ON ALMOST CONTACT MANIFOLDS ADMITTING AXIOM
OF PLANES OR AXIOM OF FREE MOBILITY

By Koicur Ociue

A Riemannian manifold is said to admit the axiom of planes if there exists a
2-dimensional totally geodesic submanifold tangent to any 2-dimensional section at
every point of the manifold, and is said to admit the free mobility if there exists
an isometry which carries any point and any frame attached to the point to any
other point and any other frame attached to the point [1].

It is well known that a Riemannian manifold admits the axiom of planes or
the free mobility if and only if it is of constant curvature [1]. Yano and Mogi [8]
proved a similar result in a complex manifold. If the holomorphic sectional curvature
at every point of a Kdhler manifold does not depend on the holomorphic section at
the point, then it is constant on the manifold and the curvature tensor has the form

k
Kyjit= 4 [(0x"95:— 0 re) + (F¥ Fji— F " Fr) — 2 Fy ; Fi],

where F denotes the complex structure. They proved that such a Kihler manifold
admits the so-called axiom of holomorphic planes and the holomorphic free mobility,

and conversely.
Recently, Sasaki [4] defined a structure called (¢, &, 7, g)-structure on an odd
dimensional manifold. The structure is analogous to an almost Hermitian structure

on an even dimensional manifold.
In this paper, we consider, in a Sasakian manifold, the problems corresponding

to those of Yano and Mogi.
I wish to express my sincere gratitude to Professors K. Yano and S. Ishihara

who gave me many valuable suggestions.

§1. Identities.

A (¢, & 7, g)-structure is defined on a (2n-+1)-dimensional differentiable manifold
M by a (1, 1)-tensor field ¢, a vector field & a 1-form % and a Riemannian metric
¢ satisfying the following conditions [4]:

(1- ]-) él)ﬁ':l:
1. 2) rank (¢;)=2n,

Received June 29, 1964,
223



224 KOICHI OGIUE

1.3 $5%67=0,

1.4 #57:=0,

1.5) B = — Ot +E,
1. 6) 9557 =13,

()] 9P’ Pr* = Grn— N1

If this is the case, ¢;i=¢ia¢p;* is skew-symmetric and the 2-form @=g;dx? Adx*
is called the fundamental 2-form. When the above structure satisfies an additional
condition

1.8 O=dy
it is called an almost Sasakian structure.
Moreover, we define a (1, 2)-tensor field N by
1.9 Njit=¢;*(0api" —0ia™) — $:i*(0ap;" —0;Pa™) +1;0:6" —1:0,;6".

A Sasakian structure is a (g, &, 5, g)-structure with additional conditions

(. 10) [ 7=
| n=o,
which are equivalent to
1.11) $ir=pi&*  or  Pu=pim
and
(1.12) Vedit =m0 —&'Gr;  OF  Pbji=7;Qki—7:Gks,

where p denotes the covariant differentiation with respect to the Riemannian con-
nection determined by ¢. In this case, vector field £ is a unit Killing vector field.
From (1. 11) and (1. 12), we have

P i€ =008k,  OF  Pif =750k —7ilks,

using the Ricci formula,

1.13) Kiji"0a= 05— 00
or
.13y KijiaS* =119 1i— 19k,

where K denotes the curvature tensor of the given connection. The equation (1. 13)
is equivalent to
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1. 14) Kojiheo=Erg;;—ni0"
or
(1. 15) Kija 64 =1 ;04" —10,".

From (1.12) and the Ricci formula, we get

(1. 16) G Kpai™ = Kiji" -+ Gi b ji— G " pri— 04" i+ 0" Grs
or
1. 16) 6201 Koain=Kijin+PinPji — G indres— Qeng i+ 930 G-

Moreover we have
1.17) 8D Kanvj=dr ¢’ Kajon.

From (1. 16)’, we have

b9 ;" Koain=Knjin+Gmrdji—Ginmi—gmngii+gingm

from which, transvecting with ¢;¢:!, we get
(1.18)  dudn® Kajoi— Pt Kajon= 9 ingui— Gund js -+ 76019 ji— g in— P jnPri+ P ji-

From

292 Kai" = — 3130 ;°(Kiva" + Koai™) = ¢,° 0 Kvua® — 02 Koai®

and (1. 16), we get
(1. 19) PP Kai" — 90" Kaw" = Kiji" + P b ji— b Pri — 0" s+ 0" g
or

(1. 19y G129 K gion— 0 ;206" Kaion=Kijin+ rn ji — P jndrs — grng i+ 9 inQrr

§2. C-holomorphic sectional curvature.

Let p be any point of M, and V, be the subspace of T,(M), the tangent space
of M at p, whose elements are orthogonal to ¢, i.e.

Vo= {ve T,(M)lg(¢, v)=0}.

Let # be any unit vector of V,. By &-section, we mean the section determined by

& and «.
The sectional curvature determined by &-section is said to be &-sectional cur-

vature. Denoting it by A(, u), we get
k(& u)=—Krjint" & u's™,
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or, using (1.13),
k&, u)=—(mgi—nge)uE .
By assumption,
9;:&ur=0 and gritfur=1,
thus we have
k&, u)y=1,
hence we obtain [2]

THEOREM 1. In Sasakian manifold, &-sectional curvaturve is always equal to 1.

Next we consider the sectional curvature determined by two orthogonal
vectors in V.

If v be any unit vector, not necessarily in V,, then ¢v lies in V,, and any
element of V, can be written in this form.

So we consider the section determined by ¢v and ¢?», which are orthogonal to
each other. We call this a C-holomorphic section, and the sectional curvature
determined by such a section is said to be the C-holomorphic sectional curvature:

Kol o) (§0) (90)(§0)"
(2. 1) k= gdc(¢1})d(¢v)cgba(¢2”)b(¢zv)a s

from which, using (1. 13)’, we have

©.2) pe _ (PP Kajon 090 Gues—mena) V070 0"
. (gx5i—7x07)(Qin—nann) V¥ V* V"

Now if we assume £ is independent of the choice of C-holomorphic section at
peM, then (2.2) or

@3 [65:" Kajor~+17n(Gri—0i00) + R(Qs—nn3) (gin— i) [vFvv 0" =0
should be satisfied for any », from which we get
29 9 Kajon+ oo’ Kaivj~+ P d 3 Kanvi) +2(Pnjbrit Pejbin+ rih i)
+@37i9kn 210G 0 19— 7 i in —Dx7i G in—7i7ng i)
+ A —2R)(pan sgin+11ig jn - inG g+ 1573k + 9 0Gks + 9170 Gk s)
+2k(gxigin+grigin+ging ) +6(k —1)min minn=0

by virtue of (1.17) and (1. 18).
Moreover using (1. 18) and (1. 19)’, we have

3Pnldi®Kajon— Kjimn+Knymi+3(g jngmi— gmigin) + R(Gmigin+gmigjn~+gnngi;)
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A=k 09+ 1mng s1+15m1Gma+ Ringm ) — @+ R)gnngin
+3bmndj1+3(k—1)nmy i =0.
Transvecting this equation with ¢;"¢:' and using (1. 13)’ and (1. 16)’, we get
1P Kajon=3Kunji— Kjnvi+gung ji+ 2959 — B+ 3)grsgni+ kninigin
+(k—1)nmngici— (k—2)Punpij+ (b —1)ripni— (k—L)nenmign.

Taking the skew-symmetric part of this equation with respect to ¢ and %, and
using (1. 18), we obtain

4K yjin=(k+3)(grngji—grigin)
2. 4)
+ (B —1)(unig jn~+ 101Gk — 9eng 50— 00iQkn + Pridni— Grnbij+ 2PniPna).

Transvecting this with ¢**, we have
2.5 2Kji=[n(k+3)+k—1]g;i —(n+1)(k—1)p7:.

Sasakian manifold with the Ricci tensor of the above form is called »-Einstein
manifold [3]. Moreover transvecting this with ¢, we have

2. 6) 2K=n(@2n~+1)(k+3)+n(k—1).

On the other hand, from the Bianchi identity, we get

2p.Ki*—p ;i K=0.

Substituting (2. 5) and (2. 6) into the last equation, we get
@7 (n—1)p,k+niE%pak=0.

Transvecting this with &, we have

&pak=0
and hence we have from (2. 7)
pik=0  (nx1).

Thus, the C-holomorphic sectional curvature % is constant on the manifold.
Hence we have proved

TuroreMm 2. If, in a Sasakian manifold, C-holomorphic sectional curvature is
independent of C-holomorphic section at a point, then the curvature tensor has form
(2. 4), where k is a constant if nx1.

A Sasakian manifold is said to be of constant C-holomorphic curvature, if the
C-holomorphic sectional curvature is constant on the manifold.
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§3. Axiom of C-holomorphic planes.

Let p be any point of M. When a section is given at p, we consider a 2-
dimensional totally geodesic submanifold passing through this point and being
tangent to the given section.

If we represent such a submanifold by parametric equations

(3. ].) xh=xh(y1) (Zr 13 V:1; 2))

then the fact that the submanifold is totally geodesic is represented by the equations

3.2)

o2z 6.771'6.70‘{ h }_ax" 2 /~0'
ooy oyayr | jil oyt lve]

where {,%,}’ are Christoffel symbols formed with the naturally induced Riemannian
metric
ox? ox*
gﬁa—yva_yf

of the submanifold.
The integrability conditions of the differential equations (3. 2) are

@3.3) B B, B Kyji"=B"K', ¢
where
ox
B{': ayx ’

and K’,.;* is the curvature tensor of the submanifold.

(3. 3) means that B,*B,’B;*Ky;® must be a linear combination of B; and B..
We first consider a &-section.

If we put B,=¢, B:=u, from (1. 14) we have

Eoy I8 Kyt = —uh, Syt Ky jih=En,

hence conditions (3. 3) are satisfied, that is, there always exists a 2-dimensional
totally geodesic submanifold tangent to &-section.

Next, we assume that the manifold admits the axiom of C-holomorphic planes;
that is, for any C-holomorphic section at p, there always exists a 2-dimensional
totally geodesic submanifold tangent to it.

If we put Bi=d¢v, B.=¢*v, then from (3. 3) we have

3. 4) | ($s™0°) (9™ ¢ 1%07)($p' D:P0") K™ = ap " v* 4B, i"v*
- l (@s"0°) (™D 7Y (B 0") Knana™ =y $s" 0"+ 065" i 0"
From the first equation of (3. 4), we have

(95" Kji"+ ¢si"nj—ds"nma) v vl vt =(ags jbi" — Bgsi0:" + Bgs &) vsvIv*
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or

(" Knjin+bsinnni— Psnnini)vs v’ vt =(ags;bin— BYsigsn+ Bgs mnn)vsvivt.

Transvecting the last equation with v* and using the skew-symmetry of K,
and ¢s, we get f=0.
If we put

1 gs;0507
k: A= Q.
[lgv]| (Gss—nsm)v50?

then we have
(D" Knji"+ @sib"7— 5" ma)vsv? vt = k(gsj—nsm;) P vsv7vs,
from which we get
Ps"Knji" +¢s”ij” + 0" K"+ ¢ Knsit + ¢ Krns 2+ ¢ Knys
—2(ps"nmi+ i ims T b 957;5)
=2k(gsis"+ 015"+ Giss" —1575Pi" — 0 i —79i7sP5").
Transvecting this with ¢, we obtain
—2Kiji" — 2K+ 3 Knos" + G 9i° Ky — 0" rei— 0 Gy +204" g 5
205" 76— 05" 775 — 0" upy 2069 70— 26" i+ B 5" ri+- i By
=2k(Pri$s" — g5:0k" +9 518" N+ Prap 5" + 0k s —Em i 191)

from which, taking the skew-symmetric part with respect to % and j, and using
the relations (1.19) and

PP Kngs" — iP5 Krs™
= — Kyji"+2(06"9 i — 05" gai) + 05" pime— 0k 1im;+ 2Pr $:"
we find
4Ky ji" = (k+3)(0k"g5i— 05" gr)
+(k—1)(0;" nwni— 0k"n i+ Qi€ 05— 58" e — Prihs™ + Pyipi" — 2w pa").

Conversely, if the curvature tensor has the above form, it is easily seen that
(3. 3) is satisfied, hence we have proved

THEOREM 3. If a Sasakian manifold admits the axiom of C-holomorphic planes,
then the manifold is of constant C-holomorphic curvature. The converse is also true.
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§4. C-holomorphic free mobility.

If a Sasakian manifold admits a family of isometries which leave & (or ») in-
variant and carry any C-holomorphic section to any other C-holomorphic section,
then we say that the manifold admits a C-holomorphic free mobility.

Now, we assume the manifold admits a C-holomorphic free mobility.

At any point peM, we consider two arbitrary C-holomorphic sections, then by
assumption there always exists a transformation which carries one to the other.
Since p is arbitrary, the manifold must be of constant C-holomorphic curvature and
consequently the curvature tensor has the form

4Kz = (k+3)(0x"9ji—0;"Gr:)
+ = —1)(0 nuns — 0" 11+ Gri€ "1~ 9:E" — Pra 3"+ G 1 P — 2PrsPi),
where k£ is a constant.

Conversely, we assume the curvature tensor of the manifold has the above

form.
If » denotes an infinitesimal transformation, then the fact that this is an in-

finitesimal isometry is represented by
4.1 L,g=0

and the fact that this leaves ¢ invariant and carries any C-holomorphic section to
any other C-holomorphic section is represented by

4. 2) L,p=0
and
4. 3) Lyy=0.

From (4. 1), we get
4. 4) Lo{n}=p g+ Kiji"v*=0.
If this is the case, L, commutes with p, hence we have
L@ ji=Lop 9i=V;iLvys,

thus the equation (4. 2) is not essential.
It is well known that the integrability conditions of the differential equation
(4. 4) are given by

(4‘ 5) LnKkjih=lelKkah _KkjilVll}h‘i“Kljithvl +Kku"'[7jvl +Kkjlh[77;1)l =0.

Let p be an arbitrary but fixed point of M.
1t is easily seen that the condition (4. 5) are always satisfied by any v for
which (4. 1), 4.2) and (4. 3) are satisfied at any point, and that the differential
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equations (4. 4) have solutions.
Moreover, using the identities

7eLlogii= (Lol s1)gni+(Lo{#:})gin
and

1
Ly{"}= 5 9" P iLogia+pilogsa—Falogs),

we see that (4.4) are equivalent to
PrLog;i=0

and consequently, (4. 1) is satisfied at every point of M by any solutions of (4. 4)
for which the initial conditions are satisfied.
On the other hand, from (1. 12) we get

Loy jpin=(Lm:)gin—Lomn)g;i

by virtue of L,g=0, and the left hand side of the last equation is equal to p;p:Ly.,
hence we have

4. 6) i iLonn=(Lon:)gjn—(Lonn)g:

which can be regarded as homogeneous differential equations with respect to L.ps.

The initial conditions for (4. 6) are given by (L,p.)p=0 and (7:L.pr),=0, since
ViLv'/)h =Lv¢ih~

Hence the solutions of (4. 6) are L,»,=0, and consequently (4. 3) is satisfied by
any solutions of (4. 6) for which the initial conditions are satisfied.

Thus (4. 3) is satisfied, hencc (4. 2) is also satisfied.

The conditions (4. 1), 4.2) and (4. 3) are equivalent to

4.7 pivit+paw;=0,

4.8) v'pmi+-Epivi=0

and

“4.9) V'pidji— il vt dipivi=0

which can be regarded as linear equations with unknown »* and p,uv..

We first consider the solutions of above equations satisfying v,=0, then (4. 8)
and (4.9) show that pu; leave ¢ and ¢ invariant and that the totality of such
solutions (0, p,v:) is isomorphic to the Lie algebra of U(n), hence a C-holomorphic
section at p is transformed to any other C-holomorphic section at p.

On the other hand, we consider the solutions such that wv,30. There exist
2n+1 independent solutions (¢7, pjv;) which transform p to any point p’ of a
neighborhood of p and any C-holomorphic section at p to C-holomorphic section
at p’.
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Thus the manifold admits a C-holomorphic free mobility.
Summarizing the above results, we have

THEOREM 4. The necessary and sufficient condition that a Sasakian manifold
admats a C-holomorphic free mobility is that the manifold is of constant C-holomor-
phic curvature.
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