ON FUBINIAN AND C-FUBINIAN MANIFOLDS

By Yoshihiro Tashiro and Shun-ichi Tachibana

In his previous papers¹), one of the present authors proved that an orientable hypersurface in an almost complex manifold has an almost contact structure and obtained a condition²) in order that a hypersurface in a Kählerian manifold is Sasakian. In the present paper, a hypersurface satisfying the condition will be called a *C*-umbilical hypersurface. A manifold having the same Sasakian structure as a *C*-umbilical hypersurface in a locally Fubinian manifold will be said to be locally *C*-Fubinian. The purpose of the present paper is to show some characteristic properties of Fubinian and *C*-Fubinian manifolds.

§1. Preliminaries.

Let *M* be a 2*n*-dimensional almost Hermitian manifold with almost complex structure $F = (F_{\lambda}^{\kappa})$ and metric tensor $G = (G_{\mu\lambda})$. We shall denote the curvature tensor by $K_{\nu\mu\lambda}^{\kappa}$, the Ricci tensor by $K_{\mu\lambda}$, the scalar curvature by $\kappa = K_{\mu\lambda}G^{\mu\lambda}/2n(2n-1)$, and the covariant differentiation with respect to the Riemannian connection of the metric *G* by \mathcal{F}_{μ} .

If M is Kählerian, we know the identities

(1.1)
$$K_{\nu\mu\lambda\kappa}F_{\pi}{}^{\lambda}F_{\omega}{}^{\kappa} = K_{\nu\mu\pi\omega},$$

(1. 2)
$$F^{\nu\mu}K_{\nu\mu\lambda\kappa} = -2K_{\lambda}^{\omega}F_{\omega\kappa} = 2K_{\kappa}^{\omega}F_{\omega\lambda}$$

For a vector $V=(V^{\epsilon})$, we put $||V||^2 = G_{\mu\lambda}V^{\mu}V^{\lambda}$, $\tilde{V}^{\epsilon} = -V^{\lambda}F_{\lambda}^{\epsilon}$ and

(1.3)
$$K(V) = -K_{\nu\mu\lambda\kappa} \widetilde{V}^{\nu} V^{\mu} \widetilde{V}^{\lambda} V^{\kappa} / ||V||^4$$

(1.4)
$$R(V) = K_{\mu\lambda} V^{\mu} V^{\lambda} / ||V||^{2}.$$

These quantities K(V) and R(V) are the so-called holomorphic sectional curvature and the Ricci curvature (belonging to the direction) of the vector V, respectively.

On the other hand, let \overline{M} be a (2n-1)-dimensional almost Grayan manifold with structure (f, g) consisting of an almost contact structure

$$\kappa, \lambda, \mu, \nu, \omega = 1, ..., 2n;$$

 $h, i, j, k, l = 1, ..., 2n-1;$
 $A, B, C = 1, ..., 2n-1, \infty.$

2) See Theorem 8 in [5], or the equation (1.12) in the below.

Received April 20, 1963.

¹⁾ Tashiro [5]. Terminologies and notations of the papers will be taken over in the present paper. The various kinds of indices run on the following ranges respectively:

$$f = (f_B^{A}) = \begin{pmatrix} f_i^{h} & f_i \\ -f^{h} & 0 \end{pmatrix}^3$$

and its associated metric C-tensor

$$g=(G_{CB})=\left(\begin{array}{cc}g_{ji}&0\\0&1\end{array}\right),$$

where g_{ji} is a metric tensor associated with f. The structure (f, g) possesses the following properties: The rank of the matrix (f_i^h) is equal to 2n-2,

(1.5)
$$ff = -E: f_j^{i} f_i^{h} - f_j f^{h} = -\delta_j^{h}, f_j^{i} f_i = 0, f^{i} f_i^{h} = 0, f^{i} f_i = 1,$$

(1.6)
$$fgf^{i} = g: g_{lk}f_{j}^{l}f_{i}^{k} + f_{j}f_{i} = g_{ji}, g_{ih}f^{h} = f_{i}, g_{ji}f^{j}f^{i} = 1,$$

where E indicates the unit matrix (δ_B^A) of degree 2*n*. The covariant tensor $f_{ji}=f_j{}^h g_{hi}$ is skew symmetric. We denote the curvature tensor of \overline{M} by $\overline{K}_{kji}{}^h$ and the Ricci tensor by \overline{K}_{ji} . The covariant differentiation with respect to the Riemannian connection of g_{ji} in \overline{M} will be denoted by \overline{V}_j , too, which we distinguish by affixing a Latin index from that in an almost Hermitian manifold M with Greek index.

If M is Sasakian, then the structure satisfies the equations

in addition to (1.5) and (1.6). Moreover we have the identities

(1.8)
$$\bar{K}_{kji}h = f_k g_{ji} - f_j g_{ki},$$

(1.9)
$$\bar{K}_{ii}f^{j}f^{i}=2n-2,$$

which will be used later. As is seen by (1.7) and the skew-symmetry of f_{ji} , the vector field f^{h} is a Killing one and its trajectories are geodesics.

Now, in an almost Hermitian manifold M, we consider an orientable hypersurface, which is also denoted by \overline{M} for the following reason. When \overline{M} is represented by $x^{\epsilon} = x^{\epsilon}(u^{h})$ by use of local coordinate systems (x^{ϵ}) in M and (u^{h}) in \overline{M} , we denote the tangent vectors $\partial_{i}x^{\epsilon}$ of \overline{M} by B_{i}^{ϵ} , the unit normal vector by C^{ϵ} , or sometimes by B_{∞}^{ϵ} , and put

$$B=(B_B^{\kappa})=\binom{B_i^{\kappa}}{C^{\kappa}}, \quad B^{-1}=(B_\lambda^{A})=(B_\lambda^{h}, C_\lambda).$$

Then the induced structure (f, g) in \overline{M} defined by

(1.10)
$$f = BFB^{-1}:$$
$$-f^{h} = C^{\lambda}F_{\lambda}{}^{\kappa}B_{\kappa}{}^{h}, \quad 0 = C^{\lambda}F_{\lambda}{}^{\kappa}C_{\kappa},$$
$$-f^{h} = C^{\lambda}F_{\lambda}{}^{\kappa}B_{\kappa}{}^{h}, \quad 0 = C^{\lambda}F_{\lambda}{}^{\kappa}C_{\kappa}$$

(1.11)
$$g = BGB^{i}: \quad g_{ji} = G_{\mu\lambda}B_{j}^{\mu}B_{i}^{\lambda}, \qquad G_{\mu\lambda}C^{\mu}C^{\lambda} = 0,$$
$$G_{\mu\lambda}C^{\mu}C^{\lambda} = 1,$$

3) Here we put $f_{\infty}^{h} = -f^{h}$. This is different from that in [5] in sign. In an almost Grayan manifold, f^{h} coincide with the contravariant components of the vector $f_{i} = f_{i}^{\infty}$.

177

is an almost Grayan structure.

In a Kählerian manifold M, the induced structure (f, g) in \overline{M} is Sasakian if and only if the second fundamental tensor h_{ji} of \overline{M} has the form

(1. 12)
$$h_{ji} = g_{ji} + \mu f_j f_i$$

where μ is a scalar field in \overline{M} . Such a hypersurface will be said to be *C-umbilical*. The factor μ is related to the mean curvature $h=h_{ji}g^{ji}/(2n-1)$ by

(1.13)
$$\mu = (2n-1)(h-1)$$

and we call it the *C*-mean curvature of \overline{M} . Let us seek for a formula used later. Since $B^tg^{-1}fB=GF$, we have

(1.14)
$$f^{kj}B_{k}{}^{\nu}B_{j}{}^{\mu} - C^{\nu}\widetilde{C}^{\mu} + \widetilde{C}^{\nu}C^{\mu} = F^{\nu\mu}$$

Substituting (1.12) into Codazzi's equation⁴⁾

(1.15)
$$\nabla_k h_{ji} - \nabla_j h_{ki} = B_k^{\nu} B_j^{\mu} B_i^{\lambda} C^{\kappa} K_{\nu\mu\lambda}$$

and using (1.7), we obtain

(1.16)
$$(\nabla_{k}\mu)f_{j}f_{i} - (\nabla_{j}\mu)f_{k}f_{i} + \mu (2f_{kj}f_{i} + f_{j}f_{ki} - f_{k}f_{ji}) = B_{k}{}^{\nu}B_{j}{}^{\mu}B_{i}{}^{\lambda}C^{\kappa}K_{\nu\mu\lambda\kappa}.$$

Contracting this equation with $f^{k_j} f^i$, taking account of (1.5), (1.10), (1.14) and $f^i B_i{}^{\lambda} = -C^{\mu} F_{\mu}{}^{\lambda} = \widetilde{C}^{\lambda}$, we obtain the inquired equation

(1.17)
$$2(n-1)\mu = -R(C) + K(C),$$

which means that the C-mean curvature μ is the difference of the holomorphic sectional curvature from the Ricci curvature of the normal direction of \overline{M} at each point, to within a constant factor.

If M is in particular an Einstein manifold, then by transvection of (1.16) with g^{ji} , we have $\nabla_k \mu = f_k g^{ji} (\nabla_j \mu) f_i$. Applying $f^{lk} \nabla_l$ to the last equation and using (1.5) and (1.7), we can easily see that $g^{ji} (\nabla_j \mu) f_i = 0$ and hence μ is constant in \overline{M} . Thus we have

THEOREM 1. In an Einstein Kählerian manifold, the mean curvature h and the C-mean curvature μ of a C-umbilical hypersurface are constant.

§2. Fubinian and C-Fubinian manifolds.

A Kählerian manifold M is called a locally Fubinian manifold or a manifold of constant holomorphic sectional curvature, if the holomorphic sectional curvature at every point is independent of directions at the point, and its curvature tensor is given by⁵

(2.1)
$$K_{\nu\mu\lambda\kappa} = k(G_{\nu\kappa}G_{\mu\lambda} - G_{\mu\kappa}G_{\nu\lambda} + F_{\nu\kappa}F_{\mu\lambda} - F_{\mu\kappa}F_{\nu\lambda} - 2F_{\nu\mu}F_{\lambda\kappa}),$$

k being a constant and equal to $(2n-1)\kappa/2(n+1)$. A locally Fubinian manifold is an Einstein one:

⁴⁾ See, for instance, Schouten [3], p. 242.

⁵⁾ Tashiro [4], Yano and Mogi [6].

(2.2)
$$K_{\mu\lambda} = 2(n+1)kG_{\mu\lambda}$$

and for a unit vector V, we have

(2.3)
$$K(V) = 4k, \quad R(V) = 2(n+1)k.$$

Now we consider a C-umbilical hypersurface \overline{M} in a locally Fubinian manifold M. By (1, 17) and (2, 3), we know that $\mu = -k$. Substituting (1, 12) and (2, 1) into Gauss' equation⁶⁾

(2.4)
$$\overline{K}_{kjih} = B_k^{\nu} B_j^{\mu} B_i^{\lambda} B_h^{\kappa} K_{\nu\mu\lambda\kappa} + h_{kh} h_{ji} - h_{jh} h_{ki}$$

we have

(2.5)
$$\bar{K}_{kjih} = (k+1)(g_{kh}g_{ji} - g_{jh}g_{ki}) + k(f_{kh}f_{ji} - f_{jh}f_{ki} - 2f_{kj}f_{ih}) - k(g_{kh}f_jf_i + g_{ji}f_kf_h - g_{jh}f_kf_i - g_{ki}f_jf_h).$$

Transvecting this equation with g^{kh} , we have

(2.6)
$$\bar{K}_{ji}=2(n-1)[(k+1)g_{ji}-kf_jf_i].$$

In general, a Sasakian manifold, whose curvature tensor possesses the properties (2.5) or (2.6), will be called a *locally C-Fubinian* or *C-Einstein* manifold^{τ}) respectively. Then we can state that

THEOREM 2. A C-umbilical hypersurface in a locally Fubinian manifold is a locally C-Fubinian manifold.

If k=0, then $\mu=0$ and hence we have

COROLLARY. In a 2n-dimensional Euclidean manifold M with natural Kählerian structure, the induced almost Grayan structure of a hypersurface \overline{M} is Sasakian if and only if \overline{M} is a portion of a unit hypersphere in M.

Suppose now there is an umbilical hypersurface in a locally Fubinian manifold. Put the second fundamental tensor in $h_{ji} = \rho g_{ji}$ and substitute it into (1.15). Then by the same method as that of obtaining (1.17) and by (2.3) one can see that 0 = K(C) - R(C) = 2(n-1)k and hence k=0. Thus we have

THEOREM 3. There is no umbilical hypersurface in a non-Euclidean locally Fubinian manifold.

§3. A characterization of a locally Fubinian manifold.

It is well known⁸⁾ that an *n*-dimensional Riemannian manifold is projectively flat, i.e. of constant curvature, if and only if there exists an umbilical hypersurface with constant mean curvature through every point with every (n-1)-direction at

⁶⁾ See, for instance, Schouten [3], p. 242.

⁷⁾ A C-Einstein manifold is called an η -Einstein one by Okumura [2].

⁸⁾ Schouten [3], p. 309 and p. 311.

the point, and that it is conformally flat if and only if there exists an umbilical hypersurface through every point with every (n-1)-direction at the point. Since a Fubinian manifold is holomorphically projectively flat⁹⁾, an analogous proposition for a locally Fubinian manifold may be expected. In fact, we shall establish the following

THEOREM 4. A 2n-dimensional Kählerian manifold M is locally Fubinian if and only if there exists a C-umbilical hypersurface with C-mean curvature equal to a constant -k through every point with every (2n-1)-direction at the point.

Proof. Sufficiency. Assume that there exist *C*-umbilical hypersurfaces stated in the theorem. Every *C*-umbilical hypersurface in a Kählerian manifold is Sasakian, and from (1.16) we have easily $K_{\mu\lambda}B_{j}{}^{\mu}C^{\lambda}=0$. In order that this equation holds for arbitrary vectors $B_{j}{}^{\mu}$ and C^{λ} such that $G_{\mu\lambda}B_{j}{}^{\mu}C^{\lambda}=0$, $K_{\mu\lambda}$ should be proportional to $G_{\mu\lambda}$ and hence *M* is an Einstein manifold, $K_{\mu\lambda}=(2n-1)\kappa G_{\mu\lambda}$. From (1.17) and our assumptions, we have

$$(3.1) K(C) = -2(n-1)k + (2n-1)$$

for any unit vector C^{κ} . Therefore the holomorphic sectional curvature K(C) is independent of directions at every point, and hence M is locally Fubinian.

Necessity. Let M be a locally Fubinian manifold whose curvature tensor is given by (2.1). The theorem is true in the case of locally Euclidean manifold, so that we shall only concern with the case $k \neq 0$. We consider the system of partial differential equations

(3. 2)
$$\nabla_{\mu}U_{\lambda} = kG_{\mu\lambda} + U_{\mu}U_{\lambda} - \tilde{U}_{\mu}\tilde{U}_{\lambda}$$

in an unknown vector field U_{λ} . It is seen that the integrability condition

$$(3.3) \qquad \qquad \nabla_{\nu} \nabla_{\mu} U_{\lambda} - \nabla_{\mu} \nabla_{\nu} U_{\lambda} = -K_{\nu \mu \lambda} U_{\lambda}$$

of the system (3.2) is identically satisfied by (2.1) and (3.2) itself, and consequently the system is completely integrable. Let P be an arbitrary point and consider a solution of (3.2) with initial value $(U_{\lambda})_{\rm P}$ at P satisfying $(G^{\mu\lambda}U_{\mu}U_{\lambda})_{\rm P} = k^2$. Since $\nabla_{\mu}U_{\lambda} = \nabla_{\lambda}U_{\mu}$, the family of (2n-1)-directions given by U_{λ} constitutes an involutive distribution in a neighborhood of P. Let \overline{M} be the integral manifold of the distribution through P. Since U^{κ} is normal to \overline{M} , we can put $U_{\lambda} = \sigma C_{\lambda}$ where σ is a scalar in \overline{M} . Substituting (3.2) into $\nabla_{j}U_{\lambda} = B_{j^{\mu}}\nabla_{\mu}U_{\lambda} = \nabla_{j}(\sigma C_{\lambda})$ and noticing $B_{j^{\mu}}\widetilde{U}_{\mu}$ $= \sigma B_{j^{\mu}}F_{\mu}{}^{\lambda}C_{\lambda} = \sigma f_{j}A_{\lambda}^{\lambda}C_{\lambda} = \sigma f_{j}$, we have

$$(3.4) kB_{j\lambda} - \sigma f_j \tilde{U}_{\lambda} = \sigma_j C_{\lambda} - \sigma h_j B_{i\lambda},$$

where $\sigma_j = \partial_j \sigma$. Since $B_{i\lambda}$ and \tilde{U}_{λ} are tangent to \bar{M} , we see that $\sigma_j = 0$ and hence $\sigma^2 = k^2$ by means of the initial condition. We may suppose that $\sigma = -k$. Transvecting B_i^{λ} with (3.4), we have

$$(3.5) h_{ji} = g_{ji} - k f_j f_i.$$

As P and the value $(U_{\lambda})_{P}$ of direction at P are arbitrary, we complete the proof of the theorem.

9) See Tashiro [4].

§4. A construction of a compact C-Fubinian manifold.

We have seen in §2 that a *C*-umbilical hypersurface in a locally Fubinian manifold is locally *C*-Fubinian. Now we are going to construct a compact *C*-Fubinian manifold in a Fubinian manifold with $k \neq -1$ in a concrete way.

Let X be a complex number space of dimension n, and denote its coordinates by z^{α} and their conjugates by $z^{\alpha * 10}$. Putting

$$(4.1) S=1+2k\sum z^{\alpha}z^{\alpha}*$$

and

$$(4.2) \qquad \qquad \Phi = (\log S)/2k$$

a Fubinian manifold M is by definition¹¹⁾ a maximal connected domain in X, where S does not vanish, and its Kählerian metric is given by

$$G_{\beta}*_{\alpha} = G_{\alpha\beta}* = \partial_{\beta}*\partial_{\alpha}\Phi = (S\partial_{\beta\alpha} - 2kz^{\beta}z^{\alpha})/S^{2},$$
(4.3)

 $G_{\beta lpha} = G_{\beta st_{lpha}} * = 0.$

The non-trivial components of the contravariant metric tensor are

$$(4.4) G^{\beta*\alpha} = S(\delta^{\beta\alpha} + 2kz^{\beta*}z^{\alpha})$$

and those of the Riemannian connection are

(4.5)
$$\begin{cases} \alpha \\ \gamma \beta \end{bmatrix} = G^{\alpha \iota *} \partial_{\gamma} G_{\beta \iota *} = -2k(\partial_{\gamma}^{\alpha} z^{\beta *} + \partial_{\beta}^{\alpha} z^{\gamma *})/S$$

and their conjugates.

Then the equation (3.2) is separated into

(4.6)
$$\nabla_{\beta} U_{\alpha} = 2U_{\beta} U_{\alpha}, \ \nabla_{\beta} * U_{\alpha} = kG_{\beta} *_{\alpha}.$$

If we define a vector field $U_{\lambda} = (U_{\alpha}, U_{\alpha}^{*})$ by

(4.7)
$$U_{\alpha} = k \partial_{\alpha} \Phi = k z^{\alpha *} / S$$
 and conj.,

then it is easily seen that the vector field U_{λ} satisfies (4.6). Since $||U||^2 = 2g^{\beta * \alpha} U_{\beta} * U_{\alpha} = 2k^2 \sum z^{\alpha *} z^{\alpha}$, the hypersurface \overline{M} defined by $\sum z^{\alpha *} z^{\alpha} = 1/2$ is *C*-umbilical in M, because U_{λ} is a vector normal to \overline{M} and its length is equal to k on \overline{M} . Therefore \overline{M} is a *C*-Fubinian manifold, which is diffeomorphic to a (2n-1)-dimensional sphere.

§5. C-loxodromes.

A locally Fubinian manifold is characterized by local flatness under a holomorphically projective transformation, a transformation between affine connections

¹⁰⁾ In this paragraph, the first Greek indices α , β , γ run over 1, ..., *n* and we write $\alpha^* = \alpha + n$.

¹¹⁾ See, for instance, Bochner [1].

preserving holomorphic plane curves. An analogue may be expected for a locally C-Fubinian manifold, and for this object we first introduce the notion of C-loxodromes.

In a Sasakian manifold, we consider a curve L: $u^{h} = u^{h}(s)$ parameterized with its arc-length s and satisfying the differential equation

(5.1)
$$\frac{\partial^2 u^h}{ds^2} = a f_j f_i^{\ h} \frac{du^j}{ds} \frac{du^i}{ds} \,,$$

where δ indicates covariant differentiation along curves and a is a constant. Putting $\xi^h = du^h/ds$, we can see that $f_i\xi^{i}$ is constant along L and put $b = f_i\xi^{i}$. By expanding Frenet formulas for the curve, we can verify that the first principal normal vector of L is given by $(1-b^2)^{-1/2}f_i{}^h\xi^i$ and the second by $(1-b^2)^{-1/2}(b\xi^h+f^h)$, and the first principal curvature is equal to $ab(1-b^2)^{1/2}$, the second equal to $1-ab^2$ and the successives vanish identically. Therefore the curve L is a loxodrome cutting geodesic trajectories of f^h with constant angle. It is reduced to a Riemannian circle if $ab^2=1$ and to a geodesic if b=0.

By use of an arbitrary parameter t of L, the equation (5.1) turns into

(5.2)
$$\frac{\partial^2 u^h}{dt^2} = \alpha \frac{du^h}{dt} + a f_j f_{i}^h \frac{du^j}{dt} \frac{du^i}{dt}$$

 α being a function of t. However, in an almost contact manifold with affine connection, we may also consider the equation (5.2) and call its integral curves *C-loxodromes*.

§6. A characterization of locally C-Fubinian manifolds.

Let $\Gamma_{ji^{h}}$ and $\Gamma'_{ji^{h}}$ be symmetric affine connections in an almost contact manifold \overline{M} . A correspondence between them will be called a *CL*-transformation if it carries *C*-loxodromes to *C*-loxodromes. By standard arguments, it follows from (5.2) that a *CL*-transformation is expressed by the relation

(6.1)
$$\Gamma_{ji}{}^{\prime h} = \Gamma_{ji}{}^{h} + \delta_{j}{}^{h}p_{i} + \delta_{i}{}^{h}p_{j} + c(f_{j}f_{i}{}^{h} + f_{i}f_{j}{}^{h}),$$

where p_i is a vector field and c is a constant. Then the curvature tensors are related to each other by

(6.2)

$$K'_{kji}{}^{h} = K_{kji}{}^{h} - \partial_{k}{}^{h}P_{ji} + \partial_{j}{}^{h}P_{ki} + (P_{kj} - P_{jk})\partial_{i}{}^{h}$$

$$-c[f_{k}{}^{h}\nabla_{j}f_{i} - f_{j}{}^{h}\nabla_{k}f_{i} - (\nabla_{k}f_{j} - \nabla_{j}f_{k})f_{i}{}^{h}]$$

$$+c[(\nabla_{k}f_{i}{}^{h})f_{j} - (\nabla_{j}f_{i}{}^{h})f_{k} + (\nabla_{k}f_{j}{}^{h} - \nabla_{j}f_{k}{}^{h})f_{i}],$$

where we have put

(6.3)
$$P_{ji} = \nabla_j p_i - p_j p_i - c(f_j f_i^l + f_i f_j^l) p_l - c^2 f_j f_i$$

Now we consider a Sasakian manifold related to a locally Euclidean manifold¹²⁾ under a *CL*-transformation. By (6.2), (1.5), (1.6) and (1.7), the curvature tensor is equal to

12) A locally Euclidean manifold is not Sasakian.

FUBINIAN AND C-FUBINIAN MANIFOLDS

(6.4)

$$K_{kji}^{h} = \delta_{k}^{h} P_{ji} - \delta_{j}^{h} P_{ki} - (P_{kj} - P_{jk}) \delta_{i}^{h} + c[f_{k}^{h} f_{ji} - f_{j}^{h} f_{ki} - 2f_{kj} f_{i}^{h}] - c[2\delta_{k}^{h} f_{j} f_{i} + g_{ki} f_{j} f^{h} - 2\delta_{j}^{h} f_{k} f_{i} - g_{ji} f_{k} f^{h}].$$

Contracting h and k in this equation, we have

(6.5)
$$K_{ji} = 2(n-1)P_{ji} + (P_{ji} - P_{ij}) - c[3f_j^k f_{ki} + (4n-5)f_j f_i + g_{ji}]$$

The symmetry of K_{ji} implies that of P_{ji} and consequently p_i is the gradient of a scalar field, say p. Transvecting (6.4) with f_h and by (1.5), we have

$$f_k[P_{ji}-(c+1)g_{ji}]=f_j[P_{ki}-(c+1)g_{ki}].$$

Hence we may put

$$P_{ji} - (c+1)g_{ji} = \nu f_j f_i,$$

 ν being a proportional factor. Substituting this into (6.5), we obtain

$$K_{ji} = 2[(n-1)(c+1)+c]g_{ji}+2[(n-1)\nu-c(2n-1)]f_jf_i.$$

Transvecting $f^{j}f^{i}$ and comparing the result with (1.9), we have $\nu = c$ and therefore

(6.6) $P_{ji} = (c+1)g_{ji} + cf_j f_i.$

Substituting this into (6.4), we see that the curvature tensor is equal to the expression (2.5) with k=c.

Conversely, it is verified that in a locally C-Fubinian manifold with k=c the integrability condition of the equations

is satisfied. Therefore we obtain the

THEOREM 5. A Sasakian manifold related to a locally Euclidean manifold under a CL-transformation is locally C-Fubinian, and vice-versa.

Bibliography

- BOCHNER, S., Curvature in Hermitian metric. Bull. Amer Math. Soc. 53 (1947), 179–195.
- [2] OKUMURA, M., On infinitesimal conformal and projective transformations of normal contact spaces. Tôhoku Math. J. 14 (1962), 398-412.
- [3] SCHOUTEN, J. A., Ricci Calculus. 2nd ed. Berlin, 1954.
- [4] TASHIRO, Y., On a holomorphically projective correspondence in an almost complex space. Math. J. Okayama Univ. 6 (1957), 147-152.
- [5] TASHIRO, Y., On contact structure of hypersurfaces in complex manifolds, I; II. Tôhoku Math. J. 15 (1963), 62-78; 167-175.
- [6] YANO, K. AND I. MOGI, On real representations of Kählerian manifolds. Ann. of Math. 61 (1955), 170–189.

Okayama University and Ochanomizu University.