
ON ALMOST CONTACT MANIFOLDS ADMITTING AXIOM
OF PLANES OR AXIOM OF FREE MOBILITY

BY KOICHI OGIUE

A Riemannian manifold is said to admit the axiom of planes if there exists a
2-dimensional totally geodesic submanifold tangent to any 2-dimensional section at
every point of the manifold, and is said to admit the free mobility if there exists
an isometry which carries any point and any frame attached to the point to any
other point and any other frame attached to the point [1].

It is well known that a Riemannian manifold admits the axiom of planes or
the free mobility if and only if it is of constant curvature [1]. Yano and Mogi [8]
proved a similar result in a complex manifold. If the holomorphic sectional curvature
at every point of a Kahler manifold does not depend on the holomorphic section at
the point, then it is constant on the manifold and the curvature tensor has the form

where F denotes the complex structure. They proved that such a Kahler manifold
admits the so-called axiom of holomorphic planes and the holomorphic free mobility,
and conversely.

Recently, Sasaki [4] defined a structure called (φ, ξ, η, g)-structure on an odd
dimensional manifold. The structure is analogous to an almost Hermitian structure
on an even dimensional manifold.

In this paper, we consider, in a Sasakian manifold, the problems corresponding
to those of Yano and Mogi.

I wish to express my sincere gratitude to Professors K. Yano and S. Ishihara
who gave me many valuable suggestions.

§ 1. Identities.

A (φ, ζf η, <7)-structure is defined on a (2n+l)-dimensional differentiable manifold
M by a (1, l)-tensor field φ, a vector field ξ, a 1-form -η and a Riemannian metric
g satisfying the following conditions [4]:

(1. 1) f * ^ = l ,

(1. 2) rank (φ/)=2n,
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(1.3) ΨJΨ=0,

(1.4) &ty=0,

(1.5) φj

%φ*' = -δk*+ξ

(1.6) 0yif' = ?i,

(1.7)

If this is the case, φji=giaφja is skew-symmetric and the 2-form Φ=φjidxJΛdx%

is called the fundamental 2-form. When the above structure satisfies an additional
condition

(1.8) Φ=dy

it is called an almost Sasakian structure.

Moreover, we define a (1, 2)-tensor field N by

(1. 9) Njih = φja(daφih -diφah) - φia(daφjh - djφa

h) + -ηfiιζh -Vidjξ\

A Sasakian structure is a (φ, ξ, η, g) -structure with additional conditions

I Φ=dy,
(1.10)

which are equivalent to

(1.11) ΦJX=V£X or Φa=Vfli

and

(1.12) fkφjx=ηβk%-ξxgkj or r * ^ ί = W « — W * J »

where p denotes the covariant differentiation with respect to the Riemannian con-
nection determined by g. In this case, vector field ξ is a unit Killing vector field.

From (1. 11) and (1. 12), we have

= ηβk%—ξιgkj or

using the Ricci formula,

(1. 13) Kkji
aηa

or

(1.13/ Kkjίaξ

where K denotes the curvature tensor of the given connection, The equation (1.13)
is equivalent to
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(1.14) Kajihξa=ξhgji-7]iδjh

or

(1. 15) KkJa
hξa = ηjδk

h—ηJf.

From (1. 12) and the Ricci formula, we get

(l lβ) φjc'φ^K.ai^K^+φ^φj

or

(1. 16) ' φkbφjaKbaih = Kjcjih + φkhφji

Moreover we have

(1.17) φidφk

bKdhbj=φ

From (1. 16/, we have

φmbφjaKbalh = Kmjih + φmhφjl — φjhφml — g mhg

from which, transvecting with φιmφk\ we get

(1. 18) φkdφhbKdjbi — φkdφibKdjbh = gjhQki — gkhgji+ykynQji—ηkψQjh, — φjhφu+φkhφji-

From

and (1.16), we get

(1. 19) φkaφjbKdih

h - φjdφkbKdίb

h=Kkji
h+0*Λ&< - φjhφu - δkhgji+δjhgk%

or

(1.19)' φkdφjbKdibh—φj

dφk

bKdίbh=Kkjih+φkhφjί~φjhφki—gkhgji-\~gjhgkι.

§2. Oholomorphic sectional curvature.

Let p be any point of M, and F p be the subspace of TP(M), the tangent space

of M at />, whose elements are orthogonal to ξ, i.e.

Let u be any unit vector of Vp. By f-section, we mean the section determined by

ξ and u.

The sectional curvature determined by ί-section is said to be f-sectional cur-

vature. Denoting it by k(ξ, u), we get
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or, using (1.13)',

k(ζ, u)=—(-ηkgji—ηjgki)uψu\

By assumption,

gjίξJuι=Q and gkiU
kuι = l,

thus we have

*(£, «) = 1,

hence we obtain [2]

THEOREM 1. In Sasakian manifold, ξ-sectional curvature is always equal to 1.

Next we consider the sectional curvature determined by two orthogonal
vectors in VP.

If v be any unit vector, not necessarily in Vp, then φv lies in VP9 and any
element of Vp can be written in this form.

So we consider the section determined by φv and φ2v, which are orthogonal to
each other. We call this a C-holomorphic section, and the sectional curvature
determined by such a section is said to be the C-holomorphic sectional curvature:

(A 1) k= —

from which, using (1.13/, we have

(2. 2) k = — •

Now if we assume k is independent of the choice of C-holomorphic section at
peM, then (2. 2) or

(2. 3) [φkdΦihKdjbh+VJVh(gki—VkVi)+k(gkj—7}kyj)(gih—yi7)h)]vkv>vιvh=0

should be satisfied for any v, from which we get

2(φk

dφibKdJbh+φk

dφh*Kdtι,j+φk

dφjbKa^

•f (VJViOkh+y]jηκQki+rjirjhQkj—Vk^jgih—ytfjiQjh — Vk?]hgji)

+(1—2k)(ηkη jgίh+yjkVigjh+ηkηnQji+rjtfigkh+yjVhgki 4- ηϊηngkϊ)

Λ=0

by virtue of (1.17) and (1.18).
Moreover using (1.18) and (1.19)', we have

3φmdφlbKdjbh —Kjlmh + Khjml + %(QjhQml ~ gmjQlh) + k(gmjQlh + Q
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h=0.

Transvecting this equation with φk

mφiι and using (1.13)' and (1.16)', we get

gμ+2gkjgίh—(&+ S)gkighj -f &?* W J Λ,

Taking the skew-symmetric part of this equation with respect to i and h, and
using (1.18), we obtain

AKjcjih = (k+Z)(gkhqji—gkigjh)
(2.4)

+(k—1) (yitfjigjh+yjyhgjci—ytfjhga—ytfigkh+0JM0Λ./—Φkhφij+2φkjφhi).

Transvecting this with gfΛΛ, we have

(2.5) 2X>i=

Sasakian manifold with the Ricci tensor of the above form is called ^-Einstein
manifold [3]. Moreover transvecting this with gJif we have

(2.6) 2ϋΓ=M(2w+l)(A+3)+«(Aί-l).

On the other hand, from the Bianchi identity, we get

Substituting (2. 5) and (2. 6) into the last equation, we get

(2.7) (n-l)Pjk+7i£apak=0.

Transvecting this with <?•>, we have

ξaPak = 0

and hence we have from (2. 7)

Thus, the C-holomorphic sectional curvature k is constant on the manifold.
Hence we have proved

THEOREM 2. If, in a Sasakian manifold, C-holomorphic sectional curvature is
independent of C-holomorphic section at a point, then the curvature tensor has form
(2. 4), where k is a constant if

A Sasakian manifold is said to be of constant C-holomorphic curvature, if the
C-holomorphic sectional curvature is constant on the manifold.
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§3. Axiom of C-holomorphic planes.

Let p be any point of M. When a section is given at p, we consider a 2-
dimensional totally geodesic submanifold passing through this point and being
tangent to the given section.

If we represent such a submanifold by parametric equations

(3.1) xh=x\y>) (λ,μ,v=l,2),

then the fact that the submanifold is totally geodesic is represented by the equations

(3.2) -τ—z—+ . Λ , . . , Λ . .

where ί^} ' are Christoffel symbols formed with the naturally induced Riemannian
metric

dχi dxι

Jl dyv dyμ

of the submanifold.
The integrability conditions of the differential equations (3. 2) are

where

and K'vμλ

κ is the curvature tensor of the submanifold.
(3. 3) means that Bv

kBμ

jBλ

%Kkn
h must be a linear combination of Bι and B2.

We first consider a f-section.
If we put i?i=f, B2=u, from (1. 14) we have

hence conditions (3. 3) are satisfied, that is, there always exists a 2-dimensional
totally geodesic submanifold tangent to f-section.

Next, we assume that the manifold admits the axiom of C-holomorphic planes;
that is, for any C-holomorphic section at p, there always exists a 2-dimensional
totally geodesic submanifold tangent to it.

If we put Bi=φvf B2=φ2v, then from (3. 3) we have

( (φsnVη(φ
(3. 4)

I (φS

nVs){φ

From the first equation of (3. 4), we have
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or

Jvι = (agsjφih—βgsjgίh+βgs

Transvecting the last equation with υh and using the skew-symmetry of Knj
and φsi, we get /3=0.

If we put

l l ^ l i (

then we have

(φs

nKnjih+φsiξ
hVj ~ φshyjyi)vsvJvι=k(gsj - Ύ]sy]J)φi

hvsv:!υ\

from which we get

φ*nKnJi
h + φsnKmjh + ̂ n Xnt . Λ + ̂ ^ s ^ + φinKnsjh + φinKnjs

h

= 2 k ( g s j φ i h ^ ^ ^ ^ V V φ j

Transvecting this with φjc% we obtain

from which, taking the skew-symmetric part with respect to k and j , and using
the relations (1.19) and

we find

Conversely, if the curvature tensor has the above form, it is easily seen that
(3. 3) is satisfied, hence we have proved

THEOREM 3. // a Sasakian manifold admits the axiom of C-holomorphic planes,
then the manifold is of constant C-holomorphic curvature. The converse is also true.
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§4. C-holomorphic free mobility.

If a Sasakian manifold admits a family of isometries which leave ξ (or η) in-
variant and carry any C-holomorphic section to any other C-holomorphic section,
then we say that the manifold admits a C-holomorphic free mobility.

Now, we assume the manifold admits a C-holomorphic free mobility.
At any point peM, we consider two arbitrary C-holomorphic sections, then by

assumption there always exists a transformation which carries one to the other.
Since p is arbitrary, the manifold must be of constant C-holomorphic curvature and
consequently the curvature tensor has the form

δk

hηjηi + gMξhyj-gjiξhVk-ψkiψjh +

where k is a constant.

Conversely, we assume the curvature tensor of the manifold has the above
form.

If v denotes an infinitesimal transformation, then the fact that this is an in-
finitesimal isometry is represented by

(4. 1) Lυg=0

and the fact that this leaves ξ invariant and carries any C-holomorphic section to
any other C-holomorphic section is represented by

(4.2) Lυφ=0

and

(4.3) Lυrj=O.

From (4. 1), we get

(4. 4) Lυ{3\) =FjFiv*+Km

hvk=0.

If this is the case, Lυ commutes with p, hence we have

thus the equation (4. 2) is not essential.
It is well known that the integrability conditions of the differential equation

(4. 4) are given by

(4.5) L ^ ^ z / p ^ ^

Let p be an arbitrary but fixed point of M.
It is easily seen that the condition (4. 5) are always satisfied by any υ for

which (4. 1), (4. 2) and (4. 3) are satisfied at any point, and that the differential
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equations (4. 4) have solutions.
Moreover, using the identities

pΊcLvgβ=(Lv {ichj })grn+ (Lv {k

and

we see that (4. 4) are equivalent to

and consequently, (4.1) is satisfied at every point of M by any solutions of (4. 4)
for which the initial conditions are satisfied.

On the other hand, from (1. 12) we get

by virtue of Lvg=0, and the left hand side of the last equation is equal to
hence we have

(4. 6) f7jγiLvηκ=(Lv7]i)gjh—{Lυηh)gjί

which can be regarded as homogeneous differential equations with respect to Lvrjh.
The initial conditions for (4. 6) are given by (Lυηh)P=0 and (piLυηh)p=Oy since

Hence the solutions of (4. 6) are Lvyh=0, and consequently (4. 3) is satisfied by
any solutions of (4. 6) for which the initial conditions are satisfied.

Thus (4. 3) is satisfied, hence (4. 2) is also satisfied.
The conditions (4. 1), (4. 2) and (4. 3) are equivalent to

(4.7) PjVi+piVj=O9

(4. 8) Vιpιηi + ξιPiVι = O

and

(4.9) vιpιψji-φι

ιpjvι+φj

ιpiVι=O

which can be regarded as linear equations with unknown v% and pjVu
We first consider the solutions of above equations satisfying vp=Q, then (4. 8)

and (4. 9) show that pjVt leave ξ and φ invariant and that the totality of such
solutions (0, p3v%) is isomorphic to the Lie algebra of U(ή), hence a C-holomorphic
section at p is transformed to any other C-holomorphic section at p.

On the other hand, we consider the solutions such that vp^0. There exist
2n+l independent solutions (vι, pjVi) which transform p to any point pf of a
neighborhood of p and any C-holomorphic section at p to C-holomorphic section
at p'.
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Thus the manifold admits a C-holomorphic free mobility.

Summarizing the above results, we have

THEOREM 4. The necessary and sufficient condition that a Sasakian manifold

admits a C-holomorphic free mobility is that the manifold is of constant C-holomor-

phic curvature.
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