an A-invariant tensor of type (B, @) (8, a=1) and W be the tensor
of type (—1, a—1) with components

Wire=Viyri

7) See [11], §4, (4.2).
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by the contraction. By means of (1.5), we get
Vb= Wi+ A—"Th) Vi,

Since we have

3.3) M= gA,: /My Ab— AJT,®
and

»=0,
we have

Ok Vs b= M AR— AY TR Ve
—(Ap—"Th) Vit
Hence the above equation can be written as
3.9 O VIR = Wb +05, Ve, ®
where Winie=Vlr1e,

LemmA 1. Let ¢ be a normal general connection, then we have

3.5) Al =0,
3.6) Al =01,
and

3.7 Qin=0.

Proof. Since AINi=NjAt=0, we have
Nij,='43, N} At — AiN}'T%, ®

from which we get (3. 5).

Since P{Ni=NjP:=0, we have analogously N7,=0,"" hence (3.6).

since @7 is A-invariant, we have

Qi .
= 2%t m QT

Q aAm m

— o (@i )

(e +2 2%,

by means of

8) See [11], §4, (4. 2').

Lastly,

9) This formula is analogous to [8], (3. 11) regarding to a regular general connections,

10) See [8], §2, (2. 14) or §3, Theorem 3. 5.
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0A!
/A§n=Q£r Iz?h._ ‘au—,: ’
3. 8) !
”th—rljcn v+ P, th T

LemMMA 2. Let v be a normal general connection satisfying one of the following
conditions

(i) DA=Aw, (i) DA=Ae and (i) DA=Po

where w=pndu® is a differential form and D and D are the covariant and the basic
covariant differential opevators’® of y rvespectively. Then o is exact.

Proof. Let m be the rank of the matrix (P9).
Case (i): DA=Aw. This condition is written as
3.9 A= Alp,,
from which by means of (3. 3), (3.4) and (3. 8) we get
mpn=0;A%,=05,A1
0%

ou”

< 3A ,A}h_' ”th,)A%: —P;ﬁ

On the other hand, Since A?=A, N*=N, PN=NP=QN=NQ=0 and PQ=QP
=A, we have

0A; GN 4

(3. 10) A= —Ni =0,
. ON? oON?
(3. 11) it =@ =0
and
(3.12) (P+N)YQ+N)=1.
Making use of these relations, we get
oQk 1 on JQEENY
mpr=—P} F =—(Pk+Nk)+uh—‘,
hence
0
(3. 13) mon=— —a-'u—’;log det (Q+N).

This shows that p is a gradient vector, if m0. But the case m=0 is trivial.

Case (ii): DA=Aw. Making use of the fundamental relation between D and D

11) See [11], §4, (4. 9).
12) See [11], §§3, 4.
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(3.14) ta-D=tp-D®
and the condition (ii), we get
(3. 15) Aloy=P{ AL P,

from which by (3. 3), (3.5) and (3. 8) we get

moy=PiP} Al =PLP3o,=PiP}( 3 LA ”F{.‘,,>
Q¢ QL
—PiPY{ Qi T@i— Py ) — PP
1 otr P? oN?
=% Tow T
that is
1 otr P2
3. 16) mpn= —2‘ W
Case (ili): DA=Pw. Making use of (3.11), we get from this condition (iii)
3.17) Pip,=PiAL,P™,

which is equivalent to
lp’l QIcP Anlhp AthPL

since Al, is A-invariant with respect to ¢ and j. Hence, by (3. 5), (3. 3), (3.8) and
(3.11) we have

Q! opP: oNi otrP
mpp=P3Al=— P3P} o Jut . out Al+P; our . our ’
that is
atr P
(3.18) mon ="

Thus, the lemma is proved.

LeEMMA 3. Let y be a normal geneval connection such as in lemma 2, then the
curvature forms of 'r=Qr and "y=yQ are commuatative with P=2(y) on the image
of P, that is

(3.19) PV R} 5 ARAL="R I PL AL AL,
(3. 20) Pi"R, Ve AVAL="RJ , Pt AL AS.
Proof. In the following, we may assume 7 >0.

Case (i) DA=Aw. By Lemma 2 and (3. 13), putting ¢=—(1/m) log det (Q+N),
we have p,=¢,, and so from (3.9) Af,=Alp,. Using (3.2), we get

13) See [11], §3, (3. 14).
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Adyuie= A xpin+ Alp e

= Alpepint Al
and so
Al yie— A= AX@ymie—Pr1ein)-
On the other hand, the right of (2.3) can be written in this case as
(—'Ri?pg+" Ri?) ARLAR
— el St ou (Gt — ot ) | Arae

=(—'Ripq+" R ) AR AL+ AU @ymii—@rein)-

hence we obtain
(3. 21) (—'Rpqt+" Ry?p) ALAL=0.

Case (ii); DA=Aw. By Lemma 1, (3.16), putting ¢=(1/2m)tr P?, we have
or=0pu. Since Al, is A-invariant with respect to j and 7,'* (3. 15) is equivalent to

(3. 15) A =QiQi o
from which we get
Aln=@QiQkeim
A= QIR nie+ (QIQD 160 11n= Q] QbP 11— O n@IQT 1
= QiR e~ A QIQ 011 = QIQbP e — QIQRQIQT P11 1

by means of Lemma 1, (3.4) and (3.15’). In this case, the right of (2. 3) can be
written as

(—'Rypq+" R pg) ARAL+QIQ U@ e — Prigain)s
hence we obtain also (3. 21).

Case (iii): DA=Pw. By Lemma 1, (3. 18), putting ¢=(1/m)tr P, we have
on=0p. (3.17) is equivalent to

(.17 Agm:Qf(/?”,,,
from which we get
A=y nn-

Analogously, we get also (3. 21).
Lastly, according to [15], Theorem 2, we have

P{/Rilnkz ”Rz]tucpf-

from this relation and (3.21), we get easily (3.19) and (3.20). The lemma is
completely proved.

14) See [11], §4, Theorem 4. 1,
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§4. Some relations between the Ricei’s formula and induced general connections.

Let y be a general connection on X given by (1.1). Let ) be an m-dimensional
submanifold given by

4. 1) w =ui(v?),

in terms of local coordinates %’ of ¥ and »* of ). Let Z be a field of (n—m)-
dimensional tangent subspaces of X given on ¢) which is complementary with the
tengent space of ) at each point of ). Let {X.,, X3}, a=1, -, m; ==m+1, ---, n, be
a local field of n-frames of X on ¥ such that

X\ X12/0ur, Xi= %Zf’— and X,=X19[oureZ

and {Y%, Y+} with local components Y%, Y% be its dual. Then, we say the general
connection on %)

4.2) r¥*=00,QY ir* (Pid*uw+ I}, dwQdu™)*>

the induced generval commection on ) from y by means of Z.

A normal general connection y is called contravarianily proper or covariantly
proper if

4.3) Nil%, At Ar=0
or
4. 4 Az, NU AR =0,

LeEMMA 4. Let v be a normal general comnection such that DA=Aw or DA
=Pw as in Lemma 2, then y is contravariantly proper.

Proof. By the assumption and Lemma 1, we have
0= N} A%, ,=N{d% = NPl —Pidl) =N},
hence
Nil%s,AlAz=0.
A normal general connection y is called infegrable if the distribution of the
tangent subspaces P,=P(Tx(X)), x€¥, is completely integrable.

THEOREM 4. 1. Let y be an integrable normal general connection on X and r*
be the induced gemeral commection from y on a maximal integral submanifold V) of
the distribution of the image tangent subspaces of P=A(y) by means of N. If 1 is
contravariantly proper, then (Qr)*=Q*r* and the curvature lensor of r* is induced
from that of 7.

Proof. By the assumption, we can take local coordinates »* of ¥ such that the
maximal integral submanifolds of the distribution of P, x€¥, arc given by

v#=constant, p=m+1, -, n.

15) See [15], §3. ¢« 9—& denotes the imbedding mapping.
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Then we have
f Xi{=0l=Y1,
' A=il, Aj=Pi=@i=0, N2=0, Nj=3
a=1,2, -, m; A, p=m-tl, -, n
and (4. 3) can be written as
w=
from which we get
A2,=0).
On the other hand, putting
P* =00, QP *ed v+ I dp®)dvr),
we get by the above relations
P¥=YiPi=Y!P=P;,
I ,=Y{ri,=rt+Yilrs,=I%,
from which we have Q*y*=(Qy)*. Furthermore we have
3,,=I'%,Pt— Pt~ Pi— PO — 5%,

ar 1
o4, ,=0.

Hence we get from (1. 2)

Rbrs=R*2f5,  Ri,:=0.

Accordingly, if Ri/n; are the components of the curvature tensor of y with
respect to #’ of ¥ and R*#,; are the ones of the curvature tensor of y* with respect
to v= of 9), then we have

ou* out Ju*

4.5) R*f5=Y ! Rinx —év—“—é;ﬂ— 5-07- .

This shows the fact that we have to prove.

THEOREM 4. 2. Let y be an integrable normal general commection such as in
Lemma 2 and ) be a maximal integral submanifold of the distribution of the
image tangent subspaces of P=2A(y). Let 2* and (Qy)* be the induced general con-
nections on 9) from v and Qy by means of N respectively. If the fundamental
group () of Y has at most a countable number of elements, the connected compo-
nents of the homogeneous holonomy group of the affine comnmection (Qy)*!® is ir-
reducible and (Qy)* and P*=2A(r*) are commutative, then r* can be written as an
affine conmection X a constant

Proof. Since N(Qy)=0, Qr is contravariantly proper. By means of Theorem
4. 1, the curvature tensor of the affine connection (Qy)* is induced from the curvature

16) Since A(@y)*)=1, (@p)* is an ffine connection.
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tensor of the normal general connection Qy='y. On the other hand, by mecans of
Lemma 3, (3. 19) holds good for the general connection y. This follows on 9

P*f/R*a'ﬁ:,R*gﬂ,aP*z,

where ’R*.,; denote the components of the curvature tensor of (Qr)*.

The assumption that (Qy)* and P* are commutative is equivalent to that P*
is covariantly constant with respect to (@y)* according to [16], Lemma 1. 1. Hence
the assumption regarding to the holonomy group of (@7)* and Shur’s lemma follow
P*=cl, where ¢ is constant.

ReMARK. In the theorem, if y satisfies (ii) DA=Aw or (iii) DA=Pw in Lemma
2, the commutativity of (Qy)* and P* is equivalent to the one of y* and P*. For
by Theorem 4.1 we have (Qy)*=Q*r* and so y*P*=P*p*,
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