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Introduction.

The main purpose of the present paper is to investigate the intersection of a
Cousin-I domain and a domain of holomorphy. Oka [14] proved that a domain of
holomorphy in C» is a Cousin-1 domain, that is, a domain in which any additive
Cousin’s distribution has a solution. On the other hand, a Cousin-I domain in C?
is a domain of holomorphy from Cartan [5] and Behnke-Stein [2]. Therefore a
domain in C? is a Cousin-I domain if and only if it is a domain of holomorphy.
Cartan [6] proved that E={(z, 2z, 25); |21| <1, |22| <1, |25] <1} —{(0, 0, 0)} is not a
domain of holomorphy but a Cousin-I domain. For any domain of holomorphy D
in C3, END is a Cousin-I open set. Making use of the results of Scheja [16] and
Andreotti-Grauert [1] concerning the prolongation of cohomology classes, we can
construct systematically other Cousin-I domains in C* which are not domains of
holomorphy for n=3. For G={(z1, 25, 23); |21 <1, |22] <1, |zs| <1} —{(21, 22, 25); 21=22
=0, |23| =1/2}, there holds HY(G, 0)=0 from Scheja [16] where O is the sheaf of all
germs of holomorphic functions. Therefore G is not a domain of holomorphy but
a Cousin-I domain. But G has a different property from E. The intersection
GNZ=[{(z1. 2); |21]<1/2, |z2|<1/2}—{(0, 0)}] X {zs; |2s]<1/2} of G and a tridisc
Z={(21, 22, 2s); |21] <1/2, |22| <1/2, |25|<1/2} is not a Cousin-I domain as the first
component of the above direct product is not a Cousin-I domain from the results
of Cartan [5] and Behnke-Stein [2].

A domain in Cr, which is a direct product K, X K; X --- X K, of relatively compact
subdomains K, of a complex plane, is called a polycylinder hereafter. An open set
G in Cr is called regular if GN(KixK.x---xK,) is a Cousin-I open set for any
polycylinder Ki XKz x---X K, in C”» From the previous paper [12] of the author G
is a Cousin-I open set. Cartan’s example E is a regular domain in C® but the
above example G is not a regular domain. We say that a domain G in C~ is
exhausted by regular domains if there exists a sequence {Gp; p=1,2,3, -} of
regular domains G, such that G,&G,.1 (p=1,2, 3, ---) and G=Uj.,G,. From the
previous paper [12] of the author G is a Cousin-I domain as it is a limit of mono-
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tonously increasing sequence of Cousin-I domains G,. Moreover we shall prove that
a domain in C* is a domain of holomorphy if and only if it can be exhausted by
regular domains. This is a characterization of a domain of holomorphy by means
of Cousin-I problems. This means that a regular domain in C», which is not a
domain of holomorphy, is isolated in the set of regular domains in some sense.

We shall define a continuous boundary point of an open set in C” in such a way
that a smooth boundary point of an open set in C”? in the usual sense is a continuous
boundary point. An open set G in Cn is called locally regular at a boundary point
z° of G if there exists an open neighbourhood U of z° such that GNU is regular.
An open set is called locally regular if it is locally regular at each of its boundary
points. We shall prove that a domain is pseudoconvex at its continuous boundary
point 2° if and only if G is locally regular at z2°. Hence from the affirmative solution
of the Levi problem due to Bremermann [4], Norguet [13] and Oka [15] a domain
with a continuous boundary is a domain of holomorphy if and only if it is locally
regular. This is a characterization of a domain of holomorphy with a continuous
boundary by means of Cousin-I problems. Making use of Docquier-Grauert [8] we
shall extend this fact to a domain in a Stein manifold.

§1. Domain exhausted by regular domains.

LemMA 1. Let G be a rvegular domain in C*. Then D=GN{z=(z1, 22, -+, Za);
z;€K, (j=s1, S2y -+, Sr)} 15 a Cousin-1 open set for any 1=s,<s:<---<s,=n and for
any domains K, wm a complex plane (j=si, S, -+, Sy). Especially G itself is a
Cousin-1 domain.

Proof. We put Kb={z, |z;|<p} for jé¢{si, ss, -+, s} and K¥=K;N{z,; |z;]<p}
for je{si, sz =+, sv}. Then D,=GN(KIxK?x---xK%) is a Cousin-I open set for
each p as G is a regular domain. Since D is the limit of a monotonously increasing
sequence of Cousin-I open sets D,, D is a Cousin-I open set from the previous
paper [12] of the author. In the same way we can prove that G itself is a Cousin-
I domain.

The proof of the following Lemmas 2 and 3 is similar to the method of
Hitotumatu [10].

LemMA 2. Let G be a Cousin-1 domain in C* and H be an (n—1)-dimensional
analytic plane in C». Then the inclusion map GNH—G induces naturally a
homomorphism of HYG, Q) onto H(GNH, Q).

Proof. Without loss of generality we may suppose that H={(z, w)=(z1, 22, *--,
zZn-1, w); w=0}. Let u(z) be a holomorphic function in GNH. If 2°=(2° 0)=(2, 25,
-+, 2,1, 0) is a point of GN H, there exists a neighbourhood U(x®)={(z, w); |z;—25%
<e lw|<e (j=1,2, -, n—1)} of 2°in G. If x° is a point of G—GnNH, we put
Ux")=G—GnH. If we put my.=u/w for x°¢cGNH and m,.=0 for 2°cG—GNH,
then @={(m,., U(x?); 2°€¢G} forms an additive Cousin’s distribution in G. Since
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G is a Cousin-I domain, there exists a meromorphic function m in G which is a
solution of €. We put v=wm. For x°¢GNH, h=m—u/w is a holomorphic func-
tion in U(x®). Hence v=wh-+u is holomorphic in U(x®) and v=u in Ux*)NH.
Hence v is holomorphic and coincides with # in GNH. Since v is holomorphic
in G—GNH, v is a holomorphic function in G with »=# in GNH. Hence the
canonical homomorphism H%G, O)—H(GN H, D) is surjective.

LeMMA 3. Let G be a domain in the space C* of variables z=(zi, 2s, **+, Zn).
Then G is a domain of holomorphy 1f and only if the intersection GNH of G and
an l-dimensional analytic plane H={z; z,=c, (j=S$1, Sz, ***, Sn—1)} 1S a Cousin-1 open
set for amy integers 1=l=n, 1=5<5:< - <Sp1=n and complex numbers c, (j=si,
Sz, +ve, Sn—l)~

Proof. Since a domain of holomorphy is a Cousin-I domain from Oka [14] and
the intersection of a domain of holomorphy and an analytic plane is an open set of
holomorphy, it suffices to prove the sufficiency by induction with respect to #. For
n=1 any domain is a domain of holomorphy from Weierstrass’ theorem. For n=2
any domain is a domain of holomorphy if and only if it is a Cousin-I domain from
Oka [14], Cartan [5] and Behnke-Stein [2]. Suppose that our assertion is valid for
n<k (k=2). We consider the case n=~k. Let 2°=(2}, 23, -+, 2%) be any boundary point
of G. Two cases (1) and (2) may occur. In the case (1) there exists j such that
2° is a boundary point of GNH for H={z z,=2}}. In the case (2) 2° is not a
boundary point of GNH for H={z z;=2}} for any j.

Case (1) Since GNH is an open set of holomorphy in H from the assumption
of our induction, there exists a holomorphic function # in GNH which is unbounded
at 2°. From Lemma 2 there exists a holomorphic function » in G with v=u in
GNH. v is a holomorphic function in G which is unbounded at 2z°.

Case (2) We shall prove that there exists a sequence {z7; p=1,2, 3, .-} of
z7€dGNU such that each zP has the property as in the case (1) and z?—z° when
p—oo. If this is not true, there exists ¢>0 such that GNUN{z z,=(}=U
N{z z,=¢,} for U={z |z;—25|<e (j=1,2, .-+, )} and for any j and {eGNU. Let
Z2'=(2, 2, .-+, 2%) be any point of GNU and 22=(2, 2, ---, 2%) be any point of U. By
induction we can prove that (22, 22, ---, 2%, 2Zh4y, -+ 22)€GN U for 1=m=Fk. Therefore
we have z22eGNU. Hence it holds that GNU=U. This means that z° is an interior
point of G. But this is a contradiction. Therefore there exists a sequence {fp; p
=1, 2, 3, ---} of holomorphic functions f, in G which is unbounded at z? tending to
z° when p—oco. From Bochner-Martin [3] there exists a holomorphic function which
is unbounded at 2°.

Thus we have proved the existence of a holomorphic function in G which is
unbounded at 2°. Since 2° is any boundary point of G, there exists a holomorphic
function f in G which is unbounded at each boundary point of G from Bochner-
Martin [3]. Hence G is a domain of holomorphy of f.

Quite similarly we can prove that a domain G in the space C® of variables
2=(2, 25, -+, Z») is a domain of holomorphy if and only if the canonical homomor-
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phism of HYG, Q) into H(GNH, D) is surjective for any analytic plane H as in
Lemma 3. This is a characterization of a domain of holomorphy.

LemmA 4. If a domain G in Cr is exhausted by regular domains, then the
intersection GNH of G and an [-dimensional analytic plane H={z=(zi, zs, -+, Zn);
2j=¢; (j=S$1, Sz, ***, Sn—1)} s a Cousin-1 open set for any integers 1=<I=n, 1=5:<5<
o Su1=m and complex numbers ¢, (j=Si, Sz, ***, Sn-1)-

Proof. There exists a sequence {G,; p=1,2, 3, ---} of regular domains G, such
that G,€G,.1 (p=1, 2, 3, ---)and G= Up,G,. We may suppose that H= {(z, w)=(z1, 2,
vy 21, Wiy, Way o0y Wa—), wi=0 (j=1, 2, ---, n=1[)}. There exists e,>0 such that
Ey=Gpn{(z, w); |wj|<ep; (j=1, 2, -, n=D} C{(z, w); |w;j|<ep (2,00eGNH (j=1,2, -,
n—10)} for any p. Since G, is regular, E, is a Cousin-I open set from Lemma 1.
Let €={(m,, V); iel} be an additive Cousin’s distribution in GNH. If we put
V=GN {(z, w); |w;|<ep, (2, eV, (F =1,2, -, — )} and Mz, w)=m;(z) in V7,
then €,={(M? V?), iel} is an additive Cousin’s distribution in E,. Since E, is a
Cousin-I open set, €, has a solution M?(z, w) for any p. Since the set of all poles
of Mv(z, w) does not contain connected components of G,N H for any p, the restric-
tion m2(z) of Mr(z, w) to G,N H is a solution of the restriction {(m:|G,NH, V.N Gy);
iel} of € to G,NH for any p. Since the canonical homomorphism of H(GN H, D)
into lim, .HY(G,N H, ) is injective (Lemma 6 in the previous paper [12] of the
author), € has a solution in GNH. Therefore GNH is a Cousin-I open set.

ProposiTiON 1. A domain G in C* is a domain of holomorphy if and only if
it is exhausted by regular domains.

Proof. If G is a domain of holomorphy, G is exhausted by domains of holo-
morphy G,. Since each G, is a regular domain, G is exhausted by regular domains.
Conversely, if G is exhausted by regular domains, G is a domain of holomorphy
from Lemmas 3 and 4.

Proposition 1 gives a characterization of a domain of holomorphy by means of
Cousin-I problem and means that regular domains which are not domains of holo-
morphy are isolated in some sense in the set of regular domains.

§2. Behaviour of a regular domain at a continuous boundary point.

A subset S of R is called smooth at x°eS if there exists a continuously dif-
ferentiable function f in a neighbourhood U of 2° such that SN U={zx; fiz)=0,
reU} and XN7,0@f/0x;)?>0 at x°. If offox,#0 at z° there exists a continuously
differentiable function ¢ in a neighbourhood VcU of z° such that SN V={x; «,
=9g(21, Tay **+, &j, *++, &), £EV}. The notion of smoothness is invariant under con-
tinuously bidifferentiable mappings. A subset S of R is called continuous at x°€S
if there exists a continuous function ¢ in a neighbourhood V of x° such that SNV
={x; x;=g(X1, L2, -, £y, -+, Zx), x€V} for some j. This definition may depend on
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the special choice of coordinates in R*. A boundary point z° of an open set G in
R» is called continuous (or smooth) if 0G is continuous (or smooth) at z°.

An open set G in a complex manifold is called pseudoconvex at x°€dG if there
exists an open neighbourhood V of &° such that GNV is holomorphically convex.
G is called pseudoconvex if G is pseudoconvex at each point of 9G.

ProrosiTiON 2. A regular open set G in C* is pseudoconvex at a continuous
boundary point z° of G.

Proof. Without loss of generality we may suppose that dGN V={z=(z1, 22, -+,
Zn); Tn=g(21, 22, -+, Zn-1, Yn), 2€ V} for a continuous function ¢ in a polycylindrical
neighbourhood V of 2° where z,=x.+ 4/ —1%. Then two cases (1) and (2) may
occur for a sufficiently small V. In the case (1) there holds GN V={z x,<g(z1, 22,
oy Zn-1, Yn)y REVY or GNV={z £.>¢(21, 25, -+, Zn-1, Yn), 2€ V}. In the case (2) there
holds GNV={z; Zu#g (21, 22 *-. Zn-1, Yu), 2€ V}.

Case (1) We have only to consider the case GN V={z; £.<9(z1, 22, ***, Zn-1, Yn),
zeV}. There exists a family {V; 0=t{=#} of polycylinders V. containing z° such
that V,,€V,eV for 0=t.<ti=t, Vo= Uocist, Ve and {z; (21, 22, -+, 2a—0)€Vi}CV for
0=t=t,. We shall prove that E,={z; £.<g(21, 25, -+, Zn-1, Yn)—1, 2€ Vi} is a regular
open set for 0=¢=<#. Let P be a polycylinder. We consider a biholomorphic
mapping (zi, 2, -+, Zn)—>(Wi, Wi, -+, wy) defined by w;=z, (j=1, 2, ---, n—1) and
Wn=2,+¢. Then E,NP is mapped onto {w; u.<g Ws, W, -+, Wn-1, Un), (W1, W, -,
Wn-1, Wa—BEViNP=GNVN{z (21, 22, -, Zn-1, 2a—1)€ V:N P} which is a Cousin-I
open set for 0=¢{=¢, as the third element of the right-hand side of the above equa-
tion is a polycylinder. Hence E, is a regular open set. Since E=GN V) is exhausted
by regular open sets E:, E is an open set of holomorphy frém Pyemesition 1. Hence
G is pseudoconvex at 2°.

Case (2) If we put Ei={z; x.<g (21, 22, ***, Zn—1. Yn)» x€V} and E, = {z; Za
>g(21, 22y **y Zn-1, Yn), L€V}, then E;, and E; are regular open sets. Therefore from
the case (1) E; and E, are pseudoconvex at z°. Hence G is pseudoconvex at z°.

§3. Global character of locally regular domains.

An open set G in a complex manifold M is called strongly regular if GND is
a Cousin-I open set for any Stein manifold Dc M. This is invariant under biholo-
morphic mappings of M. We say that a domain G in a complex manifold is
exhausted by strongly regular domains if there exists a sequence of strongly regular
domains G, such that G,&€Gp:1 (p=1, 2, 3, ---) and G=Uz.,Gp.

ProposITION 3. A domain G in a Stein manifold is a Stein manifold if and
only if G is exhausted by strongly regular domains.

Proof. If G is a Stein manifold, it is obvious that G is exhausted by strongly
regular domains. Conversely suppose that G is exhausted by strongly regular
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domains G,. Let x° be any point of dG. There exists a biholomorphic mapping
of a holomorphically convex neighbourhood U of x° into a complex Euclidean space.
U is exhausted by holomorphically convex domains U,. Since «(GNU) is exhausted
by strongly regular open sets «(G,N Up), ©(GN U) is an open set of holomorphy from
Proposition 1. G is a Stein manifold from Docquier-Grauert [8].

An open set G in a complex manifold is called locally regular (or locally
strongly vegular) at a point x°€dG if there exists a biholomorphic mapping = of a
neighbourhood U of z° into a complex Euclidean space such that «(GNU) is a
regular (or strongly regular) open set. We say that G is locally regular (or locally
strongy regular) if G is locally regular (or locally strongly regular) at each point
of 9G. We say that a boundary point x° of an open set G in a differentiable
manifold is a smooth boundary pownt of G if there exists a continuously bidifferen-
tiable mapping = of a neighbourhood U of x° into a Euclidean space R» such that
7(x°) is a smooth boundary of «(GNU). We say that G has a smooth boundary if
each point of 9G is a smooth boundary point of G.

ProrosiTiON 4. Let G be a domain with a smooth boundary in a Stein mani-
fold. Then G s a Stein manifold +f and only if G is locally regular.

Proof. If G is a Stein manifold, it is obvious that G is locally regular. Con-
versely suppose that G is locally regular. Let x° be any point of dG. Since G is
locally regular at x° there exists a biholomorphic mapping = of a neighbourhood U
of x° into a complex Euclidean space such that «(GNU) is a regular open set.
Since z° is a smooth boundary point, there exists a continuously bidifferentiable
mapping ¢’ of a neighbourhood V of x°such that z/(x°) is a smooth boundary point
of 7/(GNV). Let W be a polycylinder such that (x®)e Wc«(UNV). Since the
continuously bidifferentiable mapping r-z’~* maps «/(z~}(W)) onto W, =(«°) is a smooth
boundary point of a regular open set <(GNU)N W. From Proposition 2 «(GNU)N W
is pseudoconvex at z(x°). Therefore G is pseudoconvex at x°. From Docquier-
Grauert [8] G is a Stein manifold.

We say that a boundary point 2° of an open set G in a complex manifold isa
continuous boundary point of G if there exists a biholomorphic mapping z of a
neighbourhood U of x° into a complex Euclidean space such that z(x?) is a con-
tinuous boundary point of «(GNU). Moreover, if «(GNU) is a regular open set
simultaneously, 2° is called a continuous and locally regular boundary point of G.
We say that G has a continuous (or continuous and locally regular) boundary if
each boundary point of G is a continuous (or continuous and locally regular) boundary
point of G. These definitions are not so good that a boundary point x° of an open
set U in a complex Euclidean space C» may not be a continuous boundary point of
U even if x° is a continuous boundary point of U which is considered as a subset
of a complex manifold C» and that a boundary point which is continuous and which
is locally regular, separately may not be continuous and locally regular.

ProrosiTiON 5. Lel G be a domain with a continuous boundary in a Stein
manifold. Then G is a Stein manifold if and only if G is locally strongly regular.
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Proof. If G is a Stein manifold, it is obvious that G is locally strongly regular.
Conversely suppose that G is locally strongly regular. Let x° be any point of 9G.
Since 9G is continuous at x° there exists a biholomorphic mapping = of a neighbour-
hood U of x°into a complex Euclidean space such that =(z°) is a continuous boundary
point of ©(GNU). Since G is locally strongly regular at x°, there exists a biholo-
morphic mapping <’ of a neighbourhood V of z° into a complex Euclidean space
such that /(GNV) is a strongly regular open set. Let W be a holomorphically
convex neighbourhood of 2° such that WcUN V. Then < (GNVN W) is a strongly
regular open set. Since the biholomarphic mapping cez’~!* maps /(GN VN W) onto
(GNVNW), «(GNVNW) is a strongly regular open set. Therefore «(GN VN W)
is pseudoconvex at the continuous boundary point z(x°) from Proposition 2. Hence
G is pseudoconvex at x°. From Docquier-Grauert [8] G is a Stein manifold.

ProposITION 6. A domain G with a continuous and locally regular boundary
in a Stein mawifold is a Stein manifold.

Proof. Let x° be any point of dG. Since #° is a continuous and locally regular
boundary point of G, there exists a biholomorphic mapping ¢ of a neighbourhood
U of z° into a complex Euclidean space such that z(z°) is a continuous boundary
point of a regular open set «(GNU). From Proposition 2 «(GNU) is pseudoconvex
at =(x°). Hence G is pseudoconvex at x°. From Docquier-Grauert [8] G is a Stein
manifold.

§4. Example.

Let E be a relatively compact open subset with a smooth boundary in a Stein
manifold M. Then from Andreotti-Grauert [1] and Fujimoto-Kasahara [9] the
canonical homomorphism H°(M, O)—H(M—E, Q) is surjective. Therefore M—E
is not holomorphically convex. Therefore from Proposition 4, M—E is not locally
regular at some point of dE. Let x° be a point of 8F at which M—E is not locally
regular. For any neighbourhood U of x° there exists a holomorphically convex
subdomain D of U such that (M—E)ND is not a Cousin-I open set. Making use
of Andreotti-Grauert [1], we can take E such that M—E is a Cousin-I domain.
This gives an example of a Cousin-I domain with a smooth boundary which is not
locally regular.

ProrosiTiON 7. Let E be a relatively compact open subset of a Stein manifold
M. Then there exists an arbitrarily small holomorphically convex subdomain D of
M such that (M—E)ND 1s not a Cousin-1 open set.
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