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1. Summary.

In the coding theory, one of the most important problems is to establish the
" capacity " of the channel considered. But, as Wolfowitz pointed out in [5], and
[6], to prove that the constant C involved is the capacity, one has to prove a coding
theorem and its strong converse.

In this paper, we shall prove a general strong converse theorem which is
available to various channels. In Section 2, we shall prove the theorem. As ap-
plications of the theorem, we shall consider the following two problems:

(i) Another proof of the strong converse of the coding theorem for a continuous
memoryless channel with additive Gaussian noise (Section 3);

(ii) The proof of the strong converse of the time-continuous Gaussian channel
with additive Gaussian noise of arbitrary spectrum (Section 4).

2. A general theorem.

At first, we shall derive a theorem which is useful to prove the strong con-
verses of various coding theorems.

Let D' CD") be the input space (the output space). Let /*( | ) be a channel
probability function: that is, for fixed uzD\ h(-\u) is a generalized density
with respect to a (not necessarily finite) measure μ and for fixed v^D", h(v\ ) is a
measurable function with respect to another (not necessarily finite) measure 2. Let
p(-) be a generalized probability density with respect to the measure λ. Define

(1) p(u1v)=p(u)h(v\u)

and

(2) q(v)Λ p(u)h(υ\u)2(du).
J D>

Next, for a positive number θ, we define Au(fl) by

(3) Au(0)
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THEOREM 1. Let a, 0^α<l, be arbitrary. Let E a set of inputs and {{uu BL),

•••, (uN, BN)} (UiGE, i=l, •••, N) be any (N, a) code. If we can choose a positive
number Θ such that

(4) [ h{v\ui)μ{dv)^~ (i=l, -~,N),

then N must satisfy the relation

(5) N=JZ^2"'

Here, the bar over a set denotes its complement.

The proof of this theorem leans heavily on the method used by J. H. B. Kem-
perman in the proof of the strong converse of the coding theorem for the semi-
continuous memoryless channel (cf. [5]).

Proof. For brevity, let Ai=AUi(0). For all meE (i=l, •••, N)

1 - a ̂  [ h(v\ Ui)μ(dv) ̂ [ h(v\ ut)μ(dυ) + \ _ h(p | Ui)μ(dv).
J Bι JAi^Bi J Ai

Therefore, using (4), we have

(6) [ h{v\Ui)μ{dv)^^- (ι=l, •-, N).

Since, for any veAz (i=l, •••, N),

so, from (6), we obtain

\ q(p)μ(dv)^\ q(v)μ(dv)

(7)

Thus, summing on both side from 1 to N, and using the fact that Bi^\Bj==Φ (iφj)
and UjLifiiCZ)", we have

Thus, we obtain (5) and complete the proof.



STRONG CONVERSE THEOREMS IN SOME CHANNELS 215

3. Another proof of the strong converse of the coding theorem for a con-
tinuous memoryless channel with additive Gaussian noise.

As an application of Theorem 1, in this section, we shall show another proof
of the strong converse of the coding theorem for a continuous memoryless channel
with additive Gaussian noise.

Let P > 0 be the maximum permissible input average power per coordinate. A
set E of possible channel inputs is all sequences u=(xu •••,#») of n real numbers
such that

(8) —Σxj*^P.

Any sequence v=(yίt •••, yn) is a possible output. Let ?->0 be the average noise
power per coordinate. We assume that for the input u=(xu •••, xn) given, the
output υ=(yu - ,yn) is obtained by adding an independent Gaussian random variable
with mean zero and variance γ, to each of the coordinates of u; that is,

(9) h(v\u)= Π 4

For this channel, Shannon first proved that the capacity is C=(l/2) log2 [1+P/γ],
and Wolfowitz showed another proof of the result, (cf. [3], [4] and [5]).

Now, we show a new method to prove the strong converse of the coding theorem
for the channel.

Strong converse of the coding theorem:

Let a, 0 ^ α < l , and ε>0 be arbitrary. Let {(ui, Bι), •••, (UN, BN)} (utsE, t=l,
•••, N) be a code (n, N, a) for the above defined channel. If n is sufficiently large,
then

I—a

Proof. Let βi (0<εi<ε) be arbitrary and let Q be a positive number such that

0 < l o g e ( l + — ) - l o g e ( l + —

For p(u), we use

(10) Λ ^

and define

(11) φ ) - Γ --Γ p(u)h(p\u)dx1-dxn= Π 7 s 4
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Let E be the set of all u which satisfies (8) and let

= \v={Vu -, yn)\\oge VΆ § -J- Jloge(l+ - ^

Since, for any

„ h{V\u)

2(Q+r)
12)

and

"Ml 2(άrt(- f

so, by Tchebychev's inequality,

„, ^ 2(Q 2 +2 r P)

Consequently, if we put θ=n(C+έ), then the condition (4) in Theorem 1 is satisfied
for sufficiently large n and by the theorem, we have the desired result.
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4. The proof of the strong converse of the time-continuous Gaussian channel
with additive Gaussian noise of arbitrary spectrum.

(a) Definitions.

Recently, in [1], Ash proved a coding theorem and its weak converse for a time-
continuous channel with additive Gaussian noise of arbitrary spectrum. In this
section, we shall prove the strong converse of Ash's result as another application
of Theorem 1.

Let n(t) be a stationary Gaussian stochastic process with zero mean, continuous
covariance function R(τ), and spectral density N(ω) with

(14) - J - Γ {N(ω)Ydω<oo.
Δπ J_oo

Here, to avoid degeneracy, we assume that the eigenf unctions of the integral equation

(15) Γ R(t~τ)g(τ)dτ=pg(t)
J-T

span the entire L2 space of square integrable functions over [— T, T]. Consider the
class of real functions of integrable square over (—oo, oo) whose Fourier transforms
are zero whenever N(ώ) is zero. If S(ω) is the Fourier transform of a function s(t)
in this class, let

and let f(t) be the inverse Fourier transform of F(ω). (Since F(ω) is of integrable
square, F(ω) has an inverse Fourier transform, at least in the sense of a limit in
the mean.) For any positive real number T, define sτ(t) and nτ(t) as follows:

f 5(0 if -T^t^T,
(17) sτ(f) = {

( 0 otherwise;

and

f n{t) if -T^t^T(18) »r(/) =
I 0 otherwise.

DEFINITION 1. A function s(t) (and its corresponding s>r(t)) will be called
allowable if

(19)
2π J-oo N(ω)

where K is a positive constant. The integrand is defined to be zero whenever
N(ω)=0.
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DEFINITION 2. A code (T, M, a) for a time-continuous Gaussian channel is a set

(20) {(*(/), 4 0 , (s2(ί>, i4a), •••, (5jf(0, AM)}

where each s, (£) is an allowable function sτ(t) and the A3 are disjoint Borel sets in
function space such that

(21) P{sj(t)+nτ(t)€Aj}^l-a (;=1, 2, .», M).

DEFINITION 3. A number R is called a permissible rate of transmission if for
each Γ, there is a code (Γ, [2 s r ], β(Γ)) such that β(T)-*0 as T-^oo. The channel
capacity C is the supremum of all permissible transmission rate.

(b) The strong converse of the coding theorem for a time-continuous Gaussian
channel.

In [1], Ash proved the coding theorem, that is,

(log2e)K

and its weak converse

(log2e)K

- l-2a 2

We shall now show the following strong converse of the coding theorem,
which is new.

THEOREM 2. Let α, 0^α<l/2, and ε>0 be arbitrary. Any code (T, M, a) for
the time-continuous Gaussian channel must satisfy

(22)
" = l - 2 α

Proof. As Ash has done, we shall prove the theorem by approximating a given
coding (T, Mf a) by a code for a discrete memory less channel. Since the eigen-
functions of the integral equation

(23)

span the Hubert space L2[— Γ, Γ], there is a one to one correspondence between
square integrable functions over [— T, T] and square summable sequences. The
sequence (xlf x2t •••) corresponding to a function x(t) with respect to the "basis
functions" gn(t). Thus, for each decoding set Az in function space, there corres-
ponds a Borel set ^ * in sequence space such that if

(24) Si(f)= Σs*»0»(O, -T^t^T; i=:l, 2, ••-, M,
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where

5tn= [ Si(f)gn(f)dt
J-T

and if the series (24) converges in the mean, then

(25) P{(silf Sit, - ) + ( * i , ft, -)eAt*}^l-a (f = 1, - , M)

where A%*r^Aj*=zΦ (iΦj) and

* n = Γ nτ(f)gn(f)dt
J-T

(the 2n are independent, normally distributed random variables with zero mean
and variance pnf Pn being the eigenvalue corresponding to gn(t)).

For each Ai*, there is a measurable cylinder B% with the following properties:
(i) for each / (/=1, •••, M)

(26) JP{(S41, S«, . - ) + ( Z I , ft, - ) €B*}^ l -2 α ,

and

(ii) if ;=£/, then Bi^Bj=Φ.

To prove this fact, corresponding to each ^4**, we choose a measurable cylinder
i?z* in sequence space such that

(27) ptff-Af^Bt*}^—^

and

(28) P { i 4 i * - A » * ^ B , * } ^ ^ : ( ί=l , - , M).

Since 5i*=(i4<*/^B<*)^(A*-(i4 i*r^jB i*)) for each i, and A i *^A, * - Φ (iΦj), so, by
(27), for any / and j (iΦj),

(29)

Now, we define Bt(i=l, •••, M) inductively, as follows:

and

Bj^B^-iBS^ '^Bj-^^Bj* for any j (2^j^M).

Then, by (25), (28) and (29), for any ( 2 ^ ; ^ M ) .

} -Mmax ^{5*
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B*}=P{B}*} - ^ ^P{Aj^B}

=P{AJ*}-P{AJ*-(AJ*^BJ*)}- ^

Thus we establish the existence of such Bi (i=l, •••, M).
Now, membership in a measurable cylinder in a sequence space is determined

by a finite number of coordinates. Since there is only a finite number of code words,
there is an integer n such that the base of each Bi is n dimensional. Consequently,

(30) P{(sn, si2, •••, stn) + (zu z2, "-, zn)£Bίn}^l-2a (i=l, •••, M)

where Bin is the base of Bi. (30) is equivalent to

where β n

/ is formed Bin by dividing the y-th component of each vector in B%n by
Λ/77(-/=J-> •••, w). The sets Bin are of course disjoint. Thus, the vectors (sίl/Λ/~^y

--, W Λ / P Λ Z = = Ί ' •"» M, may be considered as code words of a code (n, M, 2ά) for
a time-discrete memoryless channel with noise variance unity. Since each code word
is allowable, so we have

(32) Σ — ^KT (/=1, ..-, M).
J=I PJ

Therefore, the coordinate (xlf •••, xn) of any code word satisfy

1 n KT

We shall denote this set " ̂  ".
Now, the method used in the proof of the strong converse of the coding theorem

for a time-discontinuous Gaussian channel is completely carried over to this case.
Let

h(yi, - , Vn\Xu - , *»)= Π -

Let si, 0<εi<ε, be arbitrary and let δ be any positive number such that
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Furthermore, let

... r Ί — TT
1

\1 ,

.7=1 \/2π(KΊ +δ)

Then

For any wβis, we put

Since

and

/
\

so, by Tshebychev's inequality

KT s y
) i + ^

n n j \ n )

Thus the condition (4) of Theorem 1 is satisfied for suitably chosen T and for all
sufficiently large n. Accordingly, we can conclude from the theorem that any code
O, My 2a) whose code words meet the constraint (33) must satisfy

for all sufficiently large n. Thus, we have

and the proof is completed,
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Therefore, from the coding theorem (proved by Ash) and Theorem 2, we can
conclude that (log2£)Z£/2 is the capacity for the time-continuous Gaussian channel.
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