GENERAL TREATMENT OF ALPHABET-MESSAGE SPACE AND INTEGRAL REPRESENTATION OF ENTROPY

By Hisaharu Umegaki

1. Introduction.

In this paper we shall clarify a topological structure of the alphabet-message space of the memory channel in information theory, and study the integral representation of entropy amount from a general view point of a certain generalized message space. In order to apply to the general theory of entropy, the present fashion will develop a message space into more general treatment, in which the basic space X will be assumed to be totally disconnected. As will be shown in §2, the alphabet-message space A^{I} is a totally disconnected compact space, and in §3, a kind of theorem relative to sufficiency for a σ -field generated by a partition and a homeoporphism (cf. Theorem 2) and the others (Theorems 3 and 4) are concerned with the semi-continuity of entropy amount which are general form of Breiman's Theorem [1]. Finally, in §4, it will be discussed about the function h(x) found by Parthasarathy [7] whose integral defines the corresponding amount of entropy (cf. Theorem 5). It is also shown that the results in [9] can be generalized (cf. the footnote 2) below). The function h(x) may give useful and interesting tool for the general theory of entropy of measure preserving automorphism or flow over a probabiltiy space.

2. Structure of message space.

A Hausdorff space X is called *totally disconnected* if X has a base consisting of closed-open sets, *clopen* say. In such a space X, a measure μ is called *normal*, if μ is regular and the mass of every non-dense set is zero. The space X is called *hyper-Stonean*, if it is compact and the union of carriers of all finite normal measures is dense in X. Such a space X is characterized by the existence of a normal measure μ (not necessarily finite) on X such that $\mu(G) > 0$ for every nonempty open set G (cf. Dixmier [2]). Whence, the Banach space C(X) of real continuous functions on X, with sup-norm $||\cdot||$, is isometrical and lattice isomorphic to the conjugate space of L^1 -space $L^1(X, \mu)$. It is known that, these concepts on X are closely related with the theories of Boolean algebras and especially of operator algebras (=von Neumann algebras, cf. Dixmier [3]).

Received September 4, 1963.

In this section, for the sake of functional analysistic necessity and interest, it will be investigated on the topological structure of the space A^{I} , defined below.

Let A be an alphabet, i.e., a set consisting of finite number of elements. Put $A_k=A$ $(k=0, \pm 1, \pm 2, \cdots)$ and denote $A^I = \times_{k=-\infty}^{\infty} A_k$ the doubly infinite product set. A^I will be called *message space*. In the memory channel, the input space of alphabet information source is taken as the measurable space (A^I, \mathfrak{A}) where \mathfrak{A} is the σ -field generated by all finite dimensional cylinder sets in A^I .

Since each coordinate space A_k is a finite set, they are compact metric spaces relative to each discrete topology, hence by Tychonoff's theorem, A^I is also compact with countable base relative to the weak product topology and is metrizable. For each point $\mathfrak{a} \in A^I = (\cdots, a_{-1}, a_0, a_1, a_2, \cdots)$, denote

$$(1) \qquad [a_m, \cdots, a_n] \qquad (m \leq n)$$

the (n-m+1)-length message, say finite message, i.e., the set of all $\mathfrak{r} \in A^I$ whose k-th coordinate equals to a_k $(k=m, \dots, n)$. The messages are obviously clopen. Let U be any non-empty open set in A^I . Then there exists a finite set of integers $J \subset I$ such that the projections $\operatorname{pr}_k(U)$ of U into k-th coordinate spaces A_k , $k \in I-J$, are the whole spaces A_k , respectively. Consequently, putting $m=\min\{k; k \in J\}$ and $n=\max\{k; k \in J\}$, then for any fixed $\mathfrak{a} \in U$, $[a_m, \dots, a_n]$ is contained in U. Thus we obtain the following

THEOREM 1. The message space A^{I} is a compact metric and totally disconnected space relative to the product topology, in which the shift is a homeomorphism on A^{I} and the σ -field \mathfrak{A} consists of all Borel sets. Especially every finite message is a clopen set and the family of all finite messages is base in A^{I} as its topology. Furthermore A^{I} is not hyper-Stonean.

Since the shift is obviously continuous and one to one on A^{I} onto itsef, it is homeomorphism on A^{I} . Hence the proof is remained only in the last part. If A^{I} is hyper-Stonean, then $C(A^{I})$ is identified with the conjugate space of $L^{1}(A^{I}, \mu)$ for certain normal measure μ on A^{I} . Let $\{E_{n}\}$ be an infinite sequence of mutually disjoint and non-empty clopen sets in A^{I} , and let M be the weakly* clopen subspace of $C(A^{I})$ generated by the sequence of the characteristic functions $\{C_{E_{n}}\}$, where the closure is concerning the weak topology as conjugate space. While M is separable relative to the norm-topology, because so is $C(A^{I})$. Therefore M must be finite dimensional. This is a contradiction. Thus A^{I} is not hyper-Stonean.

3. Properties of entropy functional.

In order to devolope the theory of entropy over the message space A^{I} from a general point of view, we shall take as an information basic space a *totally disconnected compact Hausdorff space* X with a fixed *homeomorphism* S, which contains the case of A^{I} as a special case. Here, every colopen set in X and the homeomorphic space X with a fixed homeomorphism S and the homeomorphic space S and the homeomorphic space space of A^{I} as a special case.

HISAHARU UMEGAKI

phism S are corresponding to the finite message and the shift in A^{I} , respectively.

Denote \mathfrak{X} the σ -field of all Borel sets in X. Let P_S be the set of all S-invariant regular probability measures p, q, \cdots on X. Let \mathfrak{Y} be a fixed covering of X consisting of clopen sets such as any pair $U, U' \in \mathfrak{Y}$ being disjoint. Such an \mathfrak{Y} is always finite by the compactness of X and it will be called *clopen partition* of X. As in \mathfrak{Y}_2 of [9], putting $\mathfrak{Y}_n = \bigvee_{k=1}^n S^{-k} \mathfrak{Y}$ or $\mathfrak{Y}_\infty = \bigvee_{n=1}^\infty \mathfrak{Y}_n$ the σ -field generated by $\{S^{-k}\mathfrak{Y}\}_{k=1}^n$ or $\{\mathfrak{Y}_n\}_{n=1}^\infty$, respectively. Then the entropy $H(p) = H(p, \mathfrak{T}, S)$ of each $p \in \mathbf{P}_S$ is defined by the limit

$$H(p) = -\lim \frac{1}{n} \sum_{U} p(U) \log p(U) \qquad (n \to \infty)$$

where \sum_{U} means the summation over U of the atomic sets in $\mathfrak{G} \vee \mathfrak{G}_{n-1}$.

For any $p \in \mathbf{P}_{S}$, denote $P_{p}(U | \mathfrak{T}_{n})$ and $P_{p}(U | \mathfrak{T}_{\infty})$ the conditional probability functions of $U \in \mathfrak{T}$ conditioned by \mathfrak{T}_{n} and \mathfrak{T}_{∞} in the measure space (X, \mathfrak{X}, p) , respectively, where \mathfrak{X} is the σ -field of all Borel sets, and for a pair $p, q \in \mathbf{P}_{S}$, denote $q \ll p$, when q is absolutely continuous with respect to p. Then we prove

THEOREM 2. For any pair $p, q \in \mathbf{P}_{S}$ with $q \ll p$, it holds that

(2)
$$P_p(U | \mathfrak{F}_{\infty})(x) = P_q(U | \mathfrak{F}_{\infty})(x)$$
 q-a.e. $x \in X$ and for every $U \in \mathfrak{F}$.

Proof. Putting \mathfrak{B} the σ -subfield generated by \mathfrak{F} and $S^{-k}\mathfrak{F}$, $(k=\pm 1, \pm 2, \cdots)$, then, since (X, \mathfrak{B}, p) is separable for each fixed $p \in \mathbf{P}_S$, from the generic property of \mathfrak{B} , it follows that every S-invariant set $B \in \mathfrak{B}$ belongs to $\mathfrak{F}_{\infty} \pmod{p}$. Besides for every $p \in \mathbf{P}_S$, putting $p' = (p \mid \mathfrak{B})$, the restriction of p over \mathfrak{B} , then p' is S-invariant probability measure over (X, \mathfrak{B}) and $P_p(U \mid \mathfrak{F}_{\infty}) = P_{p'}(U \mid \mathfrak{F}_{\infty})$ for every $U \in \mathfrak{F}$ on C_p the carrier of p over \mathfrak{B} . Since C_p is S-invariant, it is \mathfrak{F}_{∞} -measurable. Taking $p, q \in \mathbf{P}_S$, $q \ll p$, then $q' \ll p'$ and the Radon-Nikodym derivative dq'/dp' is S-invariant and \mathfrak{B} measurable, and hence \mathfrak{F}_{∞} -measurable (mod p). Therefore for every $V \in \mathfrak{F}_{\infty}$ and every $U \in \mathfrak{F}$

$$\begin{split} \int_{V} P_{q}(U \mid \mathfrak{T}_{\infty})(x) \, dq(x) &= \int_{V} C_{U}(x) \, dq(x) = \int_{V} C_{U}(x) \, \frac{dq'}{dp'}(x) \, dp(x) \\ &= \int_{V} P_{p}(U \mid \mathfrak{T}_{\infty})(x) \, \frac{dq}{dp}(x) \, dp(x) = \int_{V} P_{p}(U \mid \mathfrak{T}_{\infty})(x) \, dq(x) \end{split}$$

and (2) holds, where $C_U(x)$ is the characteristic function of U.

This theorem implies that \mathfrak{L}_{∞} is a sufficient subfield for the set $\{p'; p \in P_S\}$ of measures on (X, \mathfrak{B}) (in the sense of Halmos-Savage).

THEOREM 3. For each $p \in \mathbf{P}_S$, there exists, uniquely within p-a.e., a bounded, upper-semicontinuous and \mathfrak{F}_{∞} -measurable function $h_p(x)$ on X such that

(3)
$$h_p(x) = -\sum_{U \in \mathcal{G}} P_p(U \mid \mathcal{G}_{\infty}) \log P_p(U \mid \mathcal{G}_{\infty})(x) \quad p\text{-a.e. } x \in X.$$

Proof. Since each $V \in \mathfrak{G}_n$ is clopen, $P_p(U | \mathfrak{G}_n) \in C(X)$. Putting

(4)
$$h_{p,n}(x) = -\sum_{U \in \mathcal{G}} P_p(U|\mathcal{G}_n)(x) \log P_p(U|\mathcal{G}_n)(x),$$

20

then $h_{p,n} \in C(X)$ and the sequence $\{h_{p,n}\}_{n=1}^{\infty}$ is monotone decreasing, by the Jensen's inequality, say

(5)
$$h_p(x) = \lim_{n \to \infty} h_{p, n}(x),$$

and $h_p(x)$ is upper-semicontinuous on X. Furthermore, since each $h_p, n(x)$ is \mathfrak{F}_n -measurable, $h_p(x)$ is \mathfrak{F}_{∞} -measurable. Besides, $\{h_p, n\}$ is semi-martingale over the probability space (X, \mathfrak{X}, p) , and hence by the semi-martingale convergence it satisfies (3).

By Theorem 3 and by the well known theorem of McMillan, it holds that

(6)
$$H(p) = \int_X h_p(x) dp(x)$$

and $h_p(x)$ is S-invariant in the a.e. sense.

THEOREM 4. The functional H(p) over P_S is weakly* upper-semicontinuous, where the continuity is one with respect to the weak topology as functional over the Banach space C(X).

Proof. By the proof of Theorem 3, for every $p \in P_S$

$$\int_{\mathcal{X}} h_p(x) dp(x) (= H_n(p), say) \downarrow \int_{\mathcal{X}} h_p(x) dp(x) = H(p) \qquad (n \to \infty)$$

and hence it is sufficient to prove the weak* continuity of $H_n(p)$. But this follows immediately from that

$$H_n(p) = -\sum_{U \in \mathcal{Z}} \int_X C_U(x) \log P_p(U \mid \mathcal{G}_n)(x) dp(x)$$

= $\sum_{U \in \mathcal{G}} \sum_{V \in \mathcal{G}_n} \left[p(U \cap V) \log p(V) - p(U \cap V) \log p(U \cap V) \right]_p$

and that every $U \in \mathfrak{T}$ and $V \in \mathfrak{T}_n$ are clopen where $\sum_{v \in \mathfrak{T}_n} \text{ means the summation}$ over atomic V in \mathfrak{T}_n .

4. Integral representation of amount of entropy by a universal function.

We shall show the theorem of Parthasarathy [7] for the present case. Assume the notations given in $\S3$.

THEOREM 5. For any clopen partition \mathfrak{G} , there exists universally a Borel measurable functions $h(x)=h(x, \mathfrak{G}, S)$ on X such that it is bounded, non-negative, S-invariant and satisfies

(7)
$$H(p) = \int_{X} h(x) \, dp(x) \quad \text{for every } p \in \boldsymbol{P}_{S}$$

(8)
$$h(x) = h_p(x)$$
 p-a.e. $x \in X$ and for every $p \in P_S$.

HISAHARU UMEGAKI

This function h(x) was introduced by Parthasarathy in case of $X=A^{I}$. The proof will be also done along his construction, combined with Theorems 2 and 3, in which use is made of the well-known theorem of Kryloff-Bogoliouboff relative to the ergodic decomposition of invariant measure, cf. Oxtoby [6]. Before the proof, we shall give a preliminary and several lemmas.

Let \mathfrak{U} be the field, of clopen sets, generated by $\{S^n U; U \in \mathfrak{F}, n=0, \pm 1, \pm 2, \cdots\}$, and \mathfrak{B} the σ -field of Borel sets generated by \mathfrak{U} . Putting $C_{\mathfrak{F}}$ the uniformly closed linear subspace of C(X) generated by $\{C_{\sigma}; U \in \mathfrak{U}\}$, then $C_{\mathfrak{F}}$ is uniformly separable and has a countable dense subset $\{f_n\}_{k=1}^{\infty} \subset C_{\mathfrak{F}}$. Putting

$$d(x, y) = \sum_{n=1}^{\infty} \frac{|f_n(x) - f_n(y)|}{2^n} ||f_n||, \qquad x, y \in X,$$

 $d(\cdot, \cdot)$ is a quasi-metric on X, and denote $x \sim y$ $(x, y \in X)$ if and only if d(x, y) = 0. Moreover, put $\tilde{X} = X/\sim$ the quotient space of X with respect to the equivalence relation \sim and put

$$\tilde{d}(\tilde{x}, \tilde{y}) = d(x, y)$$
 for each pair $x, y \in X$,

where $\tilde{x} (x \in X)$ is the class containing $x \in X$. Then (\tilde{X}, \tilde{d}) is a compact metric space, the canonical mapping $x \to \tilde{x}$ from X onto \tilde{X} is continuous, and $C_{\mathfrak{X}}$ is isomorphic with $C(\tilde{X})$ under the isomorphism $f \in C_{\mathfrak{X}} \to \tilde{f} \in C(\tilde{X})$ defined by that, for each $x \in X$

(9) $f(y) = \tilde{f}(\tilde{x})$ for every $y \in \tilde{x}$.

Furthermore, $\mathfrak{B} = \{\tilde{B}; B \in \mathfrak{B}\}$ ($\tilde{B} = \{\tilde{x} \in \tilde{X}; x \in B\}$) is the σ -field of all Borel sets in \tilde{X} , and hence the function $\tilde{f}(\tilde{x})$ defined by (9) is Borel measurable on \tilde{X} if and only if f(x) is \mathfrak{B} -measurable on X. Putting $\tilde{S}: \tilde{x} \to (Sx)^{\sim}$, which is well defined mapping on X onto \tilde{X} because d(x, y) = 0 if and only if d(Sx, Sy) = 0, then \tilde{S} is a homeomorphism on \tilde{X} .

LEMMA 1. For any non-negative linear functional ρ on $C_{\mathbb{F}}$ with norm one, there corresponds a probability measure μ_{ρ} over the measurable space (X, \mathfrak{B}) such that

(10)
$$\rho(f) = \int_{\mathcal{X}} f(x) \, d\mu_{\rho}(x) \quad \text{for every } f \in C_{\mathfrak{F}}.$$

Proof. This follows from the Riesz theorem. Putting $\tilde{\rho}(\tilde{f}) = \rho(f)$, $f \in C_{\mathfrak{A}}$, then $\tilde{\rho}$ is a non-negative linear functional on $C(\tilde{X})$ with norm one and hence there exists a regular probability measure $\mu_{\tilde{\rho}}$ on \tilde{X} such that

(11)
$$\widetilde{\rho}(\widetilde{f}) = \int \widetilde{f}(\widetilde{x}) d\mu_{\widetilde{\rho}}(\widetilde{x}) \quad \text{for every } \widetilde{f} \in C(\widetilde{X}).$$

Put $\mu_{\rho}(B) = \mu_{\tilde{\rho}}(\tilde{B})$ for every $B \in \mathfrak{B}$, then $\mu_{\rho}(\cdot)$ is a regular probability measure over (X, \mathfrak{B}) and (10) follows from (11).

LEMMA 2. If the functional ρ given in Lemma 1 is S-stationary, i.e. $\rho(Sf) = \rho(f) ((Sf)(x) = f(Sx))$, then the corresponding measure μ_{ρ} is S-invariant.

22

Indeed, this follows immediately from that

$$\mu_{\rho}(S^{-1}V) = \rho(SC_V) = \rho(C_V) = \mu_{\rho}(V) \quad \text{for every } V \in \mathfrak{U}.$$

Now, we refer, as Parthasarathy [7], the notion of Kyloff-Bogoliouboff's (K-B, say) theorem; cf. Oxtoby [6]. Denote

$$M_{x,n}(f) = \frac{1}{n} \sum_{k=1}^{n} f(S^k x) \quad \text{for each } x \in X \text{ and } f \in C_{\mathcal{Z}},$$

 $n=1, 2, \cdots$. If the limit of $M_{x,n}(f)$ $(n\to\infty)$ exists for every $f \in C_{\mathbb{R}}, =M_x(f)$ say, then it is non-negative and S-stationary linear functional, with norm one, on $C_{\mathbb{R}}$. Such an $x \in X$ is called a *quasi-regular point* in X relative to $C_{\mathbb{R}}$. Denote Q the set of all such points $x \in X$. Then, by Lemma 2, for each $x \in Q$, there corresponds an Sinvariant measure $m_x = \mu_{M_x}$ over (X, \mathfrak{B}) such that

(12)
$$M_x(f) = \int_X f(y) \, dm_x(y) \quad \text{for every} \quad f \in C_{\mathcal{B}},$$

and m_x satisfies

(13)
$$m_x(B) = m_{Sx}(B)$$
 for every $B \in \mathfrak{B}$ and for every $x \in Q$.

If m_x is ergodic with respect to S over (X, \mathfrak{B}) , then x is called a *regular point* in X relative to $C_{\mathfrak{F}}$. Denote R the set of all regular points in X. Then K-B theorem implies that

(14)
$$Q \in \mathfrak{B}, R \in \mathfrak{B} \text{ and } p(Q) = p(R) = 1$$
 for every $p \in P_{\mathfrak{S}}$.

Indeed, since \tilde{X} is compact metric space with homeomorphism \tilde{S} , and since for each $x \in X$

$$M_{x,n}(f) = \frac{1}{n} \sum_{k=1}^{n} \widetilde{f}(\widetilde{\mathbf{S}}^{k} \hat{\boldsymbol{x}}) \quad \text{for every} \quad \widetilde{f} \in C(\widetilde{X}),$$

and \tilde{Q} or \tilde{R} are the sets of all quasi-regular or regular point in \tilde{X} relative to $C(\tilde{X})$, respectively, and both \tilde{Q} , \tilde{R} are Borel sets in \tilde{X} and invariant measure one, i.e., $\tilde{p}(\tilde{Q}) = \tilde{p}(\tilde{R}) = 1$ for every $p \in \mathbf{P}_S$ (cf. Oxtoby [6], (2, 4)), where \tilde{p} is the \tilde{S} -invariant and regular probability measure over \tilde{X} defined by $\tilde{p}(\tilde{B}) = p(B)$, $B \in \mathfrak{B}$, that is, (14) holds.

LEMMA 3. For each bounded \mathfrak{B} -measurable functions f on $X_{i}^{(1)}$

(15)
$$\int_{X} f(x) dm_r(x) = f^{\varepsilon}(r) \quad say,$$

¹⁾ The mapping $f \rightarrow f^{\mathfrak{g}}$, defined over the Banach space of all bounded \mathfrak{B} -measuable functions B(X) (with sup-norm) into itself, coincides with the concept of the expectation in the sense of Nakamura-Turumaru [5] and also the conditional expectation in the sense of Umegaki [8].

 $(f^{\mathfrak{g}}(r)=M_r(f) \text{ if } f \in \mathbb{C}_{\mathbb{H}})$, is a bounded, \mathfrak{B} -measurable and S-invariant function over R, and it satisfies

(16)
$$\int_{\mathcal{X}} f(x) \, dp(x) = \int_{\mathcal{R}} f^{\bowtie}(r) \, dp(r) = \int_{\mathcal{R}} \left(\int_{\mathcal{X}} f(x) \, dm_{r}(x) \right) dp(r).$$

This follows from K-B Theorem (cf. [6], (2.6)) that, for $r \in R$

$$f^{\mathfrak{g}}(r) = \int_{\widetilde{X}} \widetilde{f}(\widetilde{x}) \, dm_{\widetilde{r}}(\widetilde{x}), \quad = \widetilde{g}(\widetilde{r}) \quad \text{say,}$$

and \tilde{g} is Borel measurable over \tilde{R} , and that

$$\int_{\widetilde{R}} \widetilde{g}(\widetilde{r}) d\widetilde{p}(\widetilde{r}) = \int_{\widetilde{\mathcal{X}}} \widetilde{f}(\widetilde{x}) d\widetilde{p}(\widetilde{x}).$$

The S-invariance of $f^{\mathfrak{g}}(x)$ follows from (13).

Proof of Theorem 5. Put $\mathbf{P}'_{\mathbb{S}}$ be the set of all S-invariant probability measures over the measurable space (X, \mathfrak{B}) . Then the theorems and their proofs in §3 hold for p, q, \cdots in $\mathbf{P}'_{\mathbb{S}}$ without chaining their statements. Since $m_r \in \mathbf{P}'_{\mathbb{S}}$ for each $r \in R$, the function $h_{m_r}(x)$ over X can be defined by (5). Putting

(17)
$$h(r) = \begin{cases} \int_{x} h_{m_r}(x) \, dm_r(x) & \text{for } r \in R, \\ 0 & \text{for } r \notin R, \end{cases}$$

(i.e., $h(r) = H(m_r)$ for $r \in R$), then $h(\cdot)$ is bounded, S-invariant and \mathfrak{B} -measurable. Indeed, put $h_n(r, x) = h_{m_r, n}(x)$ ($r \in R$) and put

$$g_n(r) = \int_X h_n(r, x) \, dm_r(x) = -\sum_{U \in \mathcal{J}} \sum_{V \in \mathcal{J}_n} m_r(U \cap V) [\log m_r(U \cap V) - \log m_r(V)].$$

Whence, since $m_r(W)$ (= $M_r(C_W)$, $W \in \mathbb{1}$) is \mathfrak{B} -measurable on R, so is $g_n(r)$ on R. Furthermore, as in the proof of Theorem 3, since $h_n(r, x) \downarrow h_{m_r}(x)$, =h(r, x) say,

$$h(r) = \int_{X} h(r, x) \, dm_r(x) = \lim_{n \to \infty} g_n(r) \qquad (r \in R)$$

and h(r) is \mathfrak{B} -measurable on R and hence h(x) is so on X. The boundedness of h(x) follows from (5) for $p=m_r$ and the definition (17) of h(x), and S-invariance follows from $m_r=m_{\mathrm{Sr}}$.

As Parthasarathy ([7], Theorem 2.6), for each $U \in \mathfrak{G}$, $V \in \mathfrak{G}_{\infty}$ and $p \in P_{S}$, and for every fixed $q \in P_{S}$, $q \ll p$,

$$q(U \frown V) = \int_{V} P_q(U \mid \mathfrak{T}_{\infty})(x) \, dq(x) = \int_{V} P_p(U \mid \mathfrak{T}_{\infty})(x) \, dq(x) \qquad \text{(by Theorem 2)}$$

MESSAGE SPACE AND INTEGRAL REPRESENTATION OF ENTROPY

$$= \int_{R} \left(\int_{V} P_{p}(U \mid \mathcal{G}_{\infty})(x) \, dm_{r}(x) \right) dq(r) \qquad \text{(by Lemma 3)}$$

and

$$q(U \frown V) = \int_{X} C_{U \frown V}(x) \, dq(x) = \int_{R} (C_{U \frown V})^{\bowtie}(r) \, dq(r) = \int_{R} m_{r}(U \frown V) \, dq(r)$$
$$= \int_{R} \left(\int_{V} P_{m_{r}}(U \mid \mathfrak{P}_{\infty})(x) \, dm_{r}(x) \right) dq(r) \qquad \text{(by Lemma 3).}$$

This and (13) imply that $P_p(U | \mathfrak{F}_{\infty})(x) = P_{m_r}(U | \mathfrak{F}_{\infty})(x)$ and

(18)
$$h_p(x) = h_{m_r}(x)$$
 for m_r -a.e. $x \in X$ and for each fixed $r \in R$

within *p*-a.e. r in R. Thus we obtain the required equality (7):

$$H(p) = \int_{\mathcal{X}} h_{p}(x) dp(x) = \int_{R} h_{p}^{u}(r) dp(r) = \int_{R} \left(\int_{\mathcal{X}} h_{p}(x) dm_{r}(x) \right) dp(r)$$
$$= \int_{R} \left(\int_{\mathcal{X}} h_{m_{r}}(x) dm_{r}(x) \right) dp(r) = \int_{R} h(r) dp(r) = \int_{\mathcal{X}} h(x) dp(x).$$

Besides, by Theorems 2, 3 and (7), whenever $q \ll p$ ($p, q \in \mathbf{P}_s$),

$$H(q) = \int_{X} h_{q}(x) \, dq(x) = \int_{X} h_{p}(x) \, dq(x) = \int_{X} h(x) \, dq(x),$$

hence

$$\int_X h(x)f(x)\,dp(x) = \int_X h_p(x)f(x)\,dp(x)$$

for every $f \in L^1(X, p)$, S-invariant. Since both h and h_p are S-invariant, (8) is obtained.

The function h(x) will be called *universal entropy function* associated with the clopen partition \mathfrak{F} and the homeomorphism *S*, and sometimes precisely denote $h(x)=h(x,\mathfrak{T},S)$. Let *L* be the Banach space of all bounded signed regular measures over *X* with the norm of total variation. Then putting

$$H(\xi) = \int_{\mathcal{X}} H(x) \, d\xi(x) \qquad \text{for every} \quad \xi \in L,$$

 $H(\cdot)$ is a bounded non-negative definite linear functional over L, and is S-stationary, i.e., $H(S\xi) = H(\xi)$ for every $\xi \in L$, where $S\xi \in L$ is defined by $(S\xi)(V) = \xi(S^{-1}V)$ for every Borel set V in X. The functional $H(\xi)$ over L coincides with the functional

HISAHARU UMEGAKI

 $H(\xi, \mathfrak{F}, S)$ in the paper [9],²⁾ and again it is called the *entropy functional* over **L** associated with a clopen patition \mathfrak{F} and a homeomorphism S.

It is the author's pleasure to acknowledge that he gets valuable discussions from Prof. M. Nakamura.

References

- BREIMAN, L., On achieving channel capacity in finite-memory channels. Ill. J. Math. 4 (1960), 246-252.
- [2] DIXMIER, J., Sur certains especes considérés par M. H. Stone. Sum. Bras. Math. 11 (1951), 1–32.
- [3] DIXMIER, J., Les algèbres d'opérateurs dans l'espace Hibertien. Paris (1957).
- [4] HALMOS, P. R., Entropy in ergodic theory, Univerity of Chicago (1959).
- [5] NAKAMURA, M., AND T. TURUMARU, Expectations in an operator algebra. Tôhoku Math. J. 6 (1954), 189-204.
- [6] OXTOBY, J. C., Ergodic sets. Bull. Amer. Math. Soc. 58 (1952), 116-136.
- [7] PARTHASARATHY. K. R., On the integral representation of the rate of transmission of a stationary channel. Ill. J. Math. 5 (1961), 299-305.
- [8] UMEGAKI, H., Conditional expectation in an operator algebra. Tôhoku Math. J.
 6 (1954), 177-181.
- [9] UMEGAKI, H., A functional method on amount of entropy. Kodai Math. Sem. Rep. 15 (1963), 162-175.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.

26

²⁾ In the preceding paper [9], §4, it was assumed that if the measurable space (X, \mathfrak{X}) with measurable transformation S has denombrable generator, then it has maximal S-invariant probability measure relative to the ordering \ll of absolute continuity. However, in general, this does not hold, for example, when S is identity mapping from X onto X, X=the interval [0, 1] and \mathfrak{X} is σ -field of Borel subsets. Therefore, it should be corrected such as

P. 168, line 3~line 4 "Then P(X, S) is necessarily...dominates all $p \in P(X, S)$ " reads such as

[&]quot;Assume that there exists an S-invariant probability measure μ , and denote P(X, S) (resp., L(X, S)) the sets of all S-invariant 'probability' (resp., 'bounded signed') measures p, \dots (resp., ξ, \dots) which are absolutely continuous with respect to μ ."

Hence in the parts below in [9] the dominatedness for the sets P(X, S) and L(X, S) of measures should be assumed.

However, the measurable space (X, \mathfrak{X}) given in the paper [9], can be represented by a totally disconnected compact space in preserving the measurability structure and where the measurable transformation S is mapped to a homeomorphism. Therefore, by Theorem 5 and the discussions in §4 of the present paper, the theorems in [9] hold without assuming the denombrability of the measurable space.