
ON SUMMABILITIES OF DOUBLE FOURIER SERIES

BY YOSHIMITSU HASEGAWA

1. Let f(x, y) be a Lebesgue-integrable function of period 2π with respect
to each x and y. Let the double Fourier series of f(x, y) be

(1) ®(f) = ΣAm9n(x,y)9
m,w = 0

where

1
^T-O) o(«£j y)—~τ~β°> °

Amy o(x, y)=-^-(am, o cos mx-\-bm, 0 sin mx),
Δ

Ao, n(x9 y)=~^-(aoy n cos ny+bo, n sin ny),

A™, n(x, y)—am, n cos mx cos ny+bm, n cos mx sin WT/

+£m, n sin w# cos ny-{-dm, n sin mΛ? sin wy,

m and n being positive. Further, let the conjugate double Fourier series of f(x, y)

be

( 2 ) @(/) = Σ ^m, n(ΛT, 2^),
m,n = l

where

Am, n(Λ?, y) = am, n sin mΛ? sin ny—bmj n sin mΛ? cos wy

—cm, n cos #20? sin ny+dm, n cos w# cos ny.

The first arithmetic means σm, n(x, y) of the series (1) are given by the formula

(3)

t,y+s)Km(t)Kn(s)dtds,

where Km(t) is the Fejer kernel
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., ,Λ 2 f sin i («*+!)*

satisfying the inequalities

(5) \Kn(f)\<2m,

(6) \Km(f)\<Clm-H-z (—^\t\^π; CΊ an absolute const.Y
\ m /

Further, the first arithmetic means σm, n(x, y) of the series (2) are given by the
formula

m n

p=l q = 1

(7)
= Λ Γ Γ f(x+t,y+s)Km(t)Kn(s)dtds,

ft J — π J — π

where Km(t) is the conjugate Fejer kernel

Let

J^m(0=-y- cot-^-ί-^α).

Then we have

(9) |£m(f)l^w for all ί,

(10) \Hm(t)\^C,t~l for i ^ l ^ -

and

(11) IffmίOI^Cam-1*-2 for —

C2 being an absolute constant. The integral

S (m)jr C(n)τr

\ gF(Λ?,
— π J — JT

will mean the one extended over the set

?,y); — ^\/yyι

We shall consider continuous functions f(x, y) of period 2π with respect to each x
and y, satisfying a Lipschitz condition, and we say that f(x, y) belongs to Lip(α, ^9)
if
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(13) \f(x+t, y+s)-f(x, y)\ =O(|f |«+W)

uniformly in the point (x, y) as t and 5 tend to zero independently of each other,
where 0<α^l and 0</3^1. We shall say that /(#, y) belongs to lip(α, β) if

(13)' \f(x+t,y+s)-f(x,y)\=o(\t\*+\s\e)

uniformly in the point (x, y) as t and 5 tend to zero independently of each other,
where 0<α^l and 0</3^1.

As regards the first arithmetic means of Fourier series in the one-dimensional
case, the following result is known, (see Zygmund [1], p. 91.)

THEOREM. Let σn(x) be the first arithmetic means of ©(/). I f f e L i p a , 0<α<l,
then

) uniformly in x.

If α=l, then

We shall generalize this theorem in the two-dimensional case.

THEOREM 1.1. a) If a continuous function f(x, y) of period 2π with respect
to each x and y belongs to Lip(α, /3), where 0<α<l and 0</3<1, then

(14) \σm, n(x, y)-f(x, y)\ = O(m-"+n-J)

uniformly in (x, y) as m and n tend to infinity independently of each other.
Ifa=β=l, then

(15) \σm, n(x, y}—f(x, y)\ = O(m-1 log m+n~llog n)

uniformly in (x, y) as m and n tend to infinity independently of each other.
b) If a continuous function f(x, y) of period 2π with respect to each x and y

belongs to lip(ct, β), where 0<α<l and 0</3<1, then we can replace the symbol
"O" of the formula (14) by the symbol "o".

If a=β=l, then we can replace the symbol "O" of the formula (15) by the
symbol "o".

Proof, a) First, we shall prove (14). From (3), we have

(16) π*{σm, n(x, y}-f(x, y)} = Γ Γ λ*> y(t, s)Km(t)Kn(s) dtds,
Jo Jo

where

4, y(t, s)=f(x+t, y+s)+f(x-t, y+s)+f(x+t, y-s)+f(x-t, y-s)-4f(x, y).

Since f ( x , y ) belongs to Lip(α,^θ), where 0<«<1 and 0</3<1,

uniformly in (x, y) as t and s tend to +0 independently of each other. Therefore,
from this, (5) and (6),
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π2\σm, n(χ,y)-f(χ,y)\

U l/TO pl/w p l / T O f j r Γ π Γl/n f*π Γπ \

\ +\ \ +\ +\ \ )\λχ,y(t,s)\Km(f)Kn(s)dtds
0 J O J 0 J 1/71 J I/TO J O J I/TO J l/?i /

S I/TO pi/Ti r»ι/TO( jr

\ O(fβ+s04w« Λrfs+ \ \ O(taJτs^2Cm n~l s~2 aids
0 Jθ Jo Jl/TO

+ \ nQ(ta-i-s^2Cίm-1t-2n dtds+\ \
J I/TO J o J I/TO J 1/n

uniformly in (x,y) as m and n tend to infinity independently of each other.
If a=β=l, we shall obtain (15) by the same method as in (14).
b) This will be proved by the same method as in a), q. e. d.

Further, we shall obtain the following theorem similar to Theorem 1.1 with
respect to σm, n

THEOREM 1.2. a) If a Lebesgue-integrable function f(xy y) of period 2π with
respect to each x and y satisfies

(17) \f(x+t, y+s)-f(x-t, y+s)-f(x+t, y-s)+f(x-t, y-s)\=O(\t\ \s\?)

uniformly in (x, y} as t and s tend to zero independently of each other, where 0<α
<1, and 0</3<1, then

I I r CTO)* c(n)ff /I 1 \ / 1 1 \

σn, n(x, y} -- ϊ \ \ f(x+t, 2/+5)( -rpcot-y-/ -̂ -cot-— 5 dtds
77 J-ff J-JΓ \ ^ ^ / \ ^ ^ /

(18)

uniformly in (x, y) as m and n tend to infinity independently of each other.
Ifa=β==lί then

I p(m> p(n> / I 1 \ / 1 1 \

σm,n(x,y) -- τ \ \ f(x-\-t)y-\~s)(-^-cot---t)(— -cot-— s ) dtds
π* J _ π J-π \ Z Z / \ Z Z /

(19)
= O(m"1log m+w'Πog w)

uniformly in (x, y) as m and n tend to infinity independently of each other.
b) // we replace the symbol "O" of the condition (17) by the symbol "o", then

we can replace the symbol "O" of the formula (18) by the symbol "o".
If a=β=I, then we can replace the symbol "O" of (19) by the symbol "o".

Proof, a) First we shall prove (18). Let

λ*, v(t, s)=f(x+t, y+s)-f(x-t, y+s)-f(x+t, y-s)+f(x-t, y-s).

From this and (7), we have

f 1 r(m> p e w ) *
π*\σm,n(x,y) -- ϊ \ \

\ n J-π J -π
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f i / » \ -

Jl/w

1 1 1 1
dtds

G l/TO pl/W (M/m P Γ pπ f

\ +\ \ +\ \0 JO JO Jl/Λ Jl/raJ

+ Γ Γ L, y(f , 5) I -Hn(s)~
Jl/m Jl/w I Z

4, say.

From (9), (17) and the definition of I*, y(f, 5) we have that

(21) |/ι|^ { m (l U O(ta s?)mn dtds^O(m-a «-/»)
Jo Jo

uniformly in (x, y) as m and n tend to infinity independently of each other. From
(9), (10), (11) and (17), we obtain that

ί
l/m Γπ

0 J l / T O

uniformly in (#, y) as m and n tend to infinity independently of each other.
Similarly, we have that

(23) \l3\

uniformly in (x, y) as m and n tend to infinity independently of each other.
Further, from (10), (11), and (17), we obtain that

f Γ
Jl/m Jl/n

(24)

uniformly in (x, y) as m and n tend to infinity independently of each other.
Therefore, from (20), (21), (22), (23) and (24), we obtain (18).

If α=/3=l, we shall obtain (19) by the same method as in (18).
b) This will be proved by the same method as in a), q. e. d.

2. We shall prove two theorems for the Abel summability of double Fourier
series.

Let f(x, y) be a Lebesgue-integrable function of period 2π with respect to each
x and y. Let the double Fourier series of f(x, y) be of the form (1). Further, let
the Abel means of the series (1) be

f(r, x] R,y)=Σ Am, n(x, y)rmRn, 0^r<l and 0^

(25)

^ f(x+t, y+s)P(r, t)P(R, s) dtds,=ΛΓ Γ7Z J-π J-n

where P(r,f) is Poissoα's kernel (1— >-2)/2(l— 2rcost+r2). For P(r,f), we have two
inequalities

(26) P(rf /)< _.
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and

(27) P(rf0

If P't(r, f) denotes the derivative of Poisson's kernel with respect to t, we have

(9^ p,,r (l-r2)rsin; (l-r2)rsin/
^ } ' *' } (l-2r cos ί+r2)2 {(l-r)2+4r(sin iO2} 2 *

Thus we have

(29) —

and

(30) 'fl'

We shall prove that Theorem 1.1 holds if we replace the first arithmetic means
tfm, n(x, y) by the Abel means f(r, x\ R, y). (In the one-dimensional case, see Salem
and Zygmund [2], p. 30, Lemma 1.)

THEOREM 2.1. a) If a continuous function f(x,y) of period 2π with respect
to each x and y belongs to Lip(α, β), where 0<α<l and 0</3<1, then

(31) |/(r, x; R, y)-f(x, y)\ =

uniformly in (x, y) as r and R tend to 1— 0 independently of each other.
If a=β=l, then

(32) |/(r, χ; R, y)-f(x, y)| = θ(l-

uniformly in (x, y) as r and R tend to 1— 0 independently of each other.
b) // a continuous function f(x, y) of period 2π with respect to each x and y

belongs to lip(α, β), where 0<α<l and 0</3<1, then we can replace the symbol
"O" of the formula (31) by the symbol "o"

If a=β—l, then we can replace the symbol "O" of the formula (32) by the
symbol "o".

Proof, a) First, we shall prove (31). From (25), we have

τr2 {f(r, x; R, y}-f(x, y)} = Γ Γ **, y(t, s)P(r, f)P(R, s) dtds,
J o J o

where

*χ, *(t, s)=f(x+t, y+s)+f(x-t, y+s)+f(x+t, y-s)+f(x-t, y-s)-kf(x, y}.

Since f(x,y) belongs to Lip(α, β), where 0<«<1 and
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uniformly in (x,y) as t and 5 tend to +0 independently of each other. From this,
(26) and (27), we have

/ f l - r f l - Λ fl-r Γx Γπ fl-R Γπ Γπ \

^ + + + }\λ*,v(t,s)\P(r,f)P(R,s)dtds
\ J θ J O JO J 1-R Jl-r J O Ja-rJl—R/

\ — r C' ί*1-
J5-V \

i— /V Jl-r Jθ

r)(l-/?)Γ Γ O(ta+s?)O(t-2)O(s-2)dtds
Jl-r Ji-β

uniformly in (a?, T/) as r and R tend to 1—0 independently of each other.
If a=β=l, we shall obtain (32) by the same method as in (31).
b) This will be proved by the same method as in a), q. e. d.

In the one-dimensional case, Salem and Zygmund [2] proved the following
theorem.

THEOREM. Let

^5-^0+ Σ (an cos nx+bn sin nx)
& n=ι

be the Fourier series of a continuous function f(x) of period 2π, and belonging to
lipα, where 0<α<l.

Then the difference

COS

tends to zero uniformly, as r— >l— 0.
If f belongs to Lipα, the above difference is bounded, uniformly in x.
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In the two-dimensional case, we shall prove the analogue of this theorem. It
is as follows:

THEOREM 2.2. Let a continuous function f(x, y) of period 2π with respect
to each x and y belong to LipO, p\ where 0<1o<l. Let

(33)
1-r
l-R

(Q<A<B: constant)

as r and R tend to 1—0. Then the difference

(34)
ί

oo p <x>

1-r Jl-.fi

, y+s)—f(x—t, y+s)—f(x+t, y—s)+f(x—t, y-s)
dtds

— Σ mψnφ(am, n sin mx sin ny—bm, n sin mx cos ny
m,n=l

—cm, n cos mx sin ny+dm, n cos mx cos ny)rmRn

is bounded, uniformly in (x, y) as r and R tend to 1—0 in such a way that the condi-
tion (33) is satisfied, where

(35) and

If f(x, y) belongs to lip(p, p), then the above difference tends to zero uniformly
in (x, y).

In order to prove this theorem, we need the following lemma.

LEMMA 1. Let a continuous function g(x, y) of period 2π with respect to each
x and y belong to Lip(α, β), where OO<1 and 0</3<1. Let g(r,x\ R, y} be the
Abel means of the double Fourier series of g(x, y). Then

(36)

(37)

d
dx

d

dy

and

/OQ\
(38) dxdy

-«r,* .R,v)

-g(r,x:R,y)

g(r, x: R, y)

uniformly in (x, y) as r and R tend to 1—0 independently of each other.
If g(x, y) belongs to \vρ(a, β), where 0<#<1 and 0</3<1, then we can replace

the symbols "O" of the formulas (36), (37) and (38) by the symbols "o".
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Proof. We shall prove the first half of this lemma. Fist, we prove the
formula (36). We have

r, x\ R, y) = - AT {' M> s^Pt'(r> *-ΦP(R, s-y) dtds
7ΐ J —π j —π

1 f * f π

= -- 2~\ \ [g(χ+t,y+s)-g(x-t,y+s)+g(x+t,y-s)
π Jo JO

-g(x-t, y-s)}Pt'(r, t)P(R, s)dtds

)-g(χ, y}Pt'(r, t)P(R, s) dtds

- Γ Γ [g(x-t, y+s)-g(x, y)}Pt'(r, t)P(R, s) dtds
Jo Jo

-f Γ Γ {g(x+t, y-s)-g(x, y)}Ptf(r, t)P(R, s) dtds
Jo Jo

- Γ Γ te(a?-ί, y-s)-g(x, y)}P/(r, t)P(R, s) dtdsl.
Jo Jo J

It is enough for us to show that

(39) (* Γ {g(x+t, y+s)-g(x,y}Pt'(r, t)P(R, s)dtds
Jo Jo

uniformly in (j?, y) as r and 7? tend to 1—0 independently of each other, because
the other terms are similar to this. Since g ( x t y ) belongs to Lip(α, β), where 0<<*
<1 and 0</3<1, we obtain from (26), (27), (29) and (30) that

[ Γ Γ {g(*+t, y+s)-g(x, y)} Pt'(r, t)P(R, s) dtds
IJo Jo

Γ \g(x+t, y+s)-g(x, y)\ \Pt'(r, f)\P(R, s) dtds
Jo

1 ? Γ RQ(ta+sβ)2tdtds
o Jo

O(ta+sβ)2t O(s~2) dtds

-r)(l-/?)Γ Γ
Jl-r Jl-Λ
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uniformly in (x,y) as r and R tend to 1—0 independently of each other.
The formula (37) will be proved by the same method as in (36).
In order to prove (38), it is enough for us to notice that

d2 1 Cπ Cπ

g(r, x\ R, y)=-τ \ \ g(t, s)Pt'(r, t—x)Ps'(R, s—y) dtdsdxdy

I rπ rπ
=~r\ \ {θ(x+t,y+s)—g(x—t,y+s)—g(x+t,y-s)

π Jo Jo

+g(x-t, y-s)}Pt'(r, t)P/(R, s) dtds.

Thus we have proved the first half of this lemma.
The second half of this lemma will be proved by the same method as in the

first half. q. e. d.

Proof of Theorem 2.2. We shall prove the first half of this theorem. Let

(40) gx, y(t, s)=f(x+t, y+s)-f(x-t, y+s)-f(x+t, y-s)+f(x-t, y-s).

Thus, the double Fourier series of gx, y(t, s) is

&{Qχ, y(t, s)} = Σ 4 sin mt sin ns(am, n sin mx sin ny—bm, n sin mx cos ny
m,n=l

—Cm, n cos mx sin ny+dm, n cos mx cos ny).

Let the Abel means of the double Fourier series of gx, y (t, s) be

Qxt y(r> t\R, s)= Σ 4 sin mt sin ns(am, n sin mx sin ny—bm) n sin mx cos ny

(41)
—Cm, n cos mx cos nyi-dm, n cos mx cos ny)rmRn.

For simplicity, we shall omit the suffices x and y of gX) y(t, s) and gx, y(r, t; R, s).
For given (x, y), r and R, the series

g(r, t', R,s) " sin mt sin ns . . ,
—Λ Λ, ...— =4 L ——-— ——— (am, n sin nx sin ny—bm, n sin mx cos ny

—Cm, n cos mΛ? sin ny-}-dm, n cos mo; cos ny)rmRn

is uniformly convergent in (t,s) for ^>βι>0 and s>ε2>0. Hence we can integrate
term by term in the rectangle (εi, T; e2, S). Observing that

\\..dnrnί,. ^

o ^ dt

ε

2 sinns
ds <CM^-*,
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where Cφ depends on φ only and CΦ depends on ψ only, we deduce immediately
that

ΓΓ
Jo Jo

g(r, t; R, s)
dtds

(42) =4 Σ (tfm, n sin mx sin ny—bm, n sin m# cos m/
m,rc=l

, , x ™ f0 0 sinmί 7J f°° sinns ,
—cm, n cos mx sin TM/+ dm, n cos mJ7 cos ny)rmRn \ ——— dt \ ———ds.

Jo t Jo S

By (42) and the identity

Γ°° sin mt , πmφ

Jo t1+φ ~' 2cθS(πφ/2)Γ(φ + ϊ) '

we obtain

1 πφ π<

(43) — 4 Σ (#m, n sin mΛ? sin ny—bm, n sin m^ cos ny
m,n=l

—Cm, TO cos mΛ? sin ny+dm, n cos w# cos ny}mψnφrmRn.

Since /(#, y) belongs to Lip(p, p), g satisfies that

(44)

uniformly in (#, ?/) and (w, v) as ί and 5 tend to zero independently of each other.
This fact shows that g(t, s) belongs to Lip(p, p) in each point (x, y). Write

C00 Q ( r , f , R , s ) ^ Γ00 Γ* _gO,5)
I n ' - ̂ ^̂  - 1 V P /1+^1+^Jo ^ 5 J i— r Jl— Λ ί o

-Γ'Γ ^™J() Jl-Λ ί o

Q(r,t;R,s)-g(t,s) ̂
dtds.

ι-r fι-j8 g ( r , f , R , s ) ^^, C00 Γ00 Q(r,t;R,s)
\ - TIw^ - ̂ &+\ \ - Tϊ̂ -ϊ

θ Jo Γ 5 Ji-r Jl-Λ t ΨS

On the other hand, we note that, since g(r, 0; 7?, s)=g(r, t] R, ty = g(r, 0; R, 0)=0, we
have

g(r, ft #, s)=βf(r, ft /?, s)—g(r, 0; J?, 5)
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—0(r,ft ^s)jί=ί for 0 </ι</,

, ft R, s)=0(r, ft #, s)—g(r, ft #, 0)

for

237

and

g(r, ft tf, s)=0(r, ft R, s)-g(r, 0; #, s)-g(r, ft I?, 0)+g(r, O Λ, 0)

for 0<jf2<ί and

From these three formulas, we obtain

+Γ Γ ̂ ^Jl-r Jl-Λ ϊ S ^

If we put a=β=p in Theorem 2.1 and Lemma 1, we have from (44), (45), (31),
(36), (37), (38) and (35) that

,.,dtds
r- ri-B

\ \
Jl-r Jo

+
"Γo Jo

r rJl-r Jl-R

uniformly in (Λ?, y) as r and /? tendto 1—0 in such a way that the condition (33)
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is satisfied. This completes the proof of the first half of the theorem.
The second half of this theorem will be proved by the same method as in the

first half. q. e. d.
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