ON FUBINIAN AND C-FUBINIAN MANIFOLDS
By YosHiniro TASHIRO AND SHUN-ICHI TACHIBANA

In his previous papers?, one of the present authors proved that an orientable
hypersurface in an almost complex manifold has an almost contact structure and
obtained a condition® in order that a hypersurface in a Kihlerian manifold is
Sasakian. In the present paper, a hypersurface satisfying the condition will be
called a C-umbilical hypersurface. A manifold having the same Sasakian structure
as a C-umbilical hypersurface in a locally Fubinian manifold will be said to be
locally C-Fubinian. The purpose of the present paper is to show some character-
istic properties of Fubinian and C-Fubinian manifolds.

§1. Preliminaries.

Let M be a 2n-dimensional almost Hermitian manifold with almost complex
structure F=(F,*) and metric tensor G=(G,;). We shall denote the curvature tensor
by K,,..*, the Ricci tensor by K,,, the scalar curvature by r=K,:G*/2n(2n—1), and
the covariant differentiation with respect to the Riemannian connection of the metric

G by p,.
If M is Kihlerian, we know the identities
1.1 Koo FAF =K, oy
1.2 FrK, 0= —2K,°F,.=2K,°F,,.
For a vector V=(V%), we put || V||2=G.V:V3, Vi=—ViF; and
(1.3) K(V)=—K,uVVeV V|| V|4,
(1.4 R(V)=K. VeV VII™

These quantities K(V) and R(V) are the so-called holomorphic sectional curvature
and the Ricci curvature (belonging to the direction) of the vector V, respectively.

On the other hand, let M be a (2n—1)-dimensional almost Grayan manifold with
structure (f; g) consisting of an almost contact structure

Received April 20, 1963.
1) Tashiro [5]. Terminologies and notations of the papers will be taken over in the
present paper. The various kinds of indices run on the following ranges respectively:

£ A v, 0=1, ..., 2n;
ki, i k1 =1, ..., 2n—1;
A, B,C =1,...,2n—1, co.
2) See Theorem 8 in [5], or the equation (1.12) in the below.
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O A

and its associated metric C-tensor

=Gen=( 5" 1),

where ¢;; is a metric tensor associated with /. The structure (f, g) possesses the
following properties: The rank of the matrix (f;*) is equal to 2n—2,

(1.5) ff=—E: firfir=fifr==0 firfi=0, [ f*=0, fifi=],
a.6) Joft=g: qufit fE+1 =i gu "=l 9if =1,
where £ indicates the unit matrix (94) of degree 2n. The covariant tensor /ji=/;"gn:
is skew symmetric. We denote the curvature tensor of M by Ki;" and the Ricci
tensor by K. The covariant differentiation with respect to the Riemannian connec-
tion of g;; in M will be denoted by p,, too, which we distinguish by affixing a
Latin index from that in an almost Hermitian manifold M with Greek index.

If M is Sasakian, then the structure satisfies the equations

1.7 vif=rfi,  Pifa=fgni—ingi

in addition to (1.5) and (1.6). Moreover we have the identities
1.8) klcjihfh =10 ji—f 0k

(1.9 K;ififi=2n—2,

which will be used later. As is seen by (1.7) and the skew-symmetry of fj:, the
vector field f* is a Killing one and its trajectories are geodesics.

Now, in an almost Hermitian manifold M, we consider an orientable hypersur-
face, which is also denoted by M for the following reason. When M is represented
by x*=x(u") by use of local coordinate systems () in M and («*) in M, we denote
the tangent vectors d:x* of M by B, the unit normal vector by C¢, or sometimes
by B.r, and put

B;*
C;:
Then the induced structure (f, ¢) in M defined by

fi*=B¥B*, fi=Bi*FC.,

B:(BB~)=( > B-'=(B,;*)=(B,", Cy).

(1.10) f=BFB*:
—fr=C'F#B,*, 0=CiFy+C,
GuB#C*=0,
(1.11) 9=BGB" ¢;;=G.B;*B,
G.CrC =1,

3) Here we put f,»=—f" This is different from that in [5] in sign. In an almost
Grayan manifold, f coincide with the contravariant components of the vector fi=fi.
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is an almost Grayan structure.

In a Kshlerian manifold M, the induced structure (f, g) in M is Sasakian if
and only if the second fundamental tensor %;; of M has the form
(1.12) hi=gji+pf fo,

where p is a scalar field in M. Such a hypersurface will be said to be C-umbilical.
The factor p is related to the mean curvature kz=h;g/*/(2n—1) by

(1.13) p=02n—1) (h—1)

and we call it the C-mean curvature of M. Let us seek for a formula used later.
Since Btg~!fB=GF, we have

1.14) feiBy Bji—CCo4-CoCr=Fr,

Substituting (1. 12) into Codazzi’s equation®

(1.15) Pihji— ihii= By Bj* BAC K, 1

and using (1.7), we obtain

(1.16) wep) o fi— i) fe fit 1t @ Sy fi-1o frio—fu fi2)= B Bi* BAC* K, .

Contracting this equation with f* fi, taking account of (1.5), (1.10), (1.14) and
[iBi*=—CtF,’=(C* we obtain the inquired equation

(1.17) 2(n—1)p=—R(O)+K(C),

which means that the C-mean curvature x is the difference of the holomorphic
sectional curvature from the Ricci curvature of the normal direction of M at each
point, to within a constant factor.

If M is in particular an Einstein manifold, then by transvection of (1.16) with
g7, we have piu=rig’* (7;) f.. Applying f*p, Lo the last equation and using (1.5)
and (1. 7), we can easily see that ¢/(y;x) ;=0 and hence x is constant in M. Thus
we have

THEOREM 1. In an Einstein Kdahlerian manifold, the mean curvature h and
the C-mean curvature p of a C-umbilical hypersurface are constant.

§2. Fubinian and C-Fubinian manifolds.

A Kihlerian manifold M is called a locally Fubinian manifold or a manifold of
constant holomorphic sectional curvature, if the holomorphic sectional curvature at
every point is independent of directions at the point, and its curvature tensor is
given by®
2.1 K=k G..Gu— GGt FooF iy —F o Fy—2F, F.),

k being a constant and equal to (2z—1)¢/2(n+1). A locally Fubinian manifold is
an Einstein one:

4) >See, for instance, Schouten [3], p. 242.
5) Tashiro [4], Yano and Mogi [6].
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2.2) K. =2n+1)kG,a
and for a unit vector V, we have
2.3) K(V)=4k, R(V)=2(n+1)k.

Now we consider a C-umbilical hypersurface A in a locally Fubinian manifold
M. By (1.17) and (2.3), we know that p=—Fk. Substituting (1.12) and (2.1) into
Gauss’ equation®

2.4 Kkjm:Blc"Bj“Bi‘Bh‘Kvpu +hinhji—hjnhi,
we have
Kejin=k+1)qengsi— gingu) + R fen fri—Fin fei—2fes fin)

—k(gin f; o+ Gii Ji S —Qin S fi—Qua [ ).
Transvecting this equation with ¢**, we have
2.6) Kji=2(n—1) [(k+1)g;i—kf, f].

In general, a Sasakian manifold, whose curvature tensor possesses the properties
(2.5) or (2.6), will be called a locally C-Fubinian or C-Einstein manifold” respec-
tively. Then we can state that

(2.5)

THEOREM 2. A C-umbilical hypersurface in a locally Fubinian manifold is a
locally C-Fubinian manifold.

If £=0, then #=0 and hence we have

CoROLLARY. In a 2n-dimensional Euclidean manifold M with natural Kéhlerian
structure, the induced almost Grayan structure of a hypersurface M s Sasakian if
and only if M s a portion of a unit hypersphere in M.

Suppose now there is an umbilical hypersurface in a locally Fubinian manifold.
Put the second fundamental tensor in %;=pg;; and substitute it into (1.15). Then
by the same method as that of obtaining (1.17) and by (2.3) one can see that
0=K(C)—R(C)=2(n—1)k and hence £=0. Thus we have

THEOREM 3. There is no umbilical hypersurface in a non-Euclidean locally
Fubinian manifold.

§3. A characterization of a locally Fubinian manifold.

It is well known® that an #-dimensional Riemannian manifold is projectively
flat, i.e. of constant curvature, if and only if there exists an umbilical hypersurface
with constant mean curvature through every point with every (z—1)-direction at

6) See, for instance, Schouten [3], p. 242.
7) A C-Einstein manifold is called an 5-Einstein one by Okumura [2].
8) Schouten [3], p. 309 and p. 311.
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the point, and that it is conformally flat if and only if there exists an umbilical
hypersurface through every point with every (n—1)-direction at the point. Since
a Fubinian manifold is holomorphically projectively flat®, an analogous proposition
for a locally Fubinian manifold may be expected. In fact, we shall establish the
following

TueoreM 4. A 2n-dimensional Kdahlerian manifold M is locally Fubinian if
and only if there exists a C-umbilical hypersurface with C-mean curvature equal to
a constant —k through every point with every (2n—1)-direction at the point.

Proof. Sufficiency. Assume that there exist C-umbilical hypersurfaces stated
in the theorem. Every C-umbilical hypersurface in a Kihlerian manifold is Sasakian,
and from (1.16) we have easily K,.B;*C*=0. In order that this equation holds for
arbitrary vectors Bj;* and C? such that G,:B;#C*=0, K,, should be proportional to
G,: and hence M is an Einstein manifold, K.,=2n—1)sG.. From (1.17) and our
assumptions, we have
3.1 K(C)=—-2(n—1)k+(@2n—1)
for any unit vector C*. Therefore the holomorphic sectional curvature K(C) is in-
dependent of directions at every point, and hence M is locally Fubinian.

Necessity. Let M be a locally Fubinian manifold whose curvature tensor is
given by (2.1). The theorem is true in cthe case of locally Euclidean manifold, so
that we shall only concern with the case 2#0. We consider the system of partial
differential equations

3.2 7 U:=kGu+UU,—U,U,
in an unknown vector field U,. It is seen that the integrability condition
3.3) pof e Us—p fp Ui=—K, U,

of the system (3.2) is identically satisfied by (2.1) and (3. 2) itself, and consequently
the system is completely integrable. Let P be an arbitrary point and consider a
solution of (3.2) with initial value (U, at P satisfying (G+U,.U,)p =k®. Since
p.U:s=p:U,, the family of (2n—1)-directi0n_s given by U, constitutes an involutive
distribution in a neighborhood of P. Let M be the integral manifold of the distri-
bution through P. Since Ur is normal to M, we can put U,=0¢C; where o is a
scalar in M. Substituting (3.2) into p;U,=Bjy,U,=ps0C;) and noticing B;+U,
=0B;*F 2 Ci=0f;*B4*C:=0f,, we have

(3.4 kBj—af;Ui=0;Ci—0ah;*Ba,

where 0,=d;0. Since Bi; and U, are tangent to M, we see that ¢,=0 and hence
o*=Fk? by means of the initial condition. We may suppose that e=—%. Transvec-
ting B;* with (3.4), we have

3.5) hji=gn—kf, [

As P and the value (U))p of direction at P are arbitrary, we complete the proof of
the theorem.

9) See Tashiro [4].
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§4. A construction of a compact C-Fubinian manifold.

We have seen in §2 that a C-umbilical hypersurface in a locally Fubinian
manifold is locally C-Fubinian. Now we are going to construct a compact C-
Fubinian manifold in a Fubinian manifold with 2% —1 in a concrete way.

Let X be a complex number space of dimension #, and denote its coordinates
by z* and their conjugates by z¢*'®. Putting

4.1) S=1-+2k3 z0z%
and
4.2 D=(log S)/2F,

a Fubinian manifold M is by definition'? a maximal connected domain in X, where
S does not vanish, and its Kihlerian metric is given by

Gﬂ*a = Gaﬁ* = aﬁ*ﬁndjz (555,, — Zkzﬁza*)/sz,
4.3)
Gﬂa = Gﬁ*a* =0.

The non-trivial components of the contravariant metric tensor arc
4.4 GFra=S(jPa—-Dfezf*2%)

and those of the Riemannian connection are

4.5) {:8} =G*0,Gpx= —2k(0,%26% +04227%)/S

and their conjugates.

Then the equation (3.2) is separated into

4.6) VpUaZZUpUn, Vﬁ*Ua:kGﬁ*a.
If we define a vector field U;=(U., U.x) by
4.7) U,=ko,O=kz*|S and conj.,

then it is easily seen that the vector field U; satisfies (4. 6). Since || U ||2=2¢f#**Us+U.
=2k2> z%*z%, the hypersurface M defined by 3 z<*z¢=1/2 is C-umbilical in M,
because U, is a vector normal to M and its length is equal to # on M. There-
fore M is a C-Fubinian manifold, which is diffeomorphic to a (2n—1)-dimensional
sphere.

§5. C-loxodromes.

A locally Fubinian manifold is characterized by local flatness under a holomor-
phically projective transformation, a transtormation between affine connections

10) In this paragraph, the first Greek indices «, f§, y run over 1, ..., and we write
at=a+n.
11) See, for instance, Bochner [1].
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preserving holomorphic plane curves. An analogue may be expected for a locally
C-Fubinian manifold, and for this object we first introduce the notion of C-loxodromes.

In a Sasakian manifold, we consider a curve L: u"=u’(s) parameterized with
its arc-length s and satisfying the differential equation

oul dw du
—_—_— e — fh T
5.1) P afifs ds ds ’

where ¢ indicates covariant differentiation along curves and a is a constant. Putting
&r=dum/ds, we can see that f;&* is constant along L and put b=f;£*. By expanding
Frenet formulas for the curve, we can verify that the first principal normal vector
of L is given by (1—56%"'% fi*&* and the second by (1—5%)~172(b&*+f*), and the first
principal curvature is equal to ab(1—b?%)'%, the second equal to 1—ab? and the suc-
cessives vanish identically. Therefore the curve L is a loxodrome cutting geodesic
trajectories of f* with constant angle. It is reduced to a Riemannian circle if
ab*=1 and to a geodesic if b=0.
By use of an arbitrary parameter ¢ of L, the equation (5.1) turns into
o*u dw du

6.2 P g B g g B A
: ag —  dt VGt dt

a being a function of £. However, in an almost contact manifold with affine connec-
tion, we may also consider the equation (5. 2) and call its integral curves C-loxodromes.

§6. A characterization of locally C-Fubinian manifolds.

Let I';* and I'/;» be symmetric affine connections in an almost contact mani-
fold M. A correspondence between them will be called a CL-transformation if it
carries C-loxodromes to C-loxodromes. By standard arguments, it follows from
(5.2) that a CL-transformation is expressed by the relation

6.1) I =TI ;" +-0pi+0:"p;+c(fr 1o fi),

where p; is a vector field and ¢ is a constant. Then the curvature tensors are
related to each other by

K yji= Ky js" — 04" Pji+0" P+ (Prj— Pji)0i"
6.2) —clfip, fi—fi' o= Wrfi—1 5 f) [i]
Fl(pufi") fi— 01 [i") - fi"— 1 ) £,
where we have put
6.3) Pji=pipv—pipi—c(fo it/ i) p1—* f; S

Now we consider a Sasakian manifold related to a locally Euclidean manifold'®
under a CL-transformation. By (6.2), (1.5), (1. 6) and (1. 7), the curvature tensor
is equal to

12) A locally Euclidean manifold is not Sasakian.
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Kijit=0i"Pjs— 6 Py — (Prj— Pj)0"
6.4) L fi fri—fi* foi— 2o fi"]
—C208 f; fitgua fo S — 20" fie fi— 9 fe S ")
Contracting % and % in this equation, we have
(6.5) K;i=2(n—1)Pji+(Pji— P.j)—c[3fi* fut+(dn—>5) f, fi+g;i].

The symmetry of Kj; implies that of P;; and consequently p; is the gradient of a
scalar field, say p. Transvecting (6.4) with f, and by (1.5), we have

SelPji—(c+1)gs:1=fi[Pri—(c+1)gasl-
Hence we may put
Pji—(c+1D)gji=v/3 /o
v being a proportional factor. Substituting this into (6.5), we obtain
Kji=2[(n—1)(c+1)+clg;+2[(n—1)v—c@n—1)] 1, /.
Transvecting f7f* and comparing the result with (1.9), we have v=c and therefore
(6.6) Pi=(c+L)gn+cf;fu

Substituting this into (6.4), we see that the curvature tensor is equal to the ex-
pression (2.5) with k=c.

Conversely, it is verified that in a locally C-Fubinian manifold with A=c¢ the
integrability condition of the equations

14 D="Djs
pibi=(c+1Dgj+pipi+c(fs i +FifMPr-¢f; 1o
is satisfied. Therefore we obtain the

TureOREM 5. A Sasakian manifold related to a locally Euclidean wmanifold
under a CL-transformation s locally C-Fubinian, and vice-versa.
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