ASYMPTOTIC BEHAVIOR OF SEQUENTIAL DESIGN
WITH COSTS OF EXPERIMENTS

By Kazuromo KAWAMURA

1. Introduction.

We shall consider the two kinds of experiments E; and E. which have two
events “Success S” or “Feilure F”. The probabilities of success or failure by the
experiments E, and E; are given by

P{S|E\}=p, P{F|E\}=1—p,
and
P{S|Ez} =P, P{F|E;}=1—p:

respectively, where we assume that p:=¢p..

Moreover, following to Kunisawa [4], we introduce the notion of costs of ex-
periments, i.e., if we execute the experiment FEi, it costs ¢ (¢;>0), and if E,, it
costs ¢; (c2>0).

The object of this paper is to discriminate the hypotheses p;>p. or pi<pe.
What a procedure, with which we repeat the experiments, is optimal, in order to
maximize the information of discrimination per unit cost ?

According to Chernoff [1] a procedure 1s given, which maximizes the information,
when c1=c,.

In this paper we shall show the asymptotic behavior of the procedure which
maximizes the information of discrimination per unit cost.

2. Notations and definitions.

Given O the two dimensional closed rectangular set [0, 1]®[0, 1], i.e., the set of
clements (py, p2) satisfying 0=p,=1 and 0=p.=<1. And put

Hi={(p1, p2): Dr1>p2 (D1, D2)€6},
H2= {(pl; Pz): P1 <P2, (ply Pz)e(")}

and

BIZZ {(ply Pz): pl:pZ) (pl; pZ)e@}

Then O is clearly the sum of sets Hi, H; and Bi,. Next let E® be i-th experiment,
and define x, as follows:
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=1 if S occurs under E®,
=0 if F occurs under E®,

In the following line we shall assume that in E® S or F occurs independently of
the selection of E®, ..., E® (=1, 2,---). Then we see that xi, zs, -+, Zn, -+ are
independent random variables. And let #; be the number of selections of experiment
E, in the partial » experiments E®, ---, E m; the number of occurrences of S
in these n; observations by E;, and similarly #, the number of selections of E; in
the partial » experiments, and m, the number of occurrences of S in these #.
observations by E.. Then if 8=(pi, p.) is an element of O, the probability density
function of xz, at E® f(xs, 6, E) is known to be following form:

f@, 0, EO)=pi(l—p)'=  if E©=E,
=p"(1—pe)="¢  if EW=EF,.

Then the likelihood function of 6 over the partial » experiments is given by
I~ f(x,, 6, E®). This is a function of »n observations X1, -+, T, 7 experiments £V,
<+, E™ and ¢. The maximum likelihood estimate 6, of # over the partial # experi-
ments is not only a function of # observations i, ---, , but also a function of #
experiments EV, ..., E™_ Next we shall denote by 6, the maximum likelihood
estimate Aof 6 on the closed domain a(8,) over the n experiments E®, ..., E™,
where a(0,) is defined as follows:

if 6.,eH, then a(d.)=0—H, (i=1,2)
and if  6,eB., then a(8.)=6.

Definition of discrimination. As a measure of discrimination between two
probability density functions f; and f; Kullback [3] introduced following

I(f1, )= Sfl log % dp.

In our case, we can use this measure to express the discrimination between
f(x, 6, E) and f(x, ¢, E), i.e;

_ ]71 1_191
I(hs £2), (B:% %), E=pulog—— +(1—polog 7— =,

and
1—p.

I(py, p2), (B, p2¥), Ez)=p-log 572* +(1—p2) logl_—pz*“ ’

where 0=(pi, p,) and o=(p.*, p.*).
Definition of procedure ¢. We shall call procedure ¢, if the {following conditions
are satisfied: EV=E;, E®=E, and for n=2 succesively
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I(ény é’%) El) > ](éﬂ: g"v E&)

Ewb=F, if
C1 Ca

I(én) é'n, El) < [(@n) 57’4 EZ)

(2. 1) =F, if P o

[(ény 5", El) . [(én) 0~7Lr E2)
C1 - C2 ’

= if

3. Theorems and the proofs.
At first, put
D@O)={(p:*, p=*): (pr*=p1 and p*=p,) or (pr*=p, and p.*=p2)}
where 0=(p, p2),

16n, ¢, E) _ 1., ¢, E2)
Cz

O = ISD: : R goeD(é,,)] N B,
1

G. 1)

, weDw)}mBm 2

6% :‘ . 1(0» Py El) _ [(0, @, Ez)
(2 a o

and 0,*=(p.*, p.*), 0*=(p*, p*). Using these p.*, p*, we define

pat— 12
* nz_
3.2) A ‘—E ~ome
n; Ny
and
3.9 b
Di—p2
Moreover for fixed 2 2€[0, 1], let § be §=(p, p), where
3.4 p=4(p1— p2)+ po.

Then we can list the following Theorems.
THEOREM 1. Our procedure § satisfies the next relation:

i S1Ga, 02)

e Tmeo IO

with probability 1, where

1) It is clear that ¢.* ¢* are uniquely determined.
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10, 6%, E\) _ 100, 6% E)
C1 - Ca

H:l=1f(xi’ é"lr’ E(i))
S (@i, Gy E®)

IX0)= (0=(p1, p2)),

Sn(ém gn)z 10g

and C is the cost of E¥.

THEOREM 2. Any sequence of experiments E™ (n=1, 2, --+) such that limy,_..(n:/n)
=A* satisfies also the same result as Theorem 1, that is,

- Su(B, G
lim e =10
with probability 1.

THEOREM 3. Given any sequence of experiments E (n=1,2, ---) such that
limy,o(n1/n)=2 (2€[0, 1]) and if lim, .min(un,, n,)= oo, the next limit

o SuBa, 8. 20,0, E)+(1—DI0, §, Ey)
l =
(3.5) m S.Co Ac+(1—A)ce

exists with probability 1.

THEORFM 4. The limit function of 42 (3.5) (R€[0, 1]) has only one maximum
value if and only if A=2*.

In order to prove these theorems we need the following Lemmas.

LemMma 1. If we execute any procedure, we have always
A my M
6n= (—": — )
ny N2

and

i :<ml+m2 m1+m2>
" ni+n, ’ n1+nz )

Proof. As the function p,™(1—p,)» ™ has the maximum value at p,=mu/n;
and p™(1—p2)" ™ at ma/n., the likelihood function

D (L—ppa L= p) ™

has the maximum value on @ at 5n=(m1/n1, ms/nsz). This 6, is the maximum
likelihood estimate over © of p™(1—pi) ™ ™p,™(1—py)™ ™.
Next we suppose that

6,cH, and 0.cH,.

. A~ . ~ ~ . .
Then as the line 6,6, connecting 6, and &, crosses Bi,, we have a crossing point
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0 different from §,eH,. Since p,™(1—p,)™™ is monotonically increasing in (0, m./n,)
and monotonically decreasing in (m/#ni, 1), and also p.™(1—p.)" ™ is monotonically
increasing in (0, m/n.) and monotonically decreasing in (m./n,, 1), it is clear that

ﬁf(x-;, 0, E©)> ﬁ F(s, Gy ED).
=1 =1

As 0€d(én)=H2UB12, the above inequality is contradiction to the definition of #.,.
Thus we can conclude that if 8,eH,, then &€ Bs.

In the same manner we can show that if 5neH2, then #,eBi, and if 9neBlg
then 0,eBi; and 6,=6,. Hence we see f,¢€Bi, for all cases. Therefore, to find .,
we search only on Bi. so that the likelihood function on B, becomes

[)m‘(l __.p)n.—m. "h(l _p)nz—m,:pm,+m,(1 _p)n 1k Re— (1 +m)

Then the function has only one maximum value if and only if

0:< Ma—+ms m1+m2)
nmitne T omtne )
Hence

5 :<m1+m2 m1+m2>
" mtne T mtne ’

LeMMmA 2. Given the sequence of experiments under the procedure € EP, E®,
cooy E™ .. Then the probability that

E®w—F,
for all n=k or
E™—F,

Jor all n=Fk is zero, where k is any fixed positive integer.
Proof. Suppose the probability
E®W—F,
for all =% is positive, where & is any fixed positive integer. Then we have

E®™=F,
and

I(én, gn, E1) - I(én, 571, E2)

(3. 6) o o

for all #n (n=k), with positive probability. Hence by the law of large numbers, we
have

. m
lim — =p,
n—o Ny
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with positive probability. On the other hand, #. and m, are invariant for all ex-
periments E™ (n=k) with positive probability. Hence m,/n. is fixed at the value
[mq/ns] .= which is determined by E®, E®, .... E®_  Hence we see

lim 22 :[ﬂ]
n—oo Mg N2 _ln=t
with positive probability. Therefore we have

lim §, = 11m<ml [ﬂJ >=< [—@] )
n—ro0 r n—oco 7n1 ! N2 An=k b N2 n=k

Mit+me M+,
mtne - nitn,

and

lim §, — lim (

n—oo n—oo

>=(Ph j22))

with positive probability. Using these facts, we have

1—p
p log +<1 po lob
lim 1(0n,0n,E) ! A=b

N—00 C1 Cl

and

M Mo
s [2l {2 ]
tim LOw On B _{ n, 2 Ln I=pt =g

n—oo Ca Ce

with positive probability, where [m./n,] means [m2/%5],-;. Therefore

0= lim J6n 0w ED _ ;) 16w, 0, Eo)

n—00 C1 n—00 C2
with positive probability. Hence, by (3. 6),

0=lim JOn On B) _ i) 1O On, E2)

n—oo C1 n—co Ca

with positive probability. It follows clearly that p:=[m./#.],-; and hence ms/n.=p,
for all n (n=k) with positive probability. Hence, by (3. 6)

my 1—. ms
1 m1 _n_ ( ml) - 7’l—
——1 LS 1—— Jlog —— ™
o | 8 Tt ms mtms * )% _ Matme
nt+ne Ny+ne

3.7
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1_
=— {171 iog m‘l_)‘_m; +(1—p1) log ;71%{1—72}
ni+ne N1+

for all #» (n=k) with positive probability. Here we consider two functions:

1—x
e e L e
Nny+-12 ni+ne

and

— 1 A 1;1/
g(y>—c—2[y log -, (=) log o m1+m2}

Ny+Ng 2

175

and we use Taylor’s expansion for f(x) and g(y) around (m,+m.)/(n:+n,) as follows.

Sx)= % (x— m—ﬁ_lniy(—l— - )

ny+ns & 1-&
o= (=" )Ysi o)
where £ x<51<%nﬁ;— or ’Z;i:ﬁg <& <z,
and Er Y<&< ’ZIZ? or -’fh‘—iy’lﬁzz—«xy.

Then the inequality (3. 7) becomc as follows:

3. 8) (%_%M 1—>‘>

ooz

JI\/

for all » (n=Fk), with positive probability. And if #—oco then &—p,, &—p, and

(1”_1 _M> (ﬁ_p )(1)
\m M+ne 31 ' nJ -

oy ()

w102 ny n

with positive probability.
Hence, this contradicts (3.8). Thus we proved the probability that

Em=F

exists for all #» (n=Fk) is zero, where k& is any fixed positive integcr.
In the same manner, we can prove that the probability
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E(n) — E2
for all n (n=m) is zero, where m is any fixed positive integer.
LemMmA 3. Given the sequence of experiments under the procedure @
E® E® .. Em ..
then we have
P{min(n,, n,)—co as n—oco}=1.
Proof. Suppose that exists a constant % such that as n—co
min(sn,, n:) =<k
with positive probability. Then we have
E(n)=E1

for all n (n=m) or
E®=E,

for all n (n=m) with positive probability, where m is a fixed positive integer. But
by Lemma 2 we know that these facts do not exist.

Lemma 4. We have
lim 6,=(p,, p2)
with probability 1.

Proof, By Lemma 3, we know that if #—oco then n,—oco and n.,—co with
probability 1. Hence, using the law of large numbers,

My

lim 7 — p: and lim

—h D
n—oo My n—oo g pz’
with probability 1. Therefore

lim §,= (p1, p2)

with probability 1.

LemMa 5. We have

lim 2L — 3

n—oo 1

2) See, for example, Halmos [2].
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with probability 1, where A* is defined by (3. 3).

Proof. Evidently, we have

lim @,*=06*

with probability 1, by Lemma 4. Hence by the definition of ,*
3.9 lim 2,%=2*

n—oo

with probability 1. It is easily verified that the procedure @ is equivalent to the
following conditions:

EO=F,, E®=F,
and for n=2
E®D=F, if 2L <2,
(3. 10) —=E, if % > 2%,
—E™ if g *
n

respectively. Using this property of the procedure €, we shall show

. n
lim 22 =*
n—oo N

with probability 1. For any positive number ¢, by (3. 9), there exists some integer
7, such that

€
*__ 2%

for all » (n=n,) with probability 1.
Now we consider the following two cases:

N

@ |[3]..-7

with probability 1, where [#:/#],-n, is the relative frequency of selection of E;
from E® to E™®,
If (i), by the property (3. 10) of @, there exists jo (Jo=#o)

=

£
2
with probability 1 and

<<
2
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5 5
] s okl 2
@1 [#]..-#<=
with probability 1.
If (i), we put jo=#, and we have (3.11) with probability 1. Hence, we can
find the first integer j, (jo=n,) satisfying (3. 11). Next we suppose that there exists
an integer k (k=j,) such that

n1_ &
e e S
1[ n dp=t-1 < 2
and
nl_ 5
.12 —_ L3 b R
@1 [].-x==

with probability 1. Then by the procedure €, we sec

;[ﬁ‘. _2*‘>1[ﬂ] g
L7 =k L de=k+1

with probability 1. Since generally, the fact

7 _n=x n An=k-1

with probability 1 is satisfied for all %2, we see

[2] e

l n =t
A2
n In=k-1

L7 p=k N In=k-1

with probability 1. Therefore if we have (3. 12) with probability 1, we have

2
<%

2

<7

&
Ty

[2] By P AR
L7 dn=k | 2

and if there does not exist % (k=j,) satisfying (3. 12) with probability 1, we have

ol

with probability 1 for all % (2=j,). Thus we have

<—;—<e
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RGN yes |< e
n
with probability 1 for all » (n=N,), where
Ny= max [—j— ) jo].
Thus, lim,_.(#/n)=4* with probability 1, as to be proved.

LEMMA 6. limp.. 0n=0% with prabability 1.

Proof. By simple calculation, we have

M+ _&( ML M e
nit+ne ”n

7y N2 (2
and, from Lemma 4,

.m
lim — =p,
n—oo g

and

.o
lim —2 = p,
n—oo o

with probability 1, and, by Lemma 5, we sce that

lim 2 g%

n—o N

with probability 1. Then

- M, . n m ms i
MM g [ (P e )
n—oo  Wy-FHa n—oo | 7 ”n 2

=¥(p1—p2)+ p2=p*
with probability 1 by the definition of 2*. Hence,

lim §,=0%=(p*, p*)
with probability 1, as to be proved.

Proof of Theorem 1.

@ II:L——' f(xl’ én, E(i))

179
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o) =) () (-5
7”1 71 (2] n;

=10g< m1-+ms >m1<1_ mi+m; >"1_m1 < ma+ms >m2<1__ my—+my )"2_'"2
n n n n
ﬂ_ 1— my me
_ [ _ 1 71 N
" log my+ms +0n—m.) log 1— mi+mse Fom log M+ m;
n n n
1- 2
_ N
+(n2 le) log 1— _m1+WL2
n
m 1— Y773
=nd 2 21 _Mm "
"™ % witm, +<1 ) | mtm
n n
ma msy
+nd 22 10 e —l—(l——2 >lo —: e
: ] g my+m; gl mi+m:
n n
=n1[(ém gn, El)‘l‘ﬂzl(én, 91n,sz).
Hence
Sun, 6:)  mer 18,0, E) L e 18, 0., Ev)
2 Cw M1C1+M2Co € 7161+ aCo 2

Therefore, as lim,,m@n———ﬁ, lim,,.0,=0* with probability 1, from the Lemma 4 and
the Lemma 6, we have

i 520, 0)

e mco —T0

with probability 1.

Proof of Theovem 2. Any sequence of experiments E™ (n=1, 2, ---) such that
lim,_.n/n=2% satisfy the Lemma 4 and Lemma 6 evidently. Hence

tim 530 0,)

Nm =TI*0)

with probability 1.

Proof of Theorem 3. It is clear by the hypothesis
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lim min (#,, #:)=+o0

n—rco

that lim,..8,=60 with probability 1. And using the equality.

mi-+me ( my e + W
n n

ny 23 7
we have

. m m
lim Pt me

n—o0

=2(1)1 —Pz) +p2=p

with probability 1. Then, we have
limG,=0=(p, p)

with probability 1. Therefore, we see easily that

Sulu, 02)  d(Br, Oy E)+1I(B., 0., Ev)
Zlec(i) - N1C11-M2C2

Sl O By(1= )16 0, )
—cC1t (1 —_—— ) C2

n

Ience, we have

tim SO 0n) _ A0, 0, E)-+(1—DIO, J, Ey)
noe L, CW Aci+(L—Ac:

with probability 1, as to be proved.

Proof of Theorem 4. As p was defined as A(p.—p2)+p: in (3. 4), we have

I
Di—p2

Hence, by simple calculation, we have

d { A0, 0, En+Q1—2I0, 0, EZ)}
dp ch+(1—2)Cz

N € 1 [1(0, 0,E) 10,0, E)
B {Aci+(A—Ac}? pi—pe C1 [

Therefore the derivative is equal to zero if and only if §=6+*. Thus, the function
of 2

A, 8, EN)+1—I0, 8, E)
e +(1—2ce
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has only one maximum value if and only if 2=2* because §=0* is equivalent to

A=*,
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