
ON CERTAIN COEFFICIENT INEQUALITIES
OF UNIVALENT FUNCTIONS

BY MITSURU OZAWA

1. Introduction. In the present paper we shall establish some coefficient
inequalities of univalent functions by Schiffer's variational method [2],

Let 5 be a family of normalized functions f(z) regular and univalent in
that is, let f(z) have the Taylor expansion

f(z)=z+ Σ anz
n

71 = 2

in \z\<l.

THEOREM 1. In S there holds an inequality

Equality can occur only for the Koebe function z/(l—eίθz)2.

THEOREM 2. In S there holds an inequality

!
3 79 1 1

a5—2a2ai—^«3

2+4«22«3 ~ ΈT a2\ = ~o~'
Equality can occur only for every function in S satisfying an equation

2. Proof of theorem 1. By Schiffer's variational method for a problem

m a x Re(<74—
s

we have a differential equation

satisfied by the image curve of \z\ = 1 for every extremal function w(z). This extremal
function w(z) satisfies a differential equation
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Wf2

The image curve of \z\=l by w(z) has at least one finite end point, which cor-
responds to a zero point of w'(z) on \z\ — \. Therefore the right hand side term
q{z) can be factorized in the following form

g(z)= - ί- (z-E)2(z*+Dz*+Cz2+Bz+A).

Further there holds a functional equation

These lead to the following relations:

AE2=l, \E\ = 1, \A\ = 1, BE2-2AE=-a2, C-2ED+E2=0,

B-2EC+E2D=3(a,-3a2a3-\-2a2

s), D=BA, C=CA.

Let E be eiθ and if C^O, then A=er~2%e

9 C=re~iθe^ (r#0), D=(re-2iθe^+eίθ)/2y

B={repπιJt-e~UΘ)l2y where p is an integer.
Case I. epπι=l. Then we have

3(a4-3a2aB+2a2

z)= cos30-r.

On the other hand for Koebe's function 3(«4—3a2a$-\-2a2

s)=6. Therefore we have
an inequality 6 ^ cos 30—r. This leads to an absurdity relation r^—5.

Case II. epπι=—l. Then we have

3 r
a2= -^-e-iθ + — e2ίθ, 3{aA—3a2az-\-2ai)= cos30+r.

Since |#2 |^i2, we have

r2-\-6r cos 30-7^0.

By this inequality we can say

, X= cos 3^.

This leads to an inequality 0 < r ^ 7 . On the other hand by Koebe's function

6

thus 5^r. Let y be x-\-r, then
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that is,

Since the right hand side term is monotone increasing in 5 ^ r ^ 7 , we have ^ 6 .
If the equality occurs, then r=7 and hence # = — 1 , that is, 36=2pπJ

rπ for an
integer p. Then

tf2=2 or 2e2πm or

which lead to three Koebe's functions

z z
( 1 - z ) 2 ' {l-e2πi/zz)2' (l-eiπί/sz)2'

respectively.
If r=0, then D=E/2 and B=DA. Thus putting E=e*', then A=<r2^, D=eW2,

B=e-um. Hence

« 2 = ~—e2ί0-2e-2ίθeί0=-(2+ — )e-^.

Thus |tf 2 |=2+l/2>2. This is a contradiction.

N. Suita gave another proof of this theorem. His method is quite similar in
Charzynski-Schiffer's paper [1] in which they gave a quite elementary proof of the
Bieberbach conjecture for the fourth coefficient.

3. Proof of theorem 2. We shall consider an extremal problem

7Q
max ReF, F^a,-2a^ ^aQ +4a2as τ

s 2 54

We shall denote the maximum value by F o . Then any extremal function satisfies
a differential equation

uf

(=g(z)),

Case I. a2φ0. If w(zo) = —3/a2 for |2 0 |<l , then z0 and l/z0 are two double

zeros of g(z). A point on |z)=l, which corresponds to a finite end point of the
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image curve of \z\ = l by the mapping w(z), is also a double zero of q(z). If w(z0)
= —3/<22 for some z0 on | z | = l , then the image w(\z\ = l) locally forks to four analytic
curves whose directions are equally distributed and one of which runs into w=oo.
Thus there are at least three finite end points in general which correspond to three
double zeros of g(z). If the number of finite end points is less than 3, then — 3/a2

also corresponds to a double zero or two double zeros of g(z) according as the
number of finite end points is two or one. Therefore in any cases g(z) is of the
following form

Further g(z) satisfies a functional equation g(z)=g(l/z). Thus there hold the
following relations:

W*Y=1, \W\ = \Y\=1, U=WV, X^

2V+U2+2UX+Y=0,

W2+2VWX+ YV2+2UWY=0,

T= V2+2UW+2XW+2XUV+2 VY+ U2 Y,

R=2VW-\-2UWX-\- V2X+2WY+2UVY.

If X=0, then U=V=0 and hence Y=0, which contradicts | F | = 1. Let U and V
be rΦ* and re%a, respectively, since |?7| = | F | by \W\ = l. Then F = ^ , X=-2re^,
W=eίCβ+a\ By two relations

W2+2VWX-\-YV2~\-2UWY=0

we have

2VU-3UU2+U=Q and V2-UJUV2-\-2VU2--Λ).

Thus we have
β - 2 ^ - 3 / ^ + 1 = 0,

Hence we have

ewβ-2«> = 1.

If ^<2^-«)=lj t h e n 3 r 2 _ 2 r _ i = o . Therefore r = l . Since W2Y=l, we have 1

=ei(4β+2aΛ=ze8βi^ faQi j S j gβ = 2pπ for some integer p. By the expression of T by
V, U, W, X, Y, we have Γ = - 2 ^ * = ± 2 . Further then R=0. If e^~^ = ~l, then
3 r 2 + 2 r - l = 0 and hence r=l/3. Further ^ * = 1 . Hence Γ = 10^/27= ±10/27.

Case II, α 3=0. Then the extremal function w(z) satisfies a differential equation
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2 2 ^T =
Ίλ) Z

In this case at the point at infinity w=oo the trajectory forks to four analytic
curves whose successive two curves make the angle π/2 there. Thus the right
hand side term is of perfectly square form

-\-(l+Az+Bz2+Cz*+Dz4)2.

Then Λ=B-C=0 and D2—l. Hence α 4=tf 2=0 and 4aΓ,—6a*2—±2. Hence in any
case we have

2

Now we shall examine when equality occurs. In case I, the extremal function
satisfies the differential equation

Integrating this differential equation, we have

In Case II, the extremal function satisfies the differential equation

w6 z4

Integrating this, we have

This is contained in the earlier case with a2=0.

4. By Schiffer's variational method certain extermal problem leads us to a

differential equation satisfied by every extremal function

where P(w) and Q(z) are a polynomial of w and a rational function of z, respectively.

If P(w) is of perfect square form, then the exact estimation for the original problem

can be done relatively simple. This has very close relation to the one obtained by

the Faber polynomial. Such an example is the following
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12'
3 + 2a(a*-\aή-

which was most effectively used by Charzynski and Schiffer [1],

Our two results are not of the above form and are few examples showing
that P(w) is not perfectly square but exact estimation is possible only in the ele-
mentary manner. However there is no general theory exhausting all the combina-
tions of coefficients for which exact estimations .are possible by only the algebraic
calculations from the corresponding Schiffer's differential equations.
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