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Introduction.

The main purpose of the present paper is to investigate the intersection of a
Cousin-I domain and a domain of holomorphy. Oka [14] proved that a domain of
holomorphy in O is a Cousin-l domain, that is, a domain in which any additive
Cousin's distribution has a solution. On the other hand, a Cousin-I domain in C2

is a domain of holomorphy from Cartan [5] and Behnke-Stein [2]. Therefore a
domain in C2 is a Cousin-I domain if and only if it is a domain of holomorphy.
Cartan [6] proved that E={(zlf z2, z3); M < 1 , | * 2 | < 1 , N < l } - { ( 0 , 0, 0)} is not a
domain of holomorphy but a Cousin-I domain. For any domain of holomorphy D
in C3, EπD is a Cousin-I open set. Making use of the results of Scheja [16] and
Andreotti-Grauert [1] concerning the prolongation of cohomology classes, we can
construct systematically other Cousin-I domains in O which are not domains of
holomorphy for n^3. For G={(zu z2, zs); N < 1 , | z 2 |< l , \z3\<l} — {(zh z2, zB); Zί=z2

=0, |*8 |^l/2}, there holds H\G, ©)=0 from Scheja [16] where O is the sheaf of all
germs of holomorphic functions. Therefore G is not a domain of holomorphy but
a Cousin-I domain. But G has a different property from E. The intersection
G(]Z=[{(zuZ2); M < l / 2 , |*2 |<l/2}-{(0,0)}]x {s8; N < l / 2 } of G and a tridisc
Z={(zltz2fZs);\z1\<l/2ί\zi\<l/2t\Zfi\<lJ2} is not a Cousin-I domain as the first
component of the above direct product is not a Cousin-I domain from the results
of Cartan [5] and Behnke-Stein [2].

A domain in O, which is a direct product KλxK2x ••• xKn of relatively compact
subdomains Kx of a complex plane, is called a polycylinder hereafter. An open set
G in O is called regular if G n (id x ϋf2 x x ϋΓw) is a Cousin-I open set for any
polycylinder K1xK2X'--xKn in O . From the previous paper [12] of the author G
is a Cousin-I open set. Cartan's example E is a regular domain in Cs but the
above example G is not a regular domain. We say that a domain G in Cn is
exhausted by regular domains if t h e r e ex i s t s a sequence {Gp; p=l,2,3,~ } of

regular domains GP such that Gp^Gp+i(p=l92,3, •••) and G=U%=iGP. From the
previous paper [12] of the author G is a Cousin-I domain as it is a limit of mono-
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tonously increasing sequence of Cousin-I domains G> Moreover we shall prove that
a domain in O is a domain of holomorphy if and only if it can be exhausted by
regular domains. This is a characterization of a domain of holomorphy by means
of Cousin-I problems. This means that a regular domain in O , which is not a
domain of holomorphy, is isolated in the set of regular domains in some sense.

We shall define a continuous boundary point of an open set in O in such a way
that a smooth boundary point of an open set in Cn in the usual sense is a continuous
boundary point. An open set G in Cn is called locally regular at a boundary point
z° of G if there exists an open neighbourhood U of z° such that G Π U is regular.
An open set is called locally regular if it is locally regular at each of its boundary
points. We shall prove that a domain is pseudoconvex at its continuous boundary
point z° if and only if G is locally regular at z°. Hence from the affirmative solution
of the Levi problem due to Bremermann [4], Norguet [13] and Oka [15] a domain
with a continuous boundary is a domain of holomorphy if and only if it is locally
regular. This is a characterization of a domain of holomorphy with a continuous
boundary by means of Cousin-I problems. Making use of Docquier-Grauert [8] we
shall extend this fact to a domain in a Stein manifold.

§1. Domain exhausted by regular domains.

LEMMA 1. Let G be a regular domain in O . Then D=GΓ}{z—(zi, z2, •'••,zn)'J
ZJGKJ (j=Si, s2, - ,sr)} is a Cousin-l open set for any I^s1<s2< <sr^n and for
any domains K3 in a complex plane (j=sίf s2, •••, sr). Especially G itself is a
Cousin-l domain.

Proof We put Kp ={z/, \zj\<p} for j${su s2, - , sή and K^KjΠίz/, \zj\<p}
for j£{su 52, •••, Sr}. Then Dp=Gn(KpxKPx- xK%) is a Cousin-I open set for
each p as G is a regular domain. Since D is the limit of a monotonously increasing
sequence of Cousin-I open sets Dp, D is a Cousin-I open set from the previous
paper [12] of the author. In the same way we can prove that G itself is a Cousin-
I domain.

The proof of the following Lemmas 2 and 3 is similar to the method of
Hitotumatu [10].

LEMMA 2. Let G be a Cousin-l domain in Cn and H be an (n—l) dimensional
analytic plane in Cn. Then the inclusion map GπH^G induces naturally a
homomorphism of H°(G, O) onto H°(GΓ\H, O).

Proof Without loss of generality we may suppose that H={(z, w)=(z1} z2, •••,
Zn-i, to); w=Q}. Let u{z) be a holomorphic function in Gf)H. If x°=(z°, 0)=(2?, z°2,
•••, z°n-ly 0) is a point of Gf)H, there exists a neighbourhood U(x°) = {(z, w); \zj—z°j\
<e, \w\<ε(j=l, 2, •••, n-1)} of x° in G. If x° is a point of G-GnH, we put
U(x°)=G-GnH. If we put mx,=u/w for x°εGnH and mχo=0 for x°£G-Gf)H,
then (£={(m.p , U(x0)); X°QG] forms an additive Cousin's distribution in G. Since
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G is a Cousin-I domain, there exists a meromorphic function m in G which is a
solution of (£. We put v=wm. For x°ςGnH, h=m—u/w is a holomorphic func-
tion in U(x°). Hence v = wh + u is holomorphic in U(x°) and z;=& in U(x°)(~)H.
Hence v is holomorphic and coincides with u in GπH. Since z; is holomorphic
in G—GΓ)H,v is a holomorphic function in G with z;=w in GΓ\H. Hence the
canonical homomorphism H°(G, O)^H°(G Π H, D) is surjective.

L E M M A 3. Let G be a domain in the space Cn of variables z~(zlf z2, •••, zn).
Then G is a domain of holomorphy if and only if the intersection Gf]H of G and
an l-dimensional analytic plane H={z; Zj=c3 (j=s1} sz, •••, sn-ι)} is a Cousin-l open
set for any integers l^gl^n, l^Si<.s2<--<Sn-i^n and complex numbers c3 (j=Si,
52, •••, 5w_z).

Proof. Since a domain of holomorphy is a Cousin-I domain from Oka [14] and
the intersection of a domain of holomorphy and an analytic plane is an open set of
holomorphy, it suffices to prove the sufficiency by induction with respect to n. For
n=l any domain is a domain of holomorphy from Weierstrass' theorem. For n=2
any domain is a domain of holomorphy if and only if it is a Cousin-I domain from
Oka [14], Cartan [5] and Behnke-Stein [2]. Suppose that our assertion is valid for
n<k (k^2). We consider the case n—k. Let z°=(z°1, z°2, •••, z%) be any boundary point
of G. Two cases (1) and (2) may occur. In the case (1) there exists j such that
z° is a boundary point of GπH for H={z; Zj=z)}. In the case (2) z° is not a
boundary point of GπH for H={z; Zj=z}} for any j .

Case (1) Since G Π H is an open set of holomorphy in H from the assumption
of our induction, there exists a holomorphic function u in G Π H which is unbounded
at z°. From Lemma 2 there exists a holomorphic function v in G with v = u m
GΓ\H. v is a holomorphic function in G which is unbounded at z°.

Case (2) We shall prove that there exists a sequence {zp; p=l, 2, 3, •••} of
zp€dGf)U such that each ^ has the property as in the case (1) and zp—>z° when
p—>&D. If this is not true, there exists ε>0 such that Gf)Uf]{z; z3 — ζ3}~Ό
Π{z; zj=ζj} for U={z; \zj—z)\<ε ( ;=1, 2, •••, k)} and for any and ζςGnU. Let
2:1=(2}, z£, •••, z\) be any point of Gf] U and z2 = (zl, z\, •••, z%) be any point of U. By
induction we can prove that (z\, z2

2, •••, 2L ^ + 1 , •••, 4)€Gfl U for l^m^k. Therefore
we have z2eGf)U. Hence it holds that GθU= U. This means that z° is an interior
point of G. But this is a contradiction. Therefore there exists a sequence {fp; p
= 1 , 2, 3, •••} of holomorphic functions fv in G which is unbounded at zp tending to
z° when p->oo. From Bochner-Martin [3] there exists a holomorphic function which
is unbounded at z°.

Thus we have proved the existence of a holomorphic function in G which is
unbounded at z°. Since z° is any boundary point of G, there exists a holomorphic
function / in G which is unbounded at each boundary point of G from Bochner-
Martin [3]. Hence G is a domain of holomorphy of /.

Quite similarly we can prove that a domain G in the space O of variables
z=(zl9 z2y •••, zn) is a domain of holomorphy if and only if the canonical homomor-
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phism of H°(G, O) into H°(G Π H, D) is surjective for any analytic plane H as in
Lemma 3. This is a characterization of a domain of holomorphy.

L E M M A 4. If a domain G in O is exhausted by regular domains, then the
intersection Gf]H of G and an I-dimensional analytic plane H={z=(zi, z2, •••, zn)',
Zj=Cj (j=slt 52, •••, Sn~ι)} is a Cousin-l open set for any integers l^l^n, l ^ S i < s 2 <
'• <sn-ι^n and complex numbers c3 (j=slf s2, •••, sn-i).

Proof There exists a sequence {Gp; p=l, 2, 3, •••} of regular domains GP such
that Gp<^Gp+1 (p=l, 2, 3, •••) and G = Up=ιGP. We may suppose that H= {(z, w)=(zh z2,
•••, zι, Wi, w2, •••, Wn-i); Wj = 0 (j=l, 2, •••, n—l)}. There exists e p > 0 such that
EP=GPΠ{(z,w); \wj\<ep; (j=l, 2, -, n-l)}cz{(z,w); \wj\<ep, (z, 0)eGnH(j=l, 2, •••,
n—/)} for any p. Since Gp is regular, Ep is a Cousin-I open set from Lemma 1.
Let K={(mί, Fi); ze/} be an additive Cousin's distribution in Gf]H. If we put
VPi=GPΠ{(z, w); \wj\<εp, fe 0 ) e F t (j = 1, 2, •••, n - /)} and Mffe w) = mi(z) in F?,
then gp={(Λf?, Vξ); isl) is an additive Cousin's distribution in Ep. Since Ep is a
Cousin-I open set, &p has a solution M?(z, w) for any /?. Since the set of all poles
of Mp(z, w) does not contain connected components of GPΠH for any p, the restric-
tion mP(z) of Mp(z, w) to GPΠH is a solution of the restriction {(mi\GpπH, V%Γ\GP);
/€/} of (ί to Gpf]H for any ^. Since the canonical homomorphism of H\GnH, O)
into limp^O0H

1(Gp Π //", O) is injective (Lemma 6 in the previous paper [12] of the
author), (£ has a solution in GπH. Therefore G Π H is a Cousin-I open set.

PROPOSITION 1. A domain G in Cn is a domain of holomorphy if and only if
it is exhausted by regular domains.

Proof If G is a domain of holomorphy, G is exhausted by domains of holo-
morphy Gp, Since each Gp is a regular domain, G is exhausted by regular domains.
Conversely, if G is exhausted by regular domains, G is a domain of holomorphy
from Lemmas 3 and 4.

Proposition 1 gives a characterization of a domain of holomorphy by means of
Cousin-I problem and means that regular domains which are not domains of holo-
morphy are isolated in some sense in the set of regular domains.

§2. Behaviour of a regular domain at a continuous boundary point.

A subset 5 of Rn is called smooth at X°GS if there exists a continuously dif-
ferentiable function / in a neighbourhood U of x° such that Sf] U={x; f(x)=0,
xeU} and Σ?=ι(df/d%j)2>0 at x\ If df/dxjΦθ at x°, there exists a continuously
differentiate function g in a neighbourhood VaU of x° such that S n F = { # ; #,
=g(xi, x2, •••, #;, •••, #n), # e F } . The notion of smoothness is invariant under con-
tinuously bidifferentiable mappings. A subset S of Rn is called continuous at x°€S
if there exists a continuous function g in a neighbourhood F of #° such that S Π F
= {#; Xj=g(xi, Xz} •••, φ;, •••, Λ?n), ^eF} for some . This definition may depend on
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the special choice of coordinates in Rn. A boundary point x° of an open set G in
Rn is called continuous (or smooth) if dG is continuous (or smooth) at x°.

An open set G in a complex manifold is called pseudoconvex at x°€dG if there
exists an open neighbourhood V of x° such that G Π V is holomorphically convex.
6r is called pseudoconvex if G is pseudoconvex at each point of dG.

PROPOSITION 2. A regular open set G in Cn is pseudoconvex at a continuous
boundary point z° of G.

Proof. Without loss of generality we may suppose that 3GΓ\ V={z=(zi, z2, •••,
zn)\ Xn=g(zi, z2, •••, Zn-i, yn), zzV} for a continuous function g in a polycylindrical
neighbourhood V of z° where zn=xn-\- ^/^Λyn. Then two cases (1) and (2) may
occur for a sufficiently small V. In the case (1) there holds GnV={z; xn<g(zlf z2,
•--, Zn-i, yn), z€ V} or G(Ί V={z; xn>g(zh z2, •••, zn-i, yn), z£ V}. In the case (2) there
holds GnV={z;xnΦg (zu z2, •••. * n -i, yn), zeV}.

Case (1) We have only to consider the case GΠ V={z; Xn<g(zu z2, •••, zn-i, yn),
ZGV}. There exists a family {Vt; O^t^to} of poly cylinders Vt containing z° such
that Vtl<mVt2<mV for O^hKt^U, Vo=Uo<tsίoV

rί and {2; (21,2:2, •••, ^ - Q e F ί j c F f o r
O^t^to. We shall prove that ^ = {2; xn<g(zu z2, •••, 2n-i, Vn)—t, zeVt} is a regular
open set for O^t^to. Let P be a poly cylinder. We consider a biholomorphic
mapping (21, z2, •••, zn)—*(wi, w2, •••, w«) denned by Wj—Zj (j=l, 2, •••, w—1) and
Ww==2n+ί. Then EtΓiP is mapped onto {^ un<g (w2, W2, •••, M;Λ-I, #n), (M^I, ̂ 2, •••,
Wn-i, Wn—t)£VtΠP} = GnVn{z; (zu z2, ->, Zn-i, Zn—t)€VtnP} which is a Cousin-I
open set for Q^t^h as the third element of the right-hand side of the above equa-
tion is a poly cylinder. Hence Et is a regular open set. Since E=Gf] Vo is exhausted
by regular open sets Et, E is an open set of holomorphy from lϊ$®®sition 1. Hence
G is pseudoconvex at z°.

Case (2) If we put Ei = {z; xn<g fa, z2, •••, Zn-i.yn)* XGV] and E2 = {z; xn

>g(zh z2, •••, 2n-i, yw), ^€F}, then Ex and E2 are regular open sets. Therefore from
the case (1) Eλ and E2 are pseudoconvex at z°. Hence G is pseudoconvex at z°.

§3. Global character of locally regular domains.

An open set G in a complex manifold M is called strongly regular if G n D is
a Cousin-I open set for any Stein manifold DczM. This is invariant under biholo-
morphic mappings of M. We say that a domain G in a complex manifold is
exhausted by strongly regular domains if there exists a sequence of strongly regular
domains Gv such that GP<^GP+1 (p=l, 2, 3, •••) and G=Όp=iGp.

PROPOSITION 3. A domain G in a Stein manifold is a Stein manifold if and
only if G is exhausted by strongly regular domains.

Proof If G is a Stein manifold, it is obvious that G is exhausted by strongly
regular domains. Conversely suppose that G is exhausted by strongly regular
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domains Gv. Let x° be any point of dG. There exists a biholomorphic mapping τ
of a holomorphically convex neighbourhood U of x° into a complex Euclidean space.
U is exhausted by holomorphically convex domains Up. Since τ(G Π C/) is exhausted
by strongly regular open sets τ(Gp Π UP), τ(G Π U) is an open set of holomorphy from
Proposition 1. G is a Stein manifold from Docquier-Grauert [8].

An open set G in a complex manifold is called locally regular (or locally
strongly regular) at a point X°GΘG if there exists a biholomorphic mapping τ of a
neighbourhood U of x° into a complex Euclidean space such that τ(Gf)U) is a
regular (or strongly regular) open set. We say that G is locally regular (or locally
strongy regular) if G is locally regular (or locally strongly regular) at each point
of dG. We say that a boundary point x° of an open set G in a differentiate
manifold is a smooth boundary point of G if there exists a continuously bidifferen-
tiable mapping r of a neighbourhood £/ of x° into a Euclidean space Rn such that
τ(#°) is a smooth boundary of r(Gn U). We say that G has a smooth boundary if
each point of dG is a smooth boundary point of G.

PROPOSITION 4. L /̂ G be a domain with a smooth boundary in a Stein mani-
fold. Then G is a Stein manifold if and only if G is locally regular.

Proof. If G is a Stein manifold, it is obvious that G is locally regular. Con-
versely suppose that G is locally regular. Let x° be any point of dG. Since G is
locally regular at x°, there exists a biholomorphic mapping r of a neighbourhood U
of x° into a complex Euclidean space such that τ(GΓ\U) is a regular open set.
Since x° is a smooth boundary point, there exists a continuously bidifferentiable
mapping τr of a neighbourhood V of x° such that τ'(x°) is a smooth boundary point
of τ'(GnV). Let W be a polycyUnder such that τ(#°)€ TFcr(ί/(Ί V). Since the
continuously bidifferentiable mapping ro/- 1 maps τ'(τ-\W)) onto Ψ, φ?°) is a smooth
boundary point of a regular open set r(G(Ί £/) Π W. From Proposition 2 τ(G Π IT) Π W
is pseudoconvex at τ(x°). Therefore G is pseudoconvex at x°. From Docquier-
Grauert [8] G is a Stein manifold.

We say that a boundary point x° of an open set G in a complex manifold is a
continuous boundary point of G if there exists a biholomorphic mapping τ of a
neighbourhood U of .r0 into a complex Euclidean space such that r(x°) is a con-
tinuous boundary point of τ(Gf]U). Moreover, if τ(GπU) is a regular open set
simultaneously, x° is called a continuous and locally regular boundary point of G.
We say that G has a continuous (or continuous and locally regular) boundary if
each boundary point of G is a continuous (or continuous and locally regular) boundary
point of G. These definitions are not so good that a boundary point x° of an open
set U in a complex Euclidean space O may not be a continuous boundary point of
U even if #° is a continuous boundary point of U which is considered as a subset
of a complex manifold O and that a boundary point which is continuous and which
is locally regular, separately may not be continuous and locally regular.

PROPOSITION 5. Lei G be a domain ivith a continuous boundary in a Stein
manifold. Then G is a Stein manifold if and only if G is locally strongly regular.
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Proof, If G is a Stein manifold, it is obvious that G is locally strongly regular.
Conversely suppose that G is locally strongly regular. Let x° be any point of dG.
Since dG is continuous at x°, there exists a biholomorphic mapping τ of a neighbour-
hood U of J?° into a complex Euclidean space such that τ(x°) is a continuous boundary
point of τ(GΓ\U). Since G is locally strongly regular at x°, there exists a biholo-
morphic mapping τ' of a neighbourhood F of x° into a complex Euclidean space
such that τ\G ΓϊV) is a strongly regular open set. Let W be a holomorphically
convex neighbourhood of x° such that WaUπ V. Then r'(Gn FΠ W) is a strongly
regular open set. Since the biholomarphic mapping τoτ'-1 maps r r(Gn VlΊ W) onto
τ(GΠ FΠ W), τ(G(Ί F n WO is a strongly regular open set. Therefore τ(G(Ί Vf] W)
is pseudoconvex at the continuous boundary point τ(x°) from Proposition 2. Hence
G is pseudoconvex at #°. From Docquier-Grauert [8] G is a Stein manifold.

PROPOSITION 6. A domain G with a continuous and locally regular boundary
in a Stein manifold is a Stein manifold.

Proof, Let x° be any point of dG. Since x° is a continuous and locally regular
boundary point of G, there exists a biholomorphic mapping τ of a neighbourhood
£/ of #° into a complex Euclidean space such that τ(x°) is a continuous boundary
point of a regular open set τ(Gf]U). From Proposition 2 r(Gn/7) is pseudoconvex
at τ(x°). Hence G is pseudoconvex at x°. From Docquier-Grauert [8] G is a Stein
manifold.

§ 4. Example.

Let E be a relatively compact open subset with a smooth boundary in a Stein
manifold M. Then from Andreotti-Grauert [1] and Fujimoto-Kasahara [9] the
canonical homomorphism H°(M, £))-+H°(M—E, O) is surjective. Therefore M—E
is not holomorphically convex. Therefore from Proposition 4, M—E is not locally
regular at some point of dE. Let x° be a point of dE at which M—Eis not locally
regular. For any neighbourhood U of #°, there exists a holomorphically convex
subdomain D oί U such that (M— E)f]D is not a Cousin-I open set. Making use
of Andreotti-Grauert [1], we can take E such that M~E is a Cousin-I domain.
This gives an example of a Cousin-I domain with a smooth boundary which is not
locally regular.

PROPOSITION 7. Let E be α relatively compact open subset of a Stein manifold
M. Then there exists an arbitrarily small holomorphically convex subdomain D of
M such that (M-E)ΓiD is not a Cousm-l open set.
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