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1. Introduction.

In the present paper, we shall consider mainly infinitesimal conformal and
projective transformations of almost-Kahlerian space, K-space and, as their special
case, Kahlerian space. Under what conditions do these transformations become
isometric? Even though there are many papers about this problem, it seems
to the author that there exist few about non-compact spaces. Recently Couty [1]
proved that in an almost-Kahler-Einstein space with positive scalar curvature, an
infinitesimal projective transformation is necessarily an isometry and Tashiro [7]
proved that in a Kahlerian space with non-vanishing constant curvatue scalar, an
infinitesimal conformal transformation is necessarily an isometry. In this paper,
we shall deal with the same problem but throughout this paper we do not assume
that the space is compact. In § 2 we shall state some properties of almost-Kahlerian
space and K-space for later use. In § 3 we shall obtain sufficient conditions for an
infinitesimal conformal transformation to be an isometry and especially a condition
corresponding to Couty's result on a projective transformation and give a
decomposition of an infinitesimal conformal transformation in an Einstein K-space.
In §4 we shall deal with the same problem of an infinitesimal projective trans-
formation. A remark on the result obtained by Tachibana [4] about an infinitesi-
mal analytic conformal transformation in a K-space will be given in the last § 5.

2. Almost-Kahlerian space and K-space.

Let X2n be a 2^-dim. almost-complex spaceυ and φf its almost-complex
structure, then by definition we have

(2.1) φj φS = -δj\

An almost-complex space with a positive definite Riemannian metric gμ satisfying

(2.2) g»<pjrφt'=gji

Received December 18, 1963.
1) For example, see Yano [8], Indices run over 1, 2, •-•, 2n.

105



106 SUMIO SAWAKI

is called an almost-Hermitian space. From (2.2) it follows that φji=qriφj

r is skew-
symmetric.

If an almost-Hermitian space satisfies

(2. 3) Vj<pih+Vi<phj+Vh<pji=§

where γ3 denotes the operator with respect to Riemannian connection, then it is
called an almost-Kahlerian space and if it satisfies

(2.4) Fy^ίΛ+Fΐ^ft=0

then it is called a K-space. In an almost-Hermitian space, if ψjψ^κ— 0, then it is
called a Kahlerian space.

Now, first of all, we shall assume we are in "an almost-Kahlerian space and
transvecting (2.3) with φ^ = Qryφr\ we have

i = 0 or 2φίh^jφ^ -f φ^ψuφji = 0.

From the last equation we have 2φihγjφlJ= 0 and therefore

(2.5) ΓtfV=0,

because by (2.1) φJ^flφjί=Q.
Operating pkf7k=grki7r[7k to (2.1), we have

(2. 6) F*F*ftv V« l) = WvwfϊψS + 2(r^/)p V,1 + ?, VW«* = °

On the other hand, let Rkji
h and Rji=Rijil be Riemannian curvature tensor

and Ricci tensor respectively, then by the Ricci's identity and (2. 5), we get

(2.7) φf

from which by the Bianchi's identity we get

(2. 8) φfV^rψis = ψfψilRrl ~ R*ji

where

Similarly we have

(2.9) <f>fy*yi<psr=Rji

Forming next the sum (2. 8) +(2. 9), we have

φfγS(ϊ7rφίsΛ-γiφsr) — φfψJ

or using (2. 3)
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(2.10) - φfV*V*φTτ = φfφίRπ + Rji - 2R*jt.

Substituting (2. 10) into (2. 6), we have

(2. 11) 2(rwήr'φ*i = φSφ^Rπ + R

and therefore for any vector field v, from (2. 11) we have

(2.12) ^kφjs(Pkφsτ)v^Vί = φj

rφi

lRriVJ

For an almost-Kahler-Einstein space:

where JP=0r'*J?yi, (2. 12) becomes

(2.13) (Rjt-R

Thus we have the following

LEMMA. In an almost- Kάhlerίan space, the inequality

is valid for any vector field v and in an almost-Kahler-Einstein space

is valid for any vector field v.

In the next place, let us assume we are in a K-space. In a K-space, we know
the following identities obtained by Tachibana [5]:

(2.14)

(2.15) Rji-R*ji=(Vj<prS}pi<prs, (Rji—R*ji)vW^Q for any vector field v,

(2. 16) #-#*=constant^O,

where R* = g^R*Ji9

(2.17) phN(v)h=Q for any vector field v,

where N^h^ψh^tψrs^v8.

In general,

(2.18) r'Rji^-ΓiR
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is a well known identity and the present author [3] proved in a K-space

(2.19) Γ£*,i=-ίpitf*.

3. Infinitesimal conformal transformations.

Let v l be an infinitesimal conformal transformation in an almost-Hermitian space
X2n, then by definition there exists a scalar function p satisfying

(3.1) pjVi+piVj=2pgji

and as is well known, we have

(3. 2) pjpiVh+Rrjihvr=pjδih + piδjh — phgji, pi=Γip, p=~ — prv
r,

Zn

(3. 3) FrFr ~
/I

Multiplying (3.2) by φι3ψh\ we have

φι3φhlrjpiVh+2R*irVr= —2pι i.e.

(3. 4) φι'pj(φhtpiVh) + φι'faφhύphV1' + 2R*irVr = -2pι.

First of all, let X2n be an almost-Kahler-Einstein space with non-vanishing
scalar curvature, then it is well known that υl is decomposed into

(3.5) υ%=p*+kη*> &=constant

where p1 is a Killing vector and η% is a gradient vector defining an infinitesimal
conformal transformation [2], Consequently, for -η1 by (3.3) we have

(3. 6) prpr?<+#/?r+ -^lL.Fyr̂ =o.
it

Since Prprηl=prplηr=i7li7ry}r+Rrτyr, (3.6) turns to

(3. 7) ~

Let the scalar function for rf be λ, then from (3. 1) and (3. 4), we have

_ — ψry
r=λ, R*τry

r=^—λ^ λi=γiλ
ΔΫI

respectively and therefore combining these two equations, we have
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(3.8) -^F<Pr?'+tf*tr?r=0.

Eliminating \/i^rff from (3. 7) and (3. 8), we get

from which it follows that

(3. 9) (2n-l)(R*lr- #tr)

where Rίr=(R/2n)gir.

But in this place, according to Lemma in § 2, (R*ir—Rir}ylyr^ and therefore if
R>0, then from (3.9) we have

2n ιri '

hence, for n>l, j?r=0. Thus from (3.5) we have the following

THEOREM 1.2) In an almost-Kάhler-Einstein space (n>l) with positive scalar
curvature, an infinitesimal conformal transformation is necessarily an isometry.

Secondly, assume that X2n is a K-space with constant curvature scalar (i. e.
FίR=ty. From (3. 3), we can easily deduce

or making use of P=

(3. 10)

%Svr)=Q
n '

1

Operating yl to (3.4) and using (2.17) and pr^=0, we have

(3.11) pl(R*irVr) = -i7lpιV

Accordingly, from (3. 10) and (3. 11), we have

(3. 12) r

But since, by (2. 16), (2. 18) and (2. 19), we find

2) For a compact Kahler-Einstein space, see Yano [8], p. 277.

3) See Tachibana [6].
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0 = prRri = _L F .# _ -ί-(7ί/?* -

from (3. 12) it follows

(3. 13)

On the other hand, transvecting (3. 1) with symmetric tensors R^ and
we have

(3. 14)

respectively, so from (3. 13) we obtain

(3.15)

Consequently if (l/(2w— 1))JR— jR?*=^0, then we have p=0. Thus, from (3. 1), we have
the following

THEOREM 2. In a K-space with constant curvature scalar, if
%0, then an infinitesimal conformal transformation is necessarily an isometry.

According to this theorem and (2. 16), we have

COROLLARY. In a K-space (n>l) with constant curvature scalar, if R<Q or
/?*<0 or R>Q and /?*=0, etc., then an infinitesimal conformal transformation is
necessarily an isometry.

When the space is a Kahlerian space, R=R* and hence from Theorem 2 we
have

COROLLARY. (Tashiro [7]) In a Kahlerian space (w>l) with non vanishing
constant curvature scalar, an infinitesimal conformal transformation is necessarily
an isometry.

Again returning to a K-space, if we consider a homothetic motion, then by
definition we have

(3. 16) ΫjVi+ViVj = 2cgjit c = constant

from which it follows

(3.17) = _ - t = .

Transvecting (3. 16) with R* and R*», we have
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(3.18) RVpjVi=cR, RWpjVi=cR*

respectively.

Making use of (3.17) and (3.18), from (3.10) it follows

(3.19)

and from (3.11)

(3.20)

But, by virtue of (2.16), (2.18) and (2.19), we have

(3.21) p,l?r«-pjev=-~(prR-t7rR*)=0

and then forming the difference (3.19)—(3. 20), we have

(3.22) c(R-R*)=0.

Thus, in a K-space such that R±ϊR* (which will be called a proper K-space), from
(3.22) we can deduce c=0 and therefore from (3.16) we have the following

THEOREM 3. In a proper K-space, a homothetic motion is necessarily a motion.

Finally, suppose that we are in an Einstein K-space with non-vanishing scalar
curvature, then vτ is decomposed in the form

(3.23) vl=pl+ky\ k=constant

and let the scalar function for rf be λ, then from (3.1) we have

(3.24) PM=λQji.

Consequently, putting

(3.25) qτ< = -kφSηr

and operating pJ to (3. 25), we have

pJq^—ktyφSty—kφSp'Ϋ

or substituting (3. 24) into this equation

(3. 26) pi<p= —k(p>φr

i)ηr—kλφii

from which it follows

(3.27) p^+yψ^

i. e. cf is a Killing vector. Since, from (3.25) we get kητ=φr'
lqr

ί we can state
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THEOREM 4. In an Einstein K-space with non-vanishing scalar curvature, any
vector vl defining an infinitesimal conformal transformation is decomposed in the form

where pl and q1 are both Killing vectors and φr

lqr is a gradient vector. The decom-

position stated above is unique.

4. Infinitesimal protective transformations.

Let υ% be an infinitesimal projective transformation in an almost-Hermitian
space X2nj then by definition there exists a vector pi such that

(4. 1) pjpiVh+Rrjihvr=pjdth+pidjh

from which we have

(4. 2) p*prV*+RSυr=2p\ p*

By the same method in § 3, we have the following equation corresponding to (3.4):

(4. 3)

Here, as is well known, if X2n is an Einstein space with non vanishing scalar
curvature, then vl is decomposed into

(4.4) vl=pl+kη\ &=constant

where pl is a Killing vector and ηl is a gradient vector defining an infinitesimal
projective transformation [8].

Thus, for rf by (4.2) we have

from which it follows

(4.5)

and from (4.3)

(4.6)

Eliminating γiγrη
r from (4. 5) and (4. 6), we have

(4.7)
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Multiplying (4.7) by ηl and rewriting, we get

(4. 8) (2n-l)(R*ji-RjiW+2(n-l)Rji^=Q.

In this place, when Xzn is an almost -Kahler-Einstein space, by Lemma in §2,
(Rtji—Rjttyy^Q. Accordingly, if #>0, then from (4.8) we find ((n-l)jn)Rητηi
=0 and therefore ηl=Q.

Hence we have the following

THEOREM 5. (Couty [1]) In an almost-Kάhler- Einstein space (n>1) with positive
scalar curvature, an infinitesimal projective transformation is necessarily an
isometry.

And if X2n is an Einstein K-space, then from (2. 15) (R*ji—Rji)ηJη'1^ and there-
fore if J?<0, then from (4.8) we have ((n—l)

Hence we have the following

THEOREM 6. In an Einstein K-space (w>l) with negative scalar curvature,
an infinitesimal projective transformation is necessarily an isometry.

As a special case, when X2n is a Kahler-Einstein space, taking account of
RJi=R*jiί from (4.8) we have

CθRθLLARY.4) In a Kahler-Einstein space («>1) with non vanishing scalar
curvature, an infinitesimal projective transformation is necessarily an isometry.

5. Infinitesimal analytic conformal transformations in a K-space.

In an almost-Hermitian space X2n, if vl satisfies

(5. 1)

where £ is the operator of Lie derivative, then vl is called a contravariant almost-
V

analytic vector. When a vector v% defining an infinitesimal conformal transforma-
tion is almost-analytic, we shall say that v% is an infinitesimal analytic conformal
transformation.

Now, we consider an infinitesimal analytic conformal transformation of a K-
space.

Multiplying (5.1) by f7kφίj, we have

r = 0

or by (2. 1)

4) For a compact Kahler-Einstein space, see Yano [8], p. 273.
5) See Tachibana [4].
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(5. 2) VtyrψfivWi' - 2φjr(f7kφi^ fl* = 0.

In this place, by (2. 1) and (2. 4), we see

so (5. 2) turns to

vr(Vrψώ?*φ}i + 2M*>X = 0

or by (2. 15)

(5. 3) v^Rto-R^+ZNty)^.

Operating p* to (5. 3) and using (2. 17), we have

(5. 4) ^(Rto-R+^ + V^Rjcr-^R**)^

but since by (3.21) we have

F*/?Λr-p*7?**r = 0,

(5.4) becomes

(5.5) p*V(^*r-/?**r)=0.

Moreover, #l being an infinitesimal conformal transformation, then making use
of (3. 14), (5. 5) turns to

(5.6) p(R-R*)=0

from which it follows that p=0 if R^R*.
Thus we have the following

THEOREM 7.6) In a proper K-space, an infinitesimal analytic conformal trans-
formation ts necessarily an isometry.
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