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1. Introduction.

In this paper we shall clarify a topological structure of the alphabet-message
space of the memory channel in information theory, and study the integral repre-
sentation of entropy amount from a general view point of a certain generalized
message space. In order to apply to the general theory of entropy, the present
fashion will develop a message space into more general treatment, in which
the basic space X will be assumed to be totally disconnected. As will be shown
in §2, the alphabet-message space A1 is a totally disconnected compact space, and
in § 3, a kind of theorem relative to sufficiency for a (/-field generated by a partition
and a homeoporphism (cf. Theorem 2) and the others (Theorems 3 and 4) are concerned
with the semi-continuity of entropy amount which are general form of Breiman's
Theorem [1]. Finally, in §4, it will be discussed about the function h(x) found by
Parthasarathy [7] whose integral defines the corresponding amount of entropy (cf.
Theorem 5). It is also shown that the results in [9] can be generalized (cf. the
footnote 2) below). The function h(x) may give useful and interesting tool for the
general theory of entropy of measure preserving automorphism or flow over a
probabiltiy space.

2. Structure of message space.

A Hausdorff space X is called totally disconnected if X has a base consisting
of closed-open sets, clopen say. In such a space X, a measure μ is called normal,
if μ is regular and the mass of every non-dense set is zero. The space X is called
hyper-Stonean, if it is compact and the union of carriers of all finite normal
measures is dense in X. Such a space X is characterized by the existence of a
normal measure μ (not necessarily finite) on X such that μ(G)>0 for every non-
empty open set G (cf. Dixmier [2]). Whence, the Banach space C(X) of real con-
tinuous functions on X, with sup-norm | ] ||, is isometrical and lattice isomorphic
to the conjugate space of ZΛspace U(X, μ). It is known that, these concepts on
X are closely related with the theories of Boolean algebras and especially of operator
algebras (=von Neumann algebras, cf. Dixmier [3]).
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In this section, for the sake of functional analysistic necessity and interest, it
will be investigated on the topological structure of the space A1, denned below.

Let A be an alphabet, i.e., a set consisting of finite number of elements. Put
Ak=A (&=0, ±1, ±2, ••-) and denote A1 = X^=-MAie the doubly infinite product set.
A1 will be called message space. In the memory channel, the input space of alphabet
information source is taken as the measurable space (A1, 91) where 9ί is the <τ-field
generated by all finite dimensional cylinder sets in A1.

Since each coordinate space Ak is a finite set, they are compact metric spaces
relative to each discrete topology, hence by Tychonoffs theorem, A1 is also
compact with countable base relative to the weak product topology and is metrizable.
For each point aeA1 = (•••, <z_ι, a0, aίy a2, •••), denote

(1) [am, ••-, an] (m ^ n)

the (n—m+'L) -length message, say finite message, i.e., the set of all i^A1 whose
k-th coordinate equals to a* (k=m, --•, n). The messages are obviously clopen. Let
U be any non-empty open set in A1. Then there exists a finite set of integers
/c/ such that the projections ρrk(U) of U into k-th coordinate spaces Ak, kzl—j,
are the whole spaces Ak, respectively. Consequently, putting m=min{&; &€/} and n
=max{&; &€/}, then for any fixed αeC7, [am, •••, an] is contained in U. Thus we
obtain the following

THEOREM 1. The message space A1 is a compact metric and totally disconnected
space relative to the product topology, in which the shift is a homeomorphism on A1

and the σ -field 91 consists of all Borel sets. Especially every finite message is a clopen
set and the family of all finite messages is base in A1 as its topology. Furthermore
A1 is not hyper-Stonean.

Since the shift is obviously continuous and one to one on A1 onto itsef, it is
homeomorphism on A1. Hence the proof is remained only in the last part. If A1

is hyper-Stonean, then C(AT) is identified with the conjugate space of Ll(A*, μ) for
certain normal measure μ on A1. Let {En} be an infinite sequence of mutually
disjoint and non-empty clopen sets in A1, and let Mbe the weakly* clopen subspace
of C(A*) generated by the sequence of the characteristic functions {CEn}> where
the closure is concerning the weak topology as conjugate space. While M is
separable relative to the norm-topology, because so is C(Ar). Therefore M must
be finite dimensional. This is a contradiction. Thus A1 is not hyper-Stonean.

3. Properties of entropy functional.

In order to devolope the theory of entropy over the message space A1 from a
general point of view, we shall take as an information basic space a totally discon-
nected compact Hausdorff space X with a fixed homeomorphism S, which contains
the case of A1 as a special case. Here, every colopen set in X and the homeomor-
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phism S are corresponding to the finite message and the shift in A1, respectively.
Denote 36 the σ-field of all Borel sets in X. Let Ps be the set of all S-invariant

regular probability measures p, q, ••• on X. Let 3 be a fixed covering of X con-
sisting of clopen sets such as any pair £7, C7'€3 being disjoint. Such an 3 is always
finite by the compactness of X and it will be called clopen partition of X. As in
§2 of [9], putting S^VSU S^S or 3oo=V£=12«. the σ -field generated by {S^SJJU
or {3w}£=ι, respectively. Then the entropy H(p)=H(p, ^, S) of each />€PS is defined
by the limit

H(p) = - lim — Σ />(£/) logp(U) (n^oo)
n u

where Σu means the summation over U of the atomic sets in 3V3w-ι
For any pePs, denote Pp(U\^n) and PP(U\^^} the conditional probability

functions of £/€3 conditioned by 2<n and 3«> in the measure space (X, 36, />)» res-
pectively, where 36 is the σ-field of all Borel sets, and for a pair p, <?ePs, denote
q<pj when q is absolutely continuous with respect to p. Then we prove

THEOREM 2. ,F0r «wy pair p, <?ePs with q<p, it holds that

( 2 ) PP(U I <3oo)(x)=Pq(U I ScoXtf) 0-β.e. #eX <wwί /or ez βrv Z/€3.

Proc»/ Putting SB the σ-subfield generated by 3 and S"*3, (*=±1, ±2, •••),
then, since (JY", S3, />) is separable for each fixed />€ PS, from the generic property of
SB, it follows that every S-invariant set B€$$ belongs to 2oo (mod^). Besides for every
/>ePs, putting p' = (p\33), the restriction of p over S, then // is S-invariant pro-
bability measure over (X, 33) and PP(U\300)=PP,(U\ 2oo) for every C/€3 on C^ the
carrier of /) over S. Since Cp is S-invariant, it is SL-measurable. Taking p, ^ePs,
q<p, then ^'</>' and the Radon-Nikodym derivative dq'ldp' is S-invariant and SB-
measurable, and hence S^-measurable (mod p). Therefore for every FeSloo and
every C/€3

Cv(x) %- (x] dp(x)ap

= PP(U I 3co)(Λ?) - ( Λ ? ) rf^(Λ?) = ( PP(U IP

F

and (2) holds, where Cu(x) is the characteristic function of U.
This theorem implies that 2oo is a sufficient subfield for the set {/>'; />ePs} of

measures on CX", S) (in the sense of Halmos-Savage).

THEOREM 3. For each />ePs, there exists, uniquely within p-a.e., a bounded,
upper-semicontinuous and 2 ̂ -measurable function hp(x) on X such that

( 3 ) hp(x) = - Σ Pp(U I Soo) log PP(U I 3oo)(Λ?) p-a.e.
U£%

Proof. Since each Fe2w is clopen, PP(t7| 3»)€C(JC). Putting

(4) Λp, »(*) = - Σ
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then hp,n£C(X) and the sequence {hp, n } n = ι i s monotone decreasing, by the Jensen's
inequality, say

( 5 ) hp(x) = lim hp, n(x\
n-*<χ>

and hp(x) is upper-semicontinuous on X. Furthermore, since each hp,n(x) is Sin-
measurable, hp(x) is Soo measurable. Besides, {hpιn} is semi -martingale over the
probability space (X, #, />), and hence by the semi-martingale convergence it satis-
fies (3).

By Theorem 3 and by the well known theorem of McMillan, it holds that

(6) H(p)=\ hp(x)dp(x)
Jx

and hp(x) is S-inυariant in the a.e. sense.

THEOREM 4. The functional H(p) over PS is weakly* upper-semicontinuous,
where the continuity is one with respect to the weak topology as functional over the
Banach space C(X).

Proof. By the proof of Theorem 3, for every

hp, n(x) dp(x) (= Hn(p\ say) j ( hp(x) dp(x)=H(p)

and hence it is sufficient to prove the weak* continuity of Hn(p\ But this follows
immediately from that

Σ \ρ(Un V) log ρ(V)-ρ(Un V) log p(un V) 1
v^n[_ J

and that every f/€2 and VeSn are clopen where Σvζ%n means the summation
over atomic V in 2n.

4. Integral representation of amount of entropy by a universal function.

We shall show the theorem of Parthasarathy [7] for the present case. Assume
the notations given in §3.

THEOREM 5. For any clopen partition 2', there exists universally a Borel mea-
surable functions h(x)=h(x, 3, S) on X such that it is bounded, non-negative, S-
invariant and satisfies

(7) H(p)= ( h(x) dp(x) for every psPs
JX

(8) h(x)=hp(x) p-a.e. xzX and for every
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This function h(x) was introduced by Parthasarathy in case of X=AΣ. The
proof will be also done along his construction, combined with Theorems 2 and 3,
in which use is made of the well-known theorem of Kryloff-Bogoliouboff relative to
the ergodic decomposition of invariant measure, cf. Oxtoby [6]. Before the proof,
we shall give a preliminary and several lemmas.

Let U be the field, of clopen sets, generated by {SnU; £/€3, «=0, +1, ±2, •••} ,
and 23 the <τ-field of Borel sets generated by II. Putting Cg the uniformly closed
linear subspace of C(X) generated by {Cu', f/€ll}, then Cg is uniformly separable
and has a countable dense subset {/w}fc=iCCg. Putting

ίj

d( , •) is a quasi-metric on X, and denote x~y (x, yεX) if and only if d(x, y)=Q.
Moreover, put X=X/~ the quotient space of X with respect to the equivalence
relation ~ and put

3(x, y) = d(x, y) for each pair x,y€X,

where x (xzX) is the class containing x$X. Then (X, 3) is a compact metric space,
the canonical mapping x^>x from X onto X is continuous, and C$ is isomorphic
with C(X) under the isomorphism /€ Cg-^/e C(Z ) defined by that, for each

(9) /(2/)=7(#) for every yea?.

Furthermore, §={£; ^e^} (5 = {^el; ^€^}) is the σ-field of all Borel sets in X,
and hence the function f ( x ) defined by (9) is Borel measurable on X if and only if
f(x) is 53-measurable on X. Putting §: x-*(Sxy, which is well defined mapping on
X onto X because d(x, 2/)=0 if and only if d(Sx, Sy)=0, then S is a homeomor-
phism on X.

LEMMA 1. For any non-negative linear functional p on C% with norm one,
there corresponds a probability measure μp over the measurable space (X, 33) such
that

(10) P(/)=\ f(x)dμp(x} for every
J x

Proof. This follows from the Riesz theorem. Putting p(f) = p(f),fsC&, then p
is a non-negative linear functional on C(^) with norm one and hence there exists
a regular probabiltiy measure μ$ on X such that

(11) P(n = ( 7(x)dμ^x) for every fzC(X).
j

Put μp(B)=μp(B) for every B€?&, then μp( ) is a regular probability measure over
(X, 53) and (10) follows from (11).

LEMMA 2. // the functional p given in Lemma 1 is S-stationary, i.e. p(Sf)
=p(f) ((Sf)(x)=f(Sx)), then the corresponding measure μp is S-invanant.
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Indeed, this follows immediately from that

μP(S-lV) = p(SCv)=p(Cr)=μP(V) for every Fell.

Now, we refer, as Parthasarathy [7], the notion of Kyloff-BogolioubofPs (K-B,
say) theorem; cf. Oxtoby [6]. Denote

Mx, „(/)= — Σ f(Skx} for each xsX and /e C%,
n k=ι

n=l, 2, •••. If the limit of Mx,n(f) (n->oo) exists for every /eCa, ~Mx(f) say, then
it is non-negative and S-stationary linear functional, with norm one, on C&. Such
an xzX is called a quasi-regular point in X relative to Cg. Denote Q the set of all
such points x$X. Then, by Lemma 2, for each xςQ, there corresponds an S-
invariant measure mx=μMχ over (X, 33) such that

(12) Mx(f) = \ f(y)dmx(y) for every /eCa,
JJΓ

and nix satisfies

(13) mx(B) = mSχ(B) for every Bc%$ and for every xsQ.

If Ma; is ergodic with respect to S over (X, §8), then a? is called a regular point in
^Γ relative to CSE. Denote R the set of all regular points in X. Then K-B theorem
implies that

(14) Qe33, RεϊQ and p(Q)=p(R} = l for every pePs.

Indeed, since X is compact metric space with homeomorphism §, and since for each

Mx,n(f)=~Σf(Sk^ for every feC(X),
n k=ι

and Q or R are the sets of all quasi-regular or regular point in X relative to C(X),
respectively, and both Q, R are Borel sets in X and invariant measure one, i.e.,
$(Q)=$(R)=1 for every psPs (cf. Oxtoby [6], (2.4)), where p is the § -invariant and
regular probability measure over X defined by p(B)=p(B), B^B, that is, (14) holds.

LEMMA 3. For each bounded 53- measurable functions f on

(15) { f(x)dmr(x),=f*(r) say,
J JΓ

1) The mapping f—>f*, defined over the Banach space of all bounded 23-measuable
functions B(X) (with sup-norm) into itself, coincides with the concept of the expectation in
the sense of Nakamura-Turumaru [5] and also the conditional expectation in the sense of
Umegaki [8].
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(f*(f)=Mr(f) if f$C%\ is a bounded, ^-measurable and S-invariant function over
R, and it satisfies

(16) ( f(x)dp(x)=( f\r)dp(r}=\ (( f(x)dmr(x}\dp(r).
JX JR J R\J X /

This follows from K-B Theorem (cf. [6], (2. 6)) that, for rsR

f*(r)=\ f(x)dm~r(x\ =g(r) say,
Jx

and g is Borel measurable over R, and that

= ( f(x)dp(x).
JX

The S-invariance of f*(x) follows from (13).

Proof of Theorem 5. Put P's be the set of all S-invariant probability measures
over the measurable space (X, 53). Then the theorems and their proofs in § 3 hold
for p, q, •" in Prs without chainging their statements. Since mr€P's for each r$R,
the function hmr(x) over X can be defined by (5). Putting

\ hmr(x)dmr(x) for rεR,
(17) h(r)=γx

0 for r$R,

(i.e., h(r)=H(mr) for rzR), then h( ) is bounded, S-invariant and 93-measurable.
Indeed, put hn(rt x)=hmr,n(x) (rsR) and put

gn(r)=( hn(r,x)dmr(x)=-Σ Σ mr(U^V)[\ogmr(U^V)- log mr(V)].
JX ^€3 V€3n

Whence, since mr(W) ( = Mr(Cw), W^U) is 53-measurable on R, so is gn(r) on R.
Furthermore, as in the proof of Theorem 3, since hn(r, x) [ hmr(x\ =h(r, x) say,

h(r)=\ h(r, x)dmr(x)= lim gn(r)
J X n^°°

and h(r) is 23-measurable on R and hence h(x) is so on X. The boundedness of
h(x) follows from (5) for p=mr and the definition (17) of h(x), and S-invariance
follows from mr=m$r.

As Parthasarathy ([7], Theorem 2. 6), for each E/eS, Fe^oo and pePs, and for
every fixed qePs,

qF
= Pq(U I SJCa?) £/g(a?)= PP(C7 1 2«o)(α;) dg(a?) (by Theorem 2)
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S /Γ \
\ Pp(U I SCO)(Λ?) dmr(x) }dq(r) (by Lemma 3)

R \J V I

and

V) = ( Cu~v(x) dq(x) = ( (Cu~v}*(r) dq(r) = ( mr(U^ V) dq(r)
JX JR JR

= ( (( Pmr(U\300)(x)dmr(x)}dq(r) (by Lemma 3).
JR\JV I

This and (13) imply that PP(U\ 3co)(a?)=Pmr(£/ <£J(x) and

(18) hp(x)=hmr(x) for mr-a.e. x^X and for each fixed

within p-a.e. r in R. Thus we obtain the required equality (7):

H(p)=\ hp(x)dp(x)=( h*(r)dp(r) = { (( hp(x) dmr(x) }dp(r)
J X JR JR\JX /

= { (\ hmr(x)dmr(x)}dp(f)=\ h(r)dp(r)={ h(x)dp(x).
JR\JX I JR JX

Besides, by Theorems 2, 3 and (7), whenever q<p (p, qePs),

Γ Γ Γ
H(q) = \ hq(x) dq(x) = \ hp(x) dq(x) = \ h(x) dq(x),

J X J X J X

hence

h(x)f(x)dp(x)=

for every f$Ll(X, p), S-invariant. Since both h and hp are S-invariant, (8) is obtained.

The function h(x) will be called universal entropy function associated with the

clopen partition 3 and the homeomorphism S, and sometimes precisely denote

h(x)=h(x, 2, S). Let L be the Banach space of all bounded signed regular meas-

ures over X with the norm of total variation. Then putting

H(ζ) = ( H(x)dξ(x) for every

//"(•) is a bounded non-negative definite linear functional over L, and is S-stationary,

i.e., H(Sξ)=H(ξ) for every feL, where SfeL is defined by (Sξ)(V)=ξ(S~lV) for

every Borel set V in X. The functional H(ζ) over L coincides with the functional
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H(ξ, 3, S) in the paper [9],2) and again it is called the entropy functional over L
associated with a clopen patition 2 and a homeomorphism S.

It is the author's pleasure to acknowledge that he gets valuable discussions
from Prof. M. Nakamura.
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2) In the preceding paper [9], § 4, it was assumed that if the measurable space (X, £)
with measurable transformation S has denombrable generator, then it has maximal S-in-
variant probabitity measure relative to the ordering < of absolute continuity. However,
in general, this does not hold, for example, when S is identity mapping from X onto X,
J£=the interval [0, 1] and & is σ-field of Borel subsets. Therefore, it should be corrected
such as

P. 168, line 3—line 4 "Then P(X,S) is necessarily...dominates all peP(X, S)" reads
such as

" Assume that there exists an S-invariant probability measure μ, and denote P(X, S)
(resp., L(X, S)) the sets of all S-invariant ' probability' (resp., * bounded signed') measures
p, ••• (resp., £, •••) which are absolutely continuous with respect to μ"

Hence in the parts below in [9] the dominatedness for the sets P(X, S) and L(X, S) of
measures should be assumed.

However, the measurable space (X, 36) given in the paper [9], can be represented by a
totally disconnected compact space in preserving the measurability structure and where
the measurable transformation S is mapped to a homeomorphism. Therefore, by Theorem
5 and the discussions in § 4 of the present paper, the theorems in [9] hold without assum-
ing the denombrability of the measurable space.




