
ON FIBERINGS OF ALMOST CONTACT MANIFOLDS

BY KOICHI OGIUE

Introduction.

We study, in this paper, relations between almost contact structures and the
induced complex structures. Throughout this paper, we consider the case in which
an almost contact manifold M is the bundle space of a principal fibre bundle over
an almost complex manifold M.

We induce, in §1, an almost complex structure on M.
We consider, in § 2, two sorts of torsions N and Φ of an almost contact structure

defined by Nijenhuis [4] and Sasaki-Hatakeyama [8] respectively, and investigate
relations between the integrability of the induced almost complex structure on M
and the vanishing of TV or Φ.

In §3 we consider an almost contact metric structure on M and induce an
almost Hermitian structure on M and investigate relations between them.

In §4 we study, as special cases, an almost Sasakian structure and a Sasakian
structure on M and induce on M an almost Kahler structure and a Kahler structure.

In the last section we study a relation between the Riemannian connection on
M and on M and a relation between the curvature of M and the curvature of M.

I wish to express my sincere gratitude to Professors K. Yano and S. Ishihara
who encouraged me to study these problems and gave many valuable suggestions.

§1. Regular almost contact structures.

Let M be a (2n+1) -dimensional differentiate manifold. We denote by $ the
Lie algebra of all vector fields on M./N/

An almost contact structure on M is defined by a (1, l)-tensor field ψ, a vector
field ξ and a 1-form η satisfying the following conditions [7]:

(1-1) #£)=<>,

(1.2) 7(0C£))=0 for all

(1.3) 17(0=1,

(1/4) φ2(X)=-X+y(X) ξ for all
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A differentiable manifold of odd dimension with an almost contact structure
is called an almost contact manifold.

DEFINITION 1.1. A vector field on M is said to be regular if each point of M
has a regular neighborhood, i.e., a cubical coordinate neighborhood U(xl, •••, x2n+1)
whose intersection with any integral curve of the vector field can be represented
by a single segment x1=const, •••, x2n=const., and is said to be strictly regular if
all integral curves are homeomorphic to each other.

DEFINITION 1. 2. An almost contact structure (φ, ξ, η) is said to be (strictly)
regular if ξ is a (strictly) regular vector field.

Let (<f>, ξ, η) be a regular almost contact structure on M and M be the orbit
space defined by ?, then M is a manifold and π(U)(xl, •••, xzn) is a coordinate neigh-
borhood on M", where π denotes the natural projection of M onto M [6].

If, in particular, M is compact and (φ, ξ, ή) is a regular almost contact structure
on M, then any integral curve of ξ must be homeomorphic to the circle S1 and ξ
generates a global action of the circle group S1 on M. An almost contact structure
(Φ, S, ??) is said to be invariant if φ and η is invariant under the action of G, the
1-parameter group generated by ξ.

THEOREM 1.1. If (φ, ξ, y} is an invariant strictly regular almost contact struc-
ture on M, then
( i) M is a principal G-bundle over M, and

Λ/

(ii) η is a connection form on M.

COROLLARY. If (φ, ζ, η) is an invariant regular almost contact structure on a
compact manifold M, then
(i) M is a principal circle bundle over M, and
(ii) η is a connection form on M.

Throughout this paper, we shall only consider invariant strictly regular almost
contact structures. We denote by 36 the Lie algebra of all vector fields on M

First we prove the following

THEOREM 1. 2. // we define a (1, l)-tensor field J on M as follows:

(1.5) Jp(X)=dπ(φ^(X^\ psM, feM, P=π(p\

where X$ denotes the lift of Xζ% at p with respect to the connection y, then J is
an almost complex structure on M.

Proof. First of all, / is well defined, since, for any asG we have φpa(X$a)
=φ9a(dRaX$)=(RϊfaaXXξ)=Φ$(X$)> where we denote the right translation in M by

by Ra and the induced map by R$.
Next, /2=—1. In fact, for any XsX we see that

) = dπφ(dπφ(X*}}* = dπφφ(X*)
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Hence / is an almost complex structure on M. Q.E.D.

Thus a manifold with an invariant strictly regular almost contact structure is
a principal fibre bundle over a manifold with almost complex structure.

We shall call / the induced almost complex structure on M.

% 2. Integrability and normality.

DEFINITION 2. 1. Let (φ, ξ, η) be an almost contact structure on M and / be
the induced almost complex structure on M. We define tensor fields TV and Φ on
M and A/On M as follows [4], [8]:

(2. 1) N(X, )=[φX, ΦΫ]-Φ[ΦX, Ϋ]-Φ[X, Φ]+Φ*[X, ],

(2. 2) $(X, Ϋ)=N(X, Ϋ)+2dy(X, ?)•£ for all X, Ϋ&

and

(2. 3) N(X, Y)=[JX, JY]-JUX, Y]~J[X, JY]+J*IX, Y] for all X,

We now prove the following

LEMMA 2.1. We have

N(X, Y)=dπN(X*, Y*)

and

N(X, Y)=dπΦ(X*, F*)

for any X, F€#, where X* denotes the lift of Xe% with respect to the connection η.

Proof. From (1. 5) we get

N(X, Y)=lfX, JY]-J[JX, Y]-J[X, JY]+J*[X, Y]

= [dπψX*, dπφY*]-dπφ[dπφX*,dπY*]*-dπφ[dπX*,dπφY*]* + dπφ(dπφ[X, Y]*)*

= dπ[ψX*, <f>Y*]-dπφ[ψX*, Y*]-dπψ[X*, ψY*]+dπφ*[X, Y]*

=dπ{[φX*, φY*]-φ[φX*, Y*]-φ[X*, 0F*]+02[^Γ*, F*]}

= dπN(X*, F*),

where we have used the facts that dπ is an isomorphism and φ[X, Y]*=φh[X*, F*]
=φ[X*, F*]; h denotes the horizontal component with respect to the connection η.
The second relation is clear from the first and the fact that ξ is vertical. Q.E.D.

The following result is the direct consequence of this Lemma.

THEOREM 2. 1. W^ have N(X, F)=0 if and only if N(X*, F*) (or Φ(X*, F*))
is vertical for all X,
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DEFINITION 2. 2. An almost contact structure is said to be integrable if N=Q
and is said to be normal if Φ=0.

The following is easily seen from Lemma 2.1.

PROPOSITION 2. 1. If an almost contact structure (φ, ξ, η) is integrable (or
normal), then the induced almost complex structure J is integrable, i.e., J is a
complex structure.

Now we prove the following Lemma for later use.

LEMMA 2. 2. We have 2dη(X, Ϋ)=— y([X, Y]) for any horizontal vector fields
X and Ϋ.

Proof. This is an immediate consequence from the identity 2dη(X, Y)=X
i)(Ϋ)—Ϋ y)(X)—y)([X, Ϋ]) and the fact that η is a connection form. Q.E.D.

The connection η is said to be involutive if [X, Y] is horizontal for all hori-
zontal vector fields X and Ϋ.

THEOREM 2. 2. The almost contact structure (φ, ξ, j?) on M is integrable if and
only if
(i) the induced almost complex structure J on M is integrable, and
(ii) the connection η is involutive.

Proof. By Theorem 2. 1, N(X, F)=0 implies that N(X*, Y*) is vertical for all
X, Fe3e. On the other hand, from (2.1) we have y(N(X*, Y*y)=y([φX*, φY*])=Q
since ψX* and φY* are horizontal. This shows that N(X*, Y*) is horizontal.
Hence we have N(X*, F*)=0. Now it is clear that [ξ, X*]=Q since X* is invariant
under the action of G. We see also [ζ, φX*] = [ξ, (/X")*]=0. Hence we can easily
verify that N(ζ, X*)=0. We have thus proved that N(X, Ϋ)=0 is valid for the
lifts of vector fields on M or the vertical vector fields. Since TV is a tensor field,
N(X, ?)=0 holds for any vector fields X and Ϋ.

The converse is clear. Q.E.D.

Similarly we have

THEOREM 2. 3 (Morimoto [3]). The almost contact structure (φ, ξ, ή) on M is
normal if and only if

( i ) the induced almost complex structure J on M is integrable, and
(ii) Σ(JX, fY)=Σ(X, Y) for all X, Yt%, where dη=π*Σ.

Proof. By Theorem 2. 1, N(X, F)=0 implies that $(X*, Y*) is vertical for all
X, F€36. On the other hand, from (2. 2) we have

*, φY*])+2dη(X*, Y*)=-2dη(φX*,φY*)+2dη(X*, F*)

Y*) = -2Σ(JX,fY)+2Σ(X, F)=0,
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which shows that Φ(X*, F*) is horizontal. Hence we have Φ(X*, Γ*)=0. Now it
is clear that dη(ξ, J£*)=0 since

2dη(ξ, -X*)=

Hence we have

We have thus proved that Φ(X, Ϋ)=Q is valid for the lifts of vector fields on M
or the vertical^ vector^ fields. Since $ is a tensor field, $(X,Ϋ)=Q holds for any
vector fields X and Ϋ.

The converse is clear. Q.E.D.

§3. Almost contact metric structures.

We now suppose that G-invariant Riemannian metric g is given on M which
admits an invariant strictly regular almost contact structure (ψ, ζ, ή).

If we define a tensor field g of type (0,2) on M by

(3. 1) g(X, Y)=g(X*, F*) for all X, Fe3e,

then o is a Riemannian metric on M. We call g the induced Riemannian metric
on M.

DEFINITION 3. 1 ([7]). (φ, ξ, y, g) is called an almost contact metric structure
on M if (φ, f, η) is an almost contact structure and, in addition,

(3. 2) g(ξ, X)=

and

(3.3) g(φX,φΫ)=Q(X,Ϋ)--η(X) η(Ϋ) for all

PROPOSITION 3. 1. If (φ, ξ, η, g) is an almost contact metric structure on M,
then ξ is a Killing vector field.

THEOREM 3. 1. // (φ, ξ, η, g) is an almost contact metric structure on M, then
the induced structure (/, g) on M is an almost Hermitian structure.

Proof. It suffices to show that g is a Hermitian metric on M. For any X,
Y€%, we have

g(JX,JY)=g((JX)*,

which shows that g is a Hermitian metric. Q.E.D.

Combining Proposition 2. 1 and Theorem 3. 1, we get
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COROLLARY. If (φ, f, 27, g) is an integrable (or normal) almost contact metric
structure on M, then the induced structure (/, g) is a Hermitian structure on M.

§4. Almost Sasakian structures and Sasakian structures.

In this section, we consider properties of the so-called almost Sasakian struc-
tures and Sasakian structures.

DEFINITION 4. 1. Let (φ, ξ, η, g) be an almost contact metric structure on M,
and (/, g) the induced almost Hermitian structure on M. We define a 2-form Θ on
M and a 2-form Ω on M as follows:

(4. 1) θ(X, Ϋ)=g(φX, Ϋ ) for all X, Ϋ €Ϊ,

and

(4. 2) Ω(X, Y)=g(JX, Y) for all X, Fe*.

We call Θ and Ω the fundamental 2-form of the almost contact metric structure
and of the induced almost Hermitian structure respectively.

LEMMA 4. 1. π*Ω=Θ.

Proof. For any X, Y€% we get

(π*Ω)(X*9 Y*)=Ω(dπX*, dπY*) = Ω(X, Y)

=g(JX, Y)=g((JX)*, Y*)=g(φX*9 Y*)=Θ(X*, F*). Q.E.D.

DEFINITION 4. 2 ([9]). An almost contact metric structure is called an almost
Sasakian structure if θ=dη, and is called a Sasakian structure if Θ=dη and Φ=0.

THEOREM 4. 1. // (φ, ζ , )?, <7) zs α^ almost Sasakian structure, then the induced
structure (/, g) is an almost Kάhler structure.

Proof. Since π* is an isomorphism, we conclude from π*dΩ=dπ*Ω=dθ=ddη
=0 that dΩ=Q which means that (/, g) is an almost Kahler structure. Q.E.D.

Combining Proposition 2. 1 and Theorem 4. 1 we get

COROLLARY. If (φ, ί, 27, g) is a Sasakian structure, then the induced structure
(/, g) is a Kahler structure.

THEOREM 4, 2. The fundamental 2-form Θ of an almost Sasakian structure is
the curvature form of the connection η.

Proof. For any X, Ϋ €36, we have
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)=dη(hX, hΫ)=Θ(hX, hΫ)=(π*Ω)(hX, hΫ)

= Ω(dπhX, dπhΫ) = Ω(dπX, dπΫ) = (π*Ω)(X, Ϋ) = θ(X, Ϋ)

which means that Θ=Dη. Q.E.D.

THEOREM 4. 3. Let (φ, ξ, η, g) be an almost Sasakian structure on M and (/, g)
be the induced almost Kάhler structure on M. Then (/, g) is a Kάhler structure if
and only if (φ, f , η, g) is a Sasakian structure.

Proof. From the definition of almost Sasakian structure and Lemma 4. 1, we
get dη = π*Ω. Moreover it is clear that Ω satisfies the second condition of Theorem
2. 3, i.e., Ω(f,X, JY)=Ω(X, Y) for all X, Fe*. Thus our assertion is easy to see
from Theorem 2. 3. Q.E.D.

§5. Curvature tensor fields.

In this section we consider some properties of curvature tensor fields.
First we prove the following

PROPOSITION 5. 1. Let (φ, ξ, ηy g) be an almost contact metric structure on M
and (/, g) the induced almost Hermitian structure on M. Then

(5. 1) Γz*y*=(ΓzF)*+-^-([-ϊ*, F*])-£

for all Xy Fe#, where ψ (resp. F) denotes the covariant differentiation with respect
to the Riemannian connection determined by g (resp. g).

Proof. By definition, /7 and V are characterized respectively by [2]:

, Z)=X g(Y, Z)+Y g(X, Z)-Z g(X, Y)+o([X, Y], Z)+g([Z, X], Y)-g(X, [Y, Z])

for all X, Y and Ze3e, and

, Z)+Ϋ 9(X, Z)-Z g(X, Ϋ) + 9([X, Ϋ], Z)+g([Z, X], Ϋ)-3(X, [Ϋ, Z])

for all X, Ϋ and Ze36.
First we prove that the horizontal component of Γx*F* is given by

We have

Y*], Z*)+S([Z*, X*],
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=X g(Y,Z)+Y g(X,Z)-Z g(X, Y)+o([X, Y], Z)+g([Z, X], Y)-g(X, [Y, Z])

which shows that dπV x*Y*=-pxY, i.e., h7χ Y*=(pzY)*.
On the other hand, we have

F*, ξ)=X* S(Y*9 ί)+F*.0(J*ί*, ξ)-ξ 3(X*> Y*)

+ S([X*, F*], f)+flf([f, **], F*)-g(X*, [F*, £])

= 0(tX*, F*], £),

which is equivalent to

(5.2) 2v(Γχ.y*)=^([-X*, F*]).

Hence the vertical component of F;r*F* is given by (l/2)j?([X*, F*]) f. Q.E.D.

REMARK 5. 1. The equation (5. 1) can also be written as follows:

(5. 3) (F^F)*=F^F*-^,F*).f=-^27^F*.

REMARK 5.2. The equation (5.1) shows that Fj-*F*=(/7;rF)* if and only if
the connection η is involutive.

It is well known that the curvature tensor fields R and R can be expressed,
in terms of covariant differentiation, as follows:

R(X, Y)Z=pχpγZ-pγpzZ-pLf,YlZ for all X, X and Ze36, and

β(X, Ϋ)Z=7z9?Z-yγ7£Z-7tf,γιZ for all X, Ϋ ana Zς%.

PROPOSITION 5. 2.

(5. 4) (R(X, X)Z)* = -φ*\R(X*, F*)Z*- -̂
Ll

for all X, Y and

Proof. From Proposition 5.1, we get
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since φ(ξ)=Q. Similarly we get

Moreover we get

(Pc* nZ)*= -Φ*9&, YγZ*=-φ*{VlX*, Y,,Z*-η([X*, F*]) .

since [X*, X*]=[X, Y]*+rj([X*, F*]) <f. Hence we obtain (5. 4). Q.E.D.

DEFINITION 5. 1 (Yano and Mogi [10]). Manifold with Kahler structure (/, g)
is said to be of constant holomorphic curvature if the curvature tensor field is
given by

(5. 5) ±R(X, Y)Z=k{g(Y, Z}X-g(X, Z)Y-Ω(X, Z) JY+Ω(Y, Z} JX-2Ω(X, Y) fZ}

where k is a constant.

DEFINITION 5. 2 (Ogiue [5]). Manifold with Sasakian structure (φ, ξ, η, g) is
said to be of constant C-holomorphic curvature if the curvature tensor field is
given by

-S(X, Z ) }

(5. 6) +(k-l){η(X}η(Z)Ϋ-η(Ϋ)η(Z}X+g(X, Z)rj(Ϋ) ξ-g(Ϋ,

-Θ(X, Z)φΫ+θ(Ϋ, Z)ψX-2θ(X, Ϋ)φZ}

where k is a constant.

Now we can prove the following

THEOREM 5. 1. If a manifold M with Sasakian structure (φ, ξ, η, g) is of
constant C-holomorphic curvature, then the manifold M with the induced Kahler
structure (/, g) is of constant holomorphic curvature.

Proof. By Definition 4. 2, the conditions for M to be a Sasakian manifold are
given by S—dη and Φ=0. These are equivalent to

and (?^)()=?( ) *-3CY, K (Tashiro [9]).

On the other hand, we have V x*ζ=V ξX* since [f, X*]=Q. Moreover from
Lemma 2. 2 we get η([X*9 Y*])=-2dr}(X*, Y*)=-2Θ(X*, F*). Hence from (5. 4)
we have
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= ~Φ2[(k+3){g(Y*, Z*)X*-g(X*,

*, Z*)φY*+Θ(Y*, Z*)φX*-2Θ(X*, Y*)ψZ*}

+4<9(F*, Z*)φX*-4θ(X*, Z*)0F*-8<9(J£*, Y*)φZ*\

= -φ2(k+3){g(Y*, Z*)X*-g(X*, Z*)Y*

-Θ(X*, Z*)^Γ*+<9(Γ*, Z*)φX*-2θ(X*, Y*)φZ*}.

Thus we obtain

4Jt(X, Y)Z=(k+3){g(Y,Z)X-g(X,Z)Y-Ω(X,Z).JY+Ω(Y,Z)'JX-2Ω(X, Y) JZ},

which shows that M is of constant holomorphic curvature. Q.E.D.
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