ON SUMMABILITIES OF DOUBLE FOURIER SERIES
By YosuimmiTsu HASEGAWA

1. Let f(x,y) be a Lebesgue-integrable function of period 2z with respect
to each x and 3. Let the double Fourier series of flx,¥) be

o

(1) &) = 5 Am o(@,9),

where

1
AO! O(xy y)=Ta01 0
1 .
Am, o(, y)=7(am, 0 COS MI b, o SIN M),

Ao, n(x, y)= %(ao, n COS Ny + by, » sin ny),
Ay (2, Y)=am, n COS MX COS NY-}-Dm, » COS M Sin ny
+Cimy n SIN ML COS MY +dm, » SIN M Sin 1Y,
m and »n being positive. Further, let the conjugate double Fourier series of f(x,¥)
be
(2) &)= 5 Am o2, 0),

where
Am, o(Z, Y)=@m, » SIN MZ SIN 1Y — b, » SIN MX COS NY

—Cm, n COS mX Sin ny~+dmp, » COS MX COS nY.

The first arithmetic means o, «(x, %) of the series (1) are given by the formula

s, )= 5 5 (1= L) (1= 24 Auy )

(3)
~ =\ Aot vroraor.o s,

—_rd —

where K,(t) is the Fejér kernel
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(4) Kn(t)= 2 {sin%(m—l—l)t 2

m+1 2sin it

satisfying the inequalities

(3) | Km(t)| <2m,

(6) | Kn(®| < Cym~1¢2 <71¢— =|¢=x; C: an absolute const.).

Further, the first arithmetic means &m, «(x,y) of the series (2) are given by the
formula

o= 5 3 (1= 20 (140 VA 0

p=1¢ m-+1 n+1
( 7 ) 1 z z
— [ rort v 9Rn0R.0 aras,

where Kn(f) is the conjugate Fejér kernel

R T 1 sin(m+1)¢
(8) Knf)=—5cOt 512" “@sindiy

Let
= 1 1
Km(t)ZT C0t7 t'—Hm(t).

Then we have

(9) \Ku(t)| =m for all ¢,

(10) \Ho(5)<Cut-t for }tlé%

and

(11) |Hn()| =Com~t-2 for —7];T<|t|§7r,

C; being an absolute constant. The integral

(m)z ((n)x
12) S S o, ) dady

bt 3 -z

will mean the one extended over the set
1 1
o <lzlsn, —=ly|=nl.
{(x, v; slel=n, —-=lyl=n
We shall consider continuous functions f(x, y) of period 2z with respect to each x

and y, satisfying a Lipschitz condition, and we say that f{x, y) belongs to Lip(a, p)
if
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13) [ flz+t, y+9)—/(z, I =0(|¢|*+|s]?)

uniformly in the point (x,%) as ¢ and s tend to zero independently of each other,
where 0<a=1 and 0<pB=1. We shall say that f(x,y) belongs to lip(e, g) if

13y [z +t, y+)—fx, )| =o(t|*+]|s|?)

uniformly in the point (x,¥%) as ¢ and s tend to zero independently of each other,
where 0<a=1 and 0<B=1.

As regards the first arithmetic means of Fourier series in the one-dimensional
case, the following result is known. (see Zygmund [1], p. 91.)

THEOREM. Let on(x) be the first arithmetic means of &(f). If felipa, 0<a<],
then

a(x)—fx)=0(mn"") uniformly n zx.
If a=1, then

an(x)—f(2)= O log n).
We shall generalize this theorem in the two-dimensional case.

THEOREM 1.1. a) If a continuous function f(x, y) of period 2m with respect
to each x and y belongs to Lip(a, B), where 0<a<1l and 0<B<1, then
14 |om, n(®, Y)—f(2, Y)| = O(m=+n=F)
uniformly in (x, ¥y) as m and n tend to infinity independently of each other.
If a=p=1, then
(15) |G, n(2, Y)—S(2, Y)| = O(m~" log m~+n~"log »)

uniformly in (x, y) as m and n tend to infinity independently of each other.

b) If a continuous function f(x, y) of period 2z with respect to each x and y
belongs to lip(a, B), where 0<a<l and 0<B<1, then we can veplace the symbol
“O” of the formula (14) by the symbol “0”.

If a=p=1, then we can replace the symbol “O” of the formula (15) by the
symbol “o0”.

Proof. a) First, we shall prove (14). From (3), we have

16) 2 m o, ) —Fw, 0} =" {0, 9K O (5 it
where
Zay (8, =f@+1, y+9)+x—1, y+)+Ax+1t, y—8)+fx—t, y—s)—4f(x, v).
Since f(zx, y) belongs to Lip(e, B), where 0<a<1 and 0<p<1,
Az, 42, S)=0(t*+5%)

uniformly in (x,%) as ¢ and s tend to +0 independently of each other. Therefore,
from this, (5) and (6),
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7o, n(@, Y)—f(2, Y)]
éqw SIMJ“SWSK +S“ J/+S S )Mr,y(fys)!Km(t)Kn(s)dtds

0 0 0 1/n 1/m JO 1/m J1/n

1/m (=

1/m /n
<S Sl O(t=+st)dmn dtds+S S O(te+s)2Cm n~ s~ dtds
1/n

0 0 0

z

T 1/n
+S { O(t*+s8)2Cim=t2n a’tdsnLS~

1/m J O

gx O@t*+s8)Ci®m~n~ 2~ 2dtds
1/m J1/n
=0(m—+n~F)
uniformly in (x,y) as m and #» tend to infinity independently of each other.
If a=p=1, we shall obtain (15) by the same method as in (14).
b) This will be proved by the same method as in a). q. e d.

Further, we shall obtain the following theorem similar to Theorem 1.1 with
respect to Gm, n.

THEOREM 1.2. a) If a Lebesgue-integrable function flx, y) of period 2m with
respect to each x and y satisfies

an @+t y+9)—flw—t, y+9)—f@+t, y—s)+fx—t, y—s)|=0(t|*|s|?)

uniformly in (x, y) as t and s tend to zero independently of each other, where 0<«a
<1, and 0<B<1, then

| (m)z ((n)z
iam, (&, y)——%z— S S flx+t, y—i—s)(%cot—;—t) <%c0t%s> dtds}
— - I
(13)
=0(m=c+n"?)
uniformly in (x, y) as m and n tend to infinity independently of each other.
If a=p=1, then

(m)z (n)r
’5”“ n(xy ?/)_;12— S S . f(x—i—l‘, ?/_,_S)(%Cot—%“t) (%COt%S) dtdS

| -z

19)
=0(m~og m+n~'log n)

uniformly n (x, y) as m and n tend to infinity independently of each other.

b) If we replace the symbol “O” of the condition (17) by the symbol “o0”, then
we can replace the symbol “O” of the formula (18) by the symbol “0”.

If a=p=1, then we can replace the symbol “O” of (19) by the symbol “0”.

Proof. a) First we shall prove (18). Let
Az, o(t, ) =f@ A+, y+5)—flw—t, y-+5)—f(@+t, y—9)+fx—t, y—s).

From this and (7), we have

(m)z (*(n)x
72 Gm, o(, y)»% S S f(x+t,y+s)<%cot%t> <%cot-§—s)dtds}

- -z
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(20) =(Sl/m SW+S:W S +S" S]/")L, o, B m(OR u(s) dtds

0 0 1/n 1/mdJo

+S" 8 e, o(t, ) {~Hn(s)—1—cotiz—Hm(t)Lcot—l—erIﬂn(t)Hn(s) dtds
1/n 2 2 2 2

1/m
=(11+Iz+.[8)+l4y Say.
From (9), (17) and the definition of 1., ,(, s) we have that

1/m

1/n
@1) L= S S O s¥ymn dtds=0(m== n-7)
0

4]
uniformly in (x, %) as m and » tend to infinity independently of each other. From
9), (10), (11) and (17), we obtain that

1/m (=
©2) L] sj j/ O {O(s-Y) -+ Con-1s-2} dtds = O(m=e+ m-en—)
0 1/n

uniformly in (x, ¥) as m and #n tend to infinity independently of each other.
Similarly, we have that

(23) || =O(m~en—8+n5)

uniformly in (x, ¥) as m and #n tend to infinity independently of each other.
Further, from (10), (11), and (17), we obtain that

|l4|§j" j Ot=s8) {01 Con=5-2+ Com~4-20(s=1) + Ca?m-"t-2n~*s~2} dtds
1/m J1/n

29
=0n—"+m="+m—n=F)
uniformly in (x,%) as m and #» tend to infinity independently of each other.
Therefore, from (20), (21), (22), (23) and (24), we obtain (18).
If a=p=1, we shall obtain (19) by the same method as in (18).
b) This will be proved by the same method as in a). q. e. d.

2. We shall prove two theorems for the Abel summability of double Fourier
series.

Let flz,y) be a Lebesgue-integrable function of period 2z with respect to each
x and y. Let the double Fourier series of f(x, %) be of the form (1). Further, let
the Abel means of the series (1) be

S,z R, y) = :Am, (X, y)r™Rn, 0=7<1 and 0=R<1,
(25) o
=i2 S S fxe+t, y+9)Pr, YP(R, 5) dtds,

T

-z

where P(7,t) is Poisson’s kernel (1—#?)/2(1—2r cos t+7?). For P(r,t), we have two
inequalities

26) P, t)<1—i—; 0=t=m)
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and

1—r
4r(sin §¢)?

If Pi(r,t) denotes the derivative of Poisson’s kernel with respect to ¢, we have

27 P(r, )< (0<1=n).

, _ (A—r)rsint A—r®rsin ¢
@8 Pl =~ (1—=2rcost+r5:  {1—»)+4r(sinsn)y)? °

Thus we have

29) \P/(r, b) éT%? 0=t=n)
and

) (1—nt
(30) | P/ (7, If)|<m O<t=n).

We shall prove that Theorem 1.1 holds if we replace the first arithmetic means
m, (2, y) by the Abel means f(r, x; R, y). (In the one-dimensional case, see Salem
and Zygmund [2], p. 30, Lemma 1.)

THEOREM 2.1. a) If a continuous function flx,y) of period 2m with respect
to each x and vy belongs to Lip(a, p), where 0<a<l and 0<B<1, then
(31) [fir, z; R, y)— Az, )| =0{1—r)+(1—-R)%}

uniformly in (x, y) as r and R tend to 1—0 independently of each other.
If a=p=1, then

6 1w Ry~ 9l =0|A-n g +(1~R)log

untformly in (x, y) as v and R tend to 1—0 independently of each other.

b) If a continuous function f(x,y) of period 2m with respect to each x and y
belongs to lip(a, B), where 0<a<l and 0<B<1, then we can replace the symbol
“O” of the formula (31) by the symbol “0”

If a=p=1, then we can replace the symbol “O” of the formula (32) by the
symbol “0”.

Proof. a) First, we shall prove (31). From (25), we have
70 35 B, 0)~f@ ) = | e ot PO, PR, 5 dtas
0J0

where
Aoy oty S)=fZ+1t, y+9)+f@—t, y+)+fx+t, y—)+Ax—t, y—s)—4f(x, Y).
Since f(x,y) belongs to Lip(a, f), where 0<a<1 and 0<j<1,
Az y(t, $)=0(t"+5%)
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uniformly in (x,%) as ¢ and s tend to +0 independently of each other. From this,
(26) and (27), we have

= |f(r, ; R, y)—f(x, )l

= G; fﬁfr f:_RﬂL &_ EZ—RJFK_T ﬁ:_ﬁ) |22, 4(8, $)|P(r, HP(R, 5) dtds

é(T—_r)%l_—F) j :—T S;_RO(’““'Q)‘”"H‘ tf S:_ Sl_ O(t“+59)0(s™) dtds
+ 11:; Sl_ S:_Ro(t“+sﬁ)0(t—2) dtds
+a-na-R| " ow+sn0w0s s

2_(177)’1(‘1’—7) [O{Q—n"*1—R)}+0{(1—r(1—R)**#}]
+ 11—_5 :0{(14)“‘7_%]+0{(1—r)<1_R)5—1H
+Effofura-avofo-m

+(1—r)(1—R)[0{(1—r)““ 1_1R }‘LO{ 1ir (I—R)ﬂ-l}]

=0{1—7r+(1—Ry)

uniformly in (x,y) as » and R tend to 1—0 independently of each other.
If a=p=1, we shall obtain (32) by the same method as in (31).
b) This will be proved by the same method as in a). q.e.d.

In the one-dimensional case, Salem and Zygmund [2] proved the following
theorem.

THEOREM. Let

—%-ao-{— % (@n cos nx-+b,, sin nx)
n=g
be the Fourier series of a continuous function f(x) of period 2z, and belonging to
lip a, where 0<a<1.
Then the difference

*  flx+t)—flxe—1)

1 o & .
__7T_F(a+ 1) cos TS Five di—;:l(an sin nx —bn cos nx)nr

1—r

tends to zero uniformly, as r—1—0.
If f belongs to Lip «, the above difference 1s bounded, uniformly in x.
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In the two-dimensional case, we shall prove the analogue of this theorem. It
is as follows:

THBOREM 2.2. Let a continuous function f(x, y) of period 2w with respect
to each x and y belong to Lip(p, p), where 0<p<1. Let

1—7»

1-F =B (0<A<B: constant)

(33) A=

as v and R tend to 1—0. Then the difference

—F(go-l— DI (g+1) cos—cos ﬂ'S/’

, r Sw S@ At Y+ —f@—t y+9)—fatt y=9+fa—t y—s) .

fltegl+d

1-7r J1—R

(34)
ad . . .
— 21 m*n?(@m, » SIN M SIN BY —bm, » SIN MX COS 1Y

m,n=1

—Cmy n COS ML SIN 1Y +dm, » COS WX COS NY)r™R?

1s bounded, uniformly in (x, y) as r and R tend to 1—0 in such a way that the condi-
tion (33) is satisfied, where

(35) o=¢+¢, ©>0 and ¢>0.

If flx, y) belongs to lip(p, p), then the above difference tends to zero uniformly
in (z, ).

In order to prove this theorem, we need the following lemma.

LemMA 1. Let a continuous function g(x,y) of period 2m with respect to each

x and y belong to Lip(a, B), where 0<a<l and 0<p<1. Let g(r,x; R, y) be the
Abel means of the double Fourier series of g(x,vy). Then

36) |50 R, )| = 0=+ (=7 (1=RY),

@) |55 905 31 R )| =0 {0~y (U—R)+(1= Ry

and

39) |90 @ R )| =0 {0~y =1= R4 A=) A= RY=)

uniformly in (x, y) as v and R tend to 1—0 independently of each other.
If g(z, y) belongs to lip(e, B), where 0<a<l and 0<B<1, then we can replace
the symbols “O” of the formulas (36), (37) and (38) by the symbols “0”.
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Proof. We shall prove the first half of this lemma. Fist, we prove the
formula (36). We have

—aa;g(r, x; R, y)=—%r S g(t, )P/ (r, t—x)P(R, s—y) dtds
1 T [z
=—;2~SO So {o(@+t, y+s)—g(x—t, y+s)+g(x-+t, y—s)

—g(x—t, y—9)) P/ (v, HP(R, s)dtds

= —L[S” S” {g(x+t, y+5)—g(x, y} P/ (r, ) PR, s) dtds
0 Jo

2

B S S {gx—t, y+5)—g(x, )} P/ (r, HP(R, 5) dtds
+ So SO {g(x+t, y—s)—g(@, Y} P/ (r, DP(R, s) dtds

B So So {gx—t, y—5)—9(x, PIP/(r, ) P(R, 3) dtds].

It is enough for us to show that

69 || | ottt v+9—0@ 1) P PR 5)dtds| =0 (=7~ +A=r)(1—RY)
0 Jo

uniformly in (x,%) as » and R tend to 1—0 independently of each other, because

the other terms are similar to this. Since g(x,¥y) belongs to Lip(a, 8), where 0<«a

<1 and 0<B<1, we obtain from (26), (27), (29) and (30) that

<S S {g@+t, y+5)—g(@, )} P/ (r, PR, 5) dtds
éSo So lg(x+2, y+35)—g(x, v)| | P/ (7, )| P(R, s) dtds

1—-r f1-R
§(1—r)—3(1—1€)-180 SO O(t=+ )2 dtds

+(1—r)—3(1—R)S:_ S:_RO(t“—I—sﬁ)Zt O(s=?) dtds
—I—(l—r)(l—R)“Sj_r S:_RO(t“+sﬁ)O(t'3) dids

+(1—r)(1~R)S:_ S O(t-+7)0(-)0(s)dtds

=1=n"A-R)O{0—r***1—R)+(1—r)(1—R)**}
+(1=nN"A-R)O{1—n**(1—R)+1—r*1—R)***}
+A=n1=R)7O0{1—n"""(1—R)+(1—r)*(1—R)"*?}
+A-nNA-R)O{A—r)(1-R)7+(1-n"1—-R)"**}
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=0{(1—n) "+ (1—n)(1—R))

uniformly in (x, %) as » and R tend to 1—0 independently of each other.
The formula (37) will be proved by the same method as in (36).
In order to prove (38), it is enough for us to notice that

5 1 (s ) )
S0 R==\" | ot oP/r =P (R, s—y) atas
1
==\ ot yto—o@—t v+9—g@rty—s)
+g(x—t, y—9)} P/ (r, HPs (R, s) dtds.

Thus we have proved the first half of this lemma.
The second half of this lemma will be proved by the same method as in the

first half. q.e.d.
Proof of Theorem 2.2. We shall prove the first half of this theorem. Let
(40) 9z, o(t, )=f@+1t, y+5)—f@—t, y+8)—fo+t, y—s)+flz—t, y—s).

Thus, the double Fourier series of g, 4( s) is

&{Gz, y(t, 8)} = X 4 sin mi sin n8(@n, » Sin mx sin 1y —bm, » sin mx cos ny
m,n=1
—Cm, n COS T SIN NY + dm, n COS ML COS NY).
Let the Abel means of the double Fourier series of g, , (¢, s) be

9z v(7, LR, $)= 3 4 sin mt sin #s(am, » Sin ML Sin nY — bm, » SIN ML COS 1Y
m,n=1

41)
—Cm, u COS I COS NY + dm, » COS MX COS NY)r™R~,

For simplicity, we shall omit the suffices x and y of ¢, 4(f,s) and g=, (7, t; R, ).
For given (x,v), » and R, the series

g(r,t, R,s) & sinmt sinns

gt AL e e (@, n SIN NZ SIN 7Y —bin, 7 SID MX COS 1Y

—Cmy n COS MX SIN 1Y+ dm, n COS MI COS NY)r™R»

is uniformly convergent in (¢,s) for £>¢>0 and s>e,>0. Hence we can integrate
term by term in the rectangle (e;, T €5, S). Observing that

€, sin mt  sin mi C,
S Fire df’<C¢m811“, S_ﬁTdtJ<W'
‘gsz sin ns ds’<C4nel ¢ ’S‘” smns i< .,
0 s S
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where C, depends on ¢ only and C, depends on ¢ only, we deduce immediately
that

S“ S‘” g(r,t; R, ) dtds
0

0 flteglts

o
42) =47} (am,rSin max sin #y—>bm, » Sin mx cos ny
m,n=1

ds.

* sin mt * sin #ns
d
0

—Cmy n COS MX sin ny-+- dm, n COS mX COS ny)rmRnS ire

5
Sler

By (42) and the identity

S°° sinmt T me
o 1 ~ 2cos (z/2)(p+1) ’
we obtain
1 o 7, R, s
Tcos—i—cos—iF(SD—l-l)F(gb—l— I)S SO —%;@W—)—dtds
(43) =4 % (Gm, » SIN Mx SIN 1Y — b, » SIN WX COS MY
m,n=1

—Cmy n COS M SIN 1Y +dm, n COS MX COS NY)M MY R,
Since f(x, y) belongs to Lip(p, p), ¢ satisfies that
lg(u+t, v+5)—g(u, v)|
=|f@+u+t, y+o+s)—fe+u, y+o)l+Ife+utt, y—v—s)—flo+u, y—o)
+f@—u—t, y+v+)—f@—u, y+o)+ (e —u—1t, y—v—)—flx—u, y—v)|
=0(¢|°+s])

uniformly in (x,y) and (%, v) as ¢ and s tend to zero independently of each other.
This fact shows that g(¢, s) belongs to Lip(p, p) in each point (x,y). Write

DESW Sw———mg(”t; R, 9) dtds—Sw Sm 69 g

0 0 t1+9’sl+4/’ 1—r J1-R t1+¢sl+¢

(44)

= dids

Sl“f S‘” 9(r,t; R, s)

{lregltd

o (L-R X
9, & R, s)
0 1-R dtds_i_Sl—r So griestte

t1+¢sl+¢ 1-R t1+¢sl+¢

1—7 p1—-R . © (o . _
+S S g7, t; R, s) dtds+S S 9(r, t; R, s)—q(2, s) dids.
1—-7

0 0

On the other hand, we note that, since g(r, 0; R, s)=¢(7, t; R, 0)=¢g(7,0; R, 0)=0, we
have

g(r, t; R, )=g(r, t; R, s)—g(r,0; R, s)
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0
=t{—9, t, R, Ss) for 0<t:<¢,
ot 1=ty

g(r, t; R, s)=g(r, t; R,s)—g(r, t; R, 0)

=s[ %g(r, t; R, s)} for 0<s;:<s

§=8

and

g(r, t; R, s)=q(r, t; R,s)—g(r, 0; R, $)—g(r, t; R, 0)+9g(r, O;R, 0)

82
=ts{—a7a—s—g(r, t, R, s)} for 0<t, <t and 0<s:<s.

l=l2’ §=89

From these three formulas, we obtain

] 0
© t‘—a—tg(rr t R} s)]t= 1-R S{F;g(f’, t; R, S)}stl

1—-r by L
b So SI—R firest+d dids + Sl—-r So prregite dtds

I

(45)

0 Jo rrestte dids

82
+Sl—r Sl—R tSJ atas g(f’, t: R: S))z=zz, =3,

dtds.

H{7 [ e B9t

1-r J1-R lrosl+s

If we put a=p=p in Theorem 2.1 and Lemma 1, we have from (44), (45), (31),
(36), (37), (38) and (35) that

|DI§S:—T ST_R tO{(l—r)P—l;};fi;:)-l(l_R)p} s
+ [ s
(0 ARy
L

=0{(l=n""+1-""A=R)}O{d -1 —-R)™"}
+O0{(l—»)'A1—=R)'+(1—R)y1}O{(1—»)~*(1—R)*~"}
+O0{A—n)"""A=R)7+(1—nN"1A—R)}O{1—n)'~*(1—R)**}
+O0{1—r)+1=R)"}O{1—n~*(1—RK)*}

=0{0—n"*1—R)?*+(1—nN"*1—-R"*}=0(1)

uniformly in (x,y) as » and R tendto 1—0 in such a way that the condition (33)
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P

is satisfied. This completes the proof of the first half of the theorem.
The second half of this theorem will be proved by the same method as in the

first half. q.e. d.
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