SIMPLE PROOFS FOR THE STRONG CONVERSE
THEOREMS IN SOME CHANNELS

By KeN-ICHI YOSHIHARA

1. Summary.

In the coding theory, one of the most important problems is to establish the
“capacity ” of the channel considered. But, as Wolfowitz pointed out in [5], and
[6], to prove that the constant C involved is the capacity, one has to prove a coding
theorem and its strong converse.

In this paper, we shall prove a general strong converse theorem which is
available to various channels. In Section 2, we shall prove the theorem. As ap-
plications of the theorem, we shall consider the following two problems:

(i) Another proof of the strong converse of the coding theorem for a continuous
memoryless channel with additive Gaussian noise (Section 3);

(ii) The proof of the strong converse of the time-continuous Gaussian channel
with additive Gaussian noise of arbitrary spectrum (Section 4).

2. A general theorem.

At first, we shall derive a theorem which is useful to prove the strong con-
verses of various coding theorems.

Let D’ (D”) be the input space (the output space). Let A(-|-) be a channel
probability function: that is, for fixed weD’, h(-|u) is a generalized density
with respect to a (not necessarily finite) measure p and for fixed veD”, h(v|-) is a
measurable function with respect to another (not necessarily finite) measure 4. Let
p(+) be a generalized probability density with respect to the measure 2. Define

(1) D(u, v)=p(u)h(v|u)
and
(2) 4=\ phlia)
Next, for a positive number 6, we define A.(f) by
_ y h(v|u) /
(3) Au(a)_{vep | 1og 220 ga} (we D),
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THEOREM 1. Let a, 0=a<1, be arbitrary. Let E a set of inputs and {(u., B)),
-, (uy, By)} (wi€E, i=1, ---, N) be any (N, a) code. If we can choose a positive
number 0 such that

1— .
(4) S__h(v[ui)/l(dv)é _22 (i=1, -, N),
Ay (
then N must satisfy the relation
2

l—a

(5) N= 20,

Here, the bar over a set denotes its complement.

The proof of this theorem leans heavily on the method used by J. H. B. Kem-
perman in the proof of the strong converse of the coding theorem for the semi-
continuous memoryless channel (cf. [5]).

Proof. For brevity, let A;=A,,6). For all u;eE (i=1, -+, N)

l—a=\ h@lu)udv)= h(vlu)u(dv)+\__ h(v|u)u(dv).
B; Bj 45

Therefore, using (4), we have
l1—a .
(6) S holwpdnz—5  @=1, - N).
A;~B;
Since, for any veA, (=1, ---, N),

qW)=27"h(v|us),

so, from (6), we obtain

| awuan=|

B; Ai.

q(v)(dv)
B;
(7)

22-08 Moluopdnyz 2552 (=1, W),
A;~Bj

i

Thus, summing on both side from 1 to N, and using the fact that Bi~B,=® (i#j)
and U, B;cD”, we have
l—a ¥

=2 o=, aouan=1,

1=1 V=18

N2-°

Thus, we obtain (5) and complete the proof.
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3. Another proof of the strong converse of the coding theorem for a con-
tinuous memoryless channel with additive Gaussian noise.

As an application of Theorem 1, in this section, we shall show another proof
of the strong converse of the coding theorem for a continuous memoryless channel
with additive Gaussian noise.

Let P>0 be the maximum permissible input average power per coordinate. A
set E of possible channel inputs is all sequences w#=(x, -+, Z») of n real numbers
such that

(8) %z: <P

Any sequence v=(y;, --+, ¥») is a possible output. Let 7>0 be the average noise
power per coordinate. We assume that for the input #=(xy, ---, £») given, the
output v=(yi, ‘-, ¥») is obtained by adding an independent Gaussian random variable
with mean zero and variance 7, to each of the coordinates of #; that is,

=T 1 ~ Wz p
(9) h(vlu)“_]l;ji /\/%e V=27 7,

For this channel, Shannon first proved that the capacity is C=(1/2) log, [1+ P/7],
and Wolfowitz showed another proof of the result, (cf. [3], [4] and [5]).

Now, we show a new method to prove the strong converse of the coding theorem
for the channel.

Strong converse of the coding theorem:

Let a,0=a<1, and >0 be arbitrary. Let {(#1, By), -+, (un, Bn)} (u:€E, 1=1,
., N) be a code (n, N, @) for the above defined channel. If n is sufficiently large,
then

N< 1&_ on(C+ed

—

Proof. Let & (0<e1<e) be arbitrary and let @ be a positive number such that
0< loge<1+ -g-)—loge<1+ 7P> <ern
For p(u), we use
(10) pu)= N/*e‘* 720

and define

a1 q(v)=S:°mSiwp(u)h(mu)dxlmdxn "1 ,\/Zn(Q e Vi@,



216 KEN-ICHI YOSHIHARA

Let E be the set of all # which satisfies (8) and let

Au:{v=(y1, coey ) | loge h((zl})) _n(C+e)}

h(v|u)

n P
0 = —2—{10ge(1+ 7) +2e 108'62] }

= {I)=(y1; trey yn)”Oge

Since, for any ueFE,

E[logc WV1w) u]

q(V)
o nQ JZ”’ n Q
= 2@ Thery T2 toge( 1+ 7)
12)

__nQ nP Q
=%+ 2oy T2 1°ge(1+ )
= {10g9<1+ )+el]

and
h(Viu)
Var{loge %) Iu}
_& 1 Qv N9 (Ve ’
“EEH2<Q+r)< 7 (imay+2s¥imapa) s
4 4.7,‘]Q NPT
(13) ~ o S Vimay - )

o+ (d0 = ZE NV i+ Q=)+ @l |

_ nQ*-+2r 2 11,0 - n(Q*+2rP)
2Q+7)? = 2@+

s0, by Tchebychev’s inequality,

_2@yP)
P{VGA«'M}_—<_ n(e—el)Z(Q‘i‘r)z .

Consequently, if we put §=n(C--¢), then the condition (4) in Theorem 1 is satisfied
for sufficiently large # and by the theorem, we have the desired result.
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4. The proof of the strong converse of the time-continuous Gaussian channel
with additive Gaussian noise of arbitrary spectrum.

(@) Definitions.

Recently, in [1], Ash proved a coding theorem and its weak converse for a time-
continuous channel with additive Gaussian noise of arbitrary spectrum. In this
section, we shall prove the strong converse of Ash’s result as another application
of Theorem 1.

Let n(?) be a stationary Gaussian stochastic process with zero mean, continuous
covariance function R(z), and spectral density N(w) with

(14) 2—17 S:{N(w) J2dw < co.

Here, to avoid degeneracy, we assume that the eigenfunctions of the integral equation

15) \ Re-ogerde=00)

span the entire L. space of square integrable functions over [—7, T']. Consider the
class of real functions of integrable square over (—co, co) whose Fourier transforms
are zero whenever N(w) is zero. If S(w) is the Fourier transform of a function s(#)
in this class, let

(16) Floy— @)

and let f(#) be the inverse Fourier transform of F(w). (Since F(w) is of integrable
square, F{w) has an inverse Fourier transform, at least in the sense of a limit in
the mean.) For any positive real number T, define sy(¥) and nz(f) as follows:

s(h) if —T=t=T,
a7 sp(t)= { )
otherwise;
and
I n(@) if —T=t=T
(18) np(t)= .
l 0 otherwise.

DeriNiTION 1. A function s(#) (and its corresponding sr(¢£) will be called
allowable if

1 (= |S@)?
(19) ’2?5_00 - do= KT

where K is a positive constant. The integrand is defined to be zero whenever
N(w)=0.
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DerINITION 2. A code (T, M, &) for a time-continuous Gaussian channel is a set
(20) {(:1(8), Ay, (s2(8), Ao), -+, (su(t), An)}

where each s;(#) is an allowable function sr(¢) and the A, are disjoint Borel sets in
function space such that

@D P{sjO)+nr@®eA}zl—a (j=1, 2, -, M).

DerFiNITION 3. A number R is called a permissible vate of transmission if for
each T, there is a code (7, [2E7], B(T)) such that B(T)—0 as T—oco. The channel
capacity C is the supremum of all permissible transmission rate.

(b) The strong converse of the coding theorem for a time-continuous Gaussian
channel.

In [1], Ash proved the coding theorem, that is,

(logz e)K
C= — 5

and its weak converse

C= 1 (logze)K
= 1-2a 2 :

We shall now show the following strong converse of the coding theorem,
which is new.

THEOREM 2. Let a, 0=a<1/2, and >0 be arbitrary. Amny code (T, M, &) for
the time-continuous Gaussian channel must satisfy

(22) M= _12_ QT (logg®)K/2+9),

Proof. As Ash has done, we shall prove the theorem by approximating a given
coding (T, M, @) by a code for a discrete memoryless channel. Since the eigen-
functions of the integral equation

) |, Re—20)dr=pott, ~T=t=T,

span the Hilbert space L,[—7, T], there is a one to one correspondence between
square integrable functions over [—7, 7] and square summable sequences. The
sequence (&3, T2, ---) corresponding to a function xz(f) with respect to the “basis
functions” ¢.(f). Thus, for each decoding set A, in function space, there corres-
ponds a Borel set A.* in sequence space such that if

24) s)= 3 sunguld), = T=t=T:  i=1,2, -, M,
n=1
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where

T
-7

and if the series (24) converges in the mean, then
(25) P{(si1, Siz, )+ (21, 25y --)€AF} =1 —a @i=1, ---, M)

where A *~A;*=@ (i#j) and
T
zn=S nr(Dgu(ddt
-7

(the z, are independent, normally distributed random variables with zero mean
and variance p., 0» being the eigenvalue corresponding to g.(%).

For each A:*, there is a measurable cylinder B, with the following properties:
(i) for each i (i=1, ---, M)

(26) P{(si1, Sizy ) (21, 25, ---)€Bs} =1—2a,
and
(i) if i#j, then Bi~B;=9.

To prove this fact, corresponding to each A;*, we choose a measurable cylinder
B.* in sequence space such that

@7 P{Bi*—Ai*mBi*}gﬁ‘W
and

o * X _a_ 1 =1 ...
(28) PAX—A*~BXNS o (=1, M),

Since Bi*=(A*~B*)~(B:*—(A*~B;*) for each i, and A, *~A;*=0 (i#j4), so, by
(27), for any i and j (i+j),

(29) P{Bi*~B;*} = P{B*— A*~Bi*} -2P{B;*— A*~B*} = 1‘%

Now, we define B, (i=1, ---, M) inductively, as follows:

BIEBI*
and
Bj=Bj*—(B*—--~vB,_1*)~B;* for any j@2=j=M).

Then, by (25), (28) and (29), for any ;7 Q<j=M).
P{B;}=P{Bj*}—P{B*~-vB, *)~B;*}
= P(B;*} — Mmax P{B*~B/*}
4y
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=P(B}) 2L zPAF~B - 3

=P{A})—P(A#—(Ap~B#)— 2

a 3a
z2(l—a)— — — 2= =1-—2a.
z(1—a) AT 4 =1—2«a
Thus we establish the existence of such B; (¢=1, ---, M).

Now, membership in a measurable cylinder in a sequence space is determined
by a finite number of coordinates. Since there is only a finite number of code words,
there is an integer »# such that the base of each B; is # dimensional. Consequently,

(30) P{(sil’ Sigy vy Szn)—'"(zl, 22yttt Zn)GBw}él—Za (l=1, ceey, M)
where B, is the base of B;. (30) is equivalent to
Si1 Sun 21 Zn
31 P ( R ¢> (» L x)GBn’}gl—iz
GD (5 o) (o ) e «
(=1, -, M)

where Bi.’ is formed B;, by dividing the j-th component of each vector in B by
~ 0; =1, .-, m). The sets B;,’ are of course disjoint. Thus, the vectors (su/s/p,,
-y Sunfn/ pn )y 1=1, -+, M, may be considered as code words of a code (n#, M, 2a) for
a time-discrete memoryless channel with noise variance unity. Since each code word
is allowable, so we have

n 2
(32) N <KT (=1, -, M)
=1 0;
Therefore, the coordinate (x;, -+, ») of any code word satisfy

1 & ,_ KT
(33) n]z:_,'lx]: ot

We shall denote this set “ F”.
Now, the method used in the proof of the strong converse of the coding theorem
for a time-discontinuous Gaussian channel is completely carried over to this case.

Let
h(/yl vee ynixl ves xn)z ﬁ k]':g—(yj—‘”j)’/z
’ ) ’ ’ =t /\/27[

Let ¢, 0<e;<e, be arbitrary and let § be any positive number such that

O<loge<1+ K745 )—loge<l+ ﬁ>< Ta
n n n
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Furthermore, let
I MZ nzp
X1, 0y Xn)= ]_[ e T PIART+D) |
Then
e—?/j’/z(l +H(RT+3)/n)

9, o Y= i= 1/\/2n(1+(KT—|-5)/n)

=ly=(y.--- h(vlw) _ n KT\ K 2Te }
Au={o=(n, viliogs 2UL = 2 (10g, (14 £L) 4 212)
N PR h(lu) _ n K 2T<log.2
~{v—(y1, yn)|loge ) z5 <loge<1+ — >+__.___._n )]

For any ueE, we put

v

Since
e A o 1 5T} )
and
KT+46\* KT
H(Vi) u]<”{< w) o)
= KT+5>2 ’

var[loge
q(V)
2(1+ L

so, by Tshebychev’s inequality
KT o
2| (1 KT) +x|

|

(£zi2y 2
P{VeA,|u}= " 2 =-
<15 __Y_‘ei>2<1+ KT+d ) T(e~61)2<1+ KT+6>2
n n n n

Thus the condition (4) of Theorem 1 is satisfied for suitably chosen 7" and for all
sufficiently large n. Accordingly, we can conclude from the theorem that any code

(n, M, 2¢) whose code words meet the constraint (33) must satisfy
KT T
b S0 =]

2
M= mexpz[ {— logz(

for all sufficiently large #. Thus, we have
expz[T{gEg%e—)Ii—ksH

2
M= 15

and the proof is completed,
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Therefore, from the coding theorem (proved by Ash) and Theorem 2, we can
conclude that (log.¢)K/2 is the capacity for the time-continuous Gaussian channel.
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