A NOTE ON AN ABELIAN COVERING SURFACE, I

By Hisao MizumoTo

§1. An abelian covering surface

1. We shall begin with a preliminary on a concept of a covering surface.”
Throughout the present paper we assume that R is a closed or open Riemann sur-
face, and R is an unramified and unbounded covering surface of R.

LemMmaA 1. For a given subgroup K of the fundamental group § of R, there
exists an unramified and unbounded covering surface R of R such that the funda-
mental group T of R corresponds to R.

LemMa 2. Let B and fé* be unramified and unbounded covering surfaces of R.
If the fundamental groups §F and F* of R and R+ corrvespond to a common sub-
group R of the fundamental group § of R, then RB* coincides with R.»

R is called to be normal, if for any closed curve C on R all curves in R lying
over C are simultaneously closed or are simultaneously not closed. R is normal if
and only if the subgroup & of § corresponding to R is a normal subgroup of .

By a covering transformation of R we mean a homeomorphism of R onto itself
which maps each point pef over peR into a point $* lying over the same point
p. The covering transformation 7° which maps § into p* is unique, provided it
exists.

The set of covering transformations of R clearly forms a group ® under the
operation of composition of mappings which is called the covering transformation
group.

There exists a transformation of the group & which carries any point p over p
into any other prescribed point $* over p if and only if & is normal. In this case,
the covering transformation group & is isomorphic to $/f, where & is the normal
subgroup of § corresponding to .

2. DerFINITION.® A normal covering surface R of R is called to be an (unvami-
fied) abelian covering surface of R, if its covering transformation group & is abelian.

Received August 15, 1962.

1) Cf. [2], [12], [15], etc.

2) We say that the two covering surfaces R and R* of R coincide each other if there
exists a one-to-one conformal mapping of RB* onto R such that two points corresponding
each other by the mapping lie over the same point of R.

3) Cf. [11].
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Let R have the fundamental group & and € be the commutator subgroup ot .
@ determines a normal covering surface Ry which we call the homology covering
surface. R is an abelian covering surface of R, for the quotient group §/€ is
abelian. Further Rp is the stromgest abelian covering surface of R, for € is the
smallest subgroup whose quotient group is abelian. The quotient group /€ is
called the homology group of R. Let  be the 1-dimensional singular homology group
of R. Then $ is isomorphic with the quotient group /€ and thus with the cover-
ing transformation group of .

3. First let R be a closed Riemann surface of genus gq. Then there exists a
system of 2q cycles ay, ..., ax, on R satisfying the following conditions:

(@) Any cycle C on R is homologous to a linear combination of ay, ..., aq,
that is

2g
C~Ila jxj,“
7=1
x, being integers;
(b) The intersection number between them satisfies

a2,_1><a2k_1=a2,><a2k=0, a2]_1><a'2k=5‘;c (j:]., ey @5 kzl, ceey q),

0} being the Kronecker’s symbol. Such a system is called a canonical homology
basis of R.

Next let R be an open Riemann surface. A singular cycle is said to be a
dividing cycle, or homologous to 0 modulo the ideal boundary, if it is homologous
to a singular cycle which lies outside of any given compact set. The group formed
by the homology classes of dividing singular cycles is denoted by 9;. The quotient
group 9/9; is the homology group modulo dividing cycles. It can also be called the
relative homology group with respect to the ideal boundary.

It is known that there exists a system of cycles ,, @,, ... on an open Riemann
surface R satisfying the following conditions (cf. [1]):

(@) Any cycle C on R is homologous to a linear combination of a finite number
of the cycles a,, a,, ..., that is

C~1a (mod ),
7=1
where zx, are integers and 3 is the ideal boundary of R;
(1) The intersection number between them satisfies
Ay 1 X Qg 17= gy X Ao =0, aj_1 X Aop=0% (G=12, ..;; k= 1,2 ...

Such a system is called a canonical homology basis of R modulo the ideal boundary.
Now, let {R,} be an exhaustion of R. Then there exists a system of cycles
satisfying moreover the following condition (cf. [1]):

4) In the present paper, we shall denote a sum of cycles by a product notation for

convenience.
5) Here it may arise that the number of the cycles a;, as, -+ is finite.
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(¢’ For every » there exists a number k, such that a,. ..., as, form a relative
homology basis of R, mod dR,, that is, any cycle CcR, is homologous to a linear
combination of a, ..., @, i. e.

2kp

C~1IIajs (mod oR.).
=1

We shall call such a system a canonical homology basis belonging to the exhaustion
{Rx}.

4. Let R be an open Riemann surface and K be a compact subregion of R.
We shall call K a canonical subregion, i{ its boundary consists of a finite number
of simple closed analytic curves, all components of R— K are non-compact, and have
a single contour.

Let {R.}3-, be an exhaustion of R. We shall call {R.}5., a canonical exhaus-
tion if all the R, are canonical.

Let the contours of R, be denoted by B,, j=1, ..., s. The orientation will be
chosen such that aR,=I1p,.

Consider the complement R,—R,, always in the sense that the border is included
in the complement. Because the exhaustion is canonical there will be exactly s
components, and we denote by @, the component which has the contour B, in
common with R,. The remaining contours of @, will be denoted by B, 1=<k=s,,
and we choose the orientation so that 0Q,=11:8;:8,"!. Next, the complement R,—R,
consists of components Q;x where @, and @, have the common contour Bj.

When we continue in this way we obtain the symbol B;i..,, for each contour
of R, with the subscript j» running from 1 to a number s,,.,,,. The components
of R,.,—Rn. have names @,,.,, and further 0Q,,..,,=11,8;,.,,i8;1,—- For the sake
of conformity, @ will be another name for R,, and p will be null.

LemMma 3. A (strong) homology basis for the open Riemann surface R is formed
by the combined system of all cycles a, of a canonical homology basis belonging to
a canonical exhaustion {R.} and all cycles B,,.,, with j.>1.

Such a system of cycles shall be called a (strong) canonical homology basis of
R. Each cycle C satisfies a unique homology relation

C~M a1l ., v m
J In>1

where z, and y,,.,, are integers, the products are finite, and C is a dividing cycle
if and only if all x, are 0.

The system of cycles B,,..;,, j»>1, determines a basis for £, which we shall
call a canonical homology basis of dividing cycles.

5. Let [" be a one-dimensional chain. We shall say that 7" is a relative cycle
if and only if d'=0. The group of relative cycles contains the subgroup of cycles
(or finite cycles).

Consider a point on f§,,..;,, j»>1. It can be joined by a simple curve in @,,.,,
to a point on B;,.,,;. This point can be joined to a point on B, ., by a simple
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curve in @;,.,,1, and so on. In the opposite direction we can pass from the point
on f;,.,, through Q,,.,,_, to a point on B,,.,, ,;, then through @,,.,, ,; to a point
on f;,.,,_11, and so on. Here we take the curves so that each of them does not
intersect with any element «, of canonical homology basis belonging to the exhaus-
tion {R.}, which is possible. Then the product of the curves between consecutive
points is a relative cycle, which we denote by p,,.,,* and we call the conjugate
relative cycle of B,..;,. Its direction can be fixed so that B;,.,, %8s, =1. Then
Biree snrn X Bryean® =1y Brpspyioa X Bay s ¥=—1, and for all others fe,.., X Bs,.0,*=0,
@; X By,..5,¥=0.

6. Let R be an arbitrary Riemann surface® and £ be an abelian covering sur-
face of R with its covering transformation group .

Let § be an arbitrarily fixed point on K. For each j=1,2, ..., we denote by
a;(p) the end point of the curve on R starting from p, whose projection on R is
closed and homotopic with the curve «,. Similarly, we denote by B,,.,,(5) (j»>1)
the end point of a curve on R starting from $, whose projection on R is closed and
homotopic to the curve B;,.,,. Since R is normal by the assumption, there exists
a unique covering transformation of B which carries § into a;(p) (j=1,2,...) or
Biysn(D) (jn>1), respectively. Further, since R is an abelian covering surface of R,
by the consequence in 2 and the lemma 3, these transformations form a system of
generators of the group &, which shall be denoted by the same letters @, and §;,.,,,
respectively.”

Let &, be the subgroup of & generated by the strong canonical homology basis
a, (j=1, ..., 2xn), By, =1, ..., m; j,>1) of R,. For simplicity of notation, we shall
agree to denote the canonical homology basis §;,.,, (v=1, ..., n; 7,>1) of dividing
cycles of R, by By, ..., B, with the changed subindices.

Now, there exists a finite number of defining relations between the elements
of &,

2ep, o

(1) IT ajors I B2k, 2oty = T

=1 =1
k=1, ..., 2} 0=2,=2k,+¢t),

with integral exponents ax, such that each relation

2k m
IT ;s IT ByF2en+s = I
=1 J=1

is generated by the system (1), where [ is the identical transformation.® Here, if
the 2, X (2k,+¢,) matrix

6) Here the result will be stated for the case that R is most general, but it will be
done more easily for the other cases (of closed one or finite genus, etc.). Cf. [11] for the
case of closed one.

7) In general, these transformations depend also on the choice of the point Z In the
case of abelian @, however, they are uniquely determined by the curves a; or Bji..;n-

8) Cf. [14].
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(@i =1, ) Ay 71, o, 2eptn

is of rank p.(=4,), then the number 2k,+¢,—p,=0, is the rank (Betti number) of
the abelian group ®..

Conversely, when we give the defining relations (1) for each # such that the
relations (1) for » contains all ones for #—1, an abelian group & with the system
of generators a, and B, (j=1, 2, ...) satisfying (1) is uniquely determined and further
a subgroup & of the fundamental group % of R uniquely corresponds to it. Then,
by the lemmas 1 and 2, there exists one and only one abelian covering surface
of R whose fundamental group & corresponds to ® and whose covering transforma-
tion group is ®.

Now we shall show one of the methods of constructing the abelian covering
surface £ of R with the covering transformation group & when a Riemann surface
R and a group & with the system of generators a, and 8, (j=1, 2, ...) satisfying
(1) are given.

We shall represent the elements Hf;"laj-ff I B;72n+s of &,, where x, (j=1, ...,
2ka+¢n) are integers, by the lattice points (zy, ..., Zaeyee,) Of @ 2k4-+¢n-dimensional
euclidean space @*»+«, Let 3, be the group of transformations of E*n+=« generated
by the 2,4, translations carrying the origin into (1, 0, ..., 0), ..., 0, ..., 0, 1) respec-
tively, and 3.* be its subgroup generated by the 4, translations carrying the origin
into (awy, ..., @k, 2e540,), (B=1, ..., 4,), respectively. Obviously, two lattice points of
E2*»t+2 represent one and the same element of &, if and only if they are equivalent
with respect to 3,* and &, is isomorphic with the factor group 3./3.*.

Let the two shores of each of the curves as),_i, as;, j=1, 2, ..., be denoted by
sy 1, @ay_17, apjt, a,” respectively, in such a manner that the oriented curve as,
intersects a1 from the shore a,,_.* to the other shore a;, .-, and that as_; in-
tersect @, from as,* to a,,~.” Similarly, let the two shores of each of the curves
Bi* (7=1,2,...), be denoted by B;**, 8%, respectively, in such a manner that the
oriented curve B, intersects f;* from the shore §;** to the other shore g*-. We
cut R along the all curves «, (j=1, 2, ...) and 8;* (j=1, 2, ...) to obtain a surface F
of planar character having an (infinite) number of boundary components, one of
which consists of all 8;**, g%~ (j=1, 2, ...) and the ideal boundary J, and other
ones of which consist of four sides as;_i*, az,*, @217, @2,~. To each residue class
(@1 ...y Taeyee,) mod B,* we associate a replica F(x, ..., T2v,e0,) of F.  Next, we
identify the side a»,*(j=1. ..., ka) of each F(xy, ..., L2)—1, Tep, ..., L2eyse,) With the side
az; of F(x, ..., Xoyo1+1, Ty, ooy Laeprey), Wopmr® (F=1, ..., £0) Of F(21, ...y Bajo1, Loy ooes
Zoeprey) With gy ™ of F(xy, ..., Tajm1, Zoj+1, Loegar,), and B** (j=1, ..., ¢n) of F(xy,
ooy Banpbgy ooer Loegaey) With B¥= of F(xy, ..., Zaeyi+1, o) Laey4e,), Where each point on
a,* and B;** must be identified with the corresponding point on a,~ and f;*-,
respectively.

By these procedures, the sides a, (j=1, ..., 2&,), B,* (j=1, ..., ¢x) of each F is
identified with the unique side of some other (or the same) F, and at each vertex

9) We should note that in each homology class («;) there exists a simple closed curve
and thus so a; may be assumed itself to be.
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of each F, there meet four F’s; F(xy, ..., Zej_1, Loy, «ovy Loeyiey)y F(Xy, ooy Tojmr+1, 2o,
ooy Boepreg)y F(Tyy ooy Togon, Toj 1, oo, Xowyrr,) and F(@, ..., Boymr 1, Toj+1, oo, Doeyie,)
(j=1, ..., ) (some of these four may be mutually identical). Let F. be a surface
obtained by such a procedure. Here we should note that F,.. is obtained by the
identification process of a number of replicas of £, along the sides Qoepi1t, Qoo i1”,
voey Oz Yy ey Ty B Beprr* s ooy Benit ¥ Beys ¥ according to (1) replaced z by
n+1. According to the present procedure, in the first step we construct £, of a
number of replicas of F, in the second step F, of a number of replicas of £, and
so on. By these infinite identification process, the unramified and unbounded cover-
ing surface R of R with the covering transformation group @ is constructed

§2. A free abelian covering surface

7. Let R be an open Riemann surface. A non-compact subregion £ of R
whose relative boundary consists of a finite number of disjoint closed analytic curves
will be called an end.

We introduce the following definition of an ideal boundary component:

An ideal boundary component is a non-void collection 7 of ends £ which satisfies
the following conditions:

(i) If 2,ey and 220,, then LQe¢y;

(ii) If 2,, 2,e7, there exists an 2,c, -2, which belongs to 7;

(iii) The intersection of all closures 2, Qey, is empty.

Let {p;}5., be a sequence of points of R. If for any 2ey there exists a number
Jo such that p;e® for all j=j,, we say that the point sequence {p,}5., tends to the
ideal boundary component 7.

8. In the present section we shall state a topological character of a Riemann
surface R admitting a group ® of one-to-one conformal transformations onto itself
which is free abelian, finitely generated and properly discontinuous.'® Here we
assume that no transformation of & other than the identity has a fixed point. Let
R be a Riemann surface constructed from R by identifying equivalent points by G,
denoted by R=F (mod ®). Then, R is an abelian covering surface of R with its
covering transformation group ©.

We distinguish several cases by a number of elements of basis of & in the
following.

I. The case where & is generated by only one element T.

LemMA 4. Let p be a fixed point on R Then the pownt sequence {T™( p)}s-,
(and also {T—™(P)}5-)) tends to an ideal boundary component of R.

Proof. Let C, be a curve from § to T(f) on R, Cn=T™C,) (m=0, 1, ) and
K be any compact region of K. Then there exists a number m, such that C,cR

10) For any abelian group ®, let € be the torsion group of @, then the quotient group
®/% is a free abelian group without torsion. Thus, in the present problem there is an
essential interest for only the case that ® is free abelian.



ABELIAN COVERING SURFACE, I 35

—K for all m=m, and thus all 7T™(p) (m=m,) lie on a common connected com-
ponent of B—K. Thus {7T™($)};-, tends to an ideal boundary component of R

LemMA 5. Let §, and B, be any two points on R. Then two point sequences
{T™(B)Y ey and {T™B)Y ey (0 (TP Yor and {T-™P)}in-y) tend to a common
ideal boundary component of

Proof. Let C, be a curve from p, to p, on B and Cn=Tm(C)) (m=0,1, ...
Then we may apply a similar argument as in the lemma 4.

In the case I., two subcases can be distinguished.

(H) The case where {T-™P)} and {T™P) (Pl m=1,2,...) tend to distinct
ideal boundary components y, and y, of B, respectively. Then R will be called the
hyperbolic type.

(P) The case where both sequences of points {T-™P)} and {T™P)} (pek: m
=1,2,...) tend to a common ideal boundary component y of R. Then R will be called
the parabolic type.

II. The case where & is generated by two elements T, T,.

LeEMMA 6. Let p be a fixed point on B. Then the four point sequences
{TrmB)Ya-n ATBYae, AT iam and (T;m(P)Yiy tend to a common ideal
boundary component of R.

Proof. Let C,0,0) and C,0, 0) be curves from p to 7y(p) and Ty(p), respec-
tively, and 7,™ T,m(C,(0, O)):é(ml, m,) and T,™o T,(C(0, 0) = C,(m,, my) (my, m,
=0, +1,...). Then for any compact subregion K of R there exists a number s,
such that C,(m,, m,)C B—K and C,(m,, m))c R—K for all pairs (m,, m,) except for
|my| <my, |m,| <m, simultaneously. Then T;m(p), T.™p), T,”™(p) and T,™(p) (m
=m,) can be connected each other by a curve on R— K (e. g. so can be T,™(p) and

T,™(p) (m=m,) by the curve Cz(m, 0).. Cz(m,m 1)C, 1(m 1, m).. C1 10, m)), and
thus they all lie on a common connected component of B—K.

III. The case where & is generated by three or more elements T, ..., Ty (N=3).

In this case also each point sequence {7,"™(M}, {T,™(D)}, ..., {Tw~™D)}, { To™(H)}
(ﬁeﬁ; m=1, 2, ...) always tends to a common ideal boundary component of

In the following we concern ourselves with only the case 1. (H). In the next
paper we will concern ourselves with the other cases 1. (P), II. and III.

9. The strong homology basis of R determines a system of generators of the
covering transformation group & of R as was discussed in §1.

Lemma 7. In the case 1. (H), no dividing cycle on R can be a non-trivial
generator of GV

Proof. (i) We would assume that an infinite number of elements in a canonical
homology basis of dividing cycles are non-trivial generators of &, and let B= {8,,

11) Here by a non-trivial generator of @ we mean the element of  which is not the
identical transformation,
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Bs, ...} be the system of such ones.

Smce T""(p)——»rl, T'"(p)—»r2 (m—co; felk; 713 7,), there exists a dividing cycle
C of R such that C divides R into two ends 2, and 2, being £2,€r, and 2 2€7%.

Let p; be a point on B, (j=1,2,..) and H, be one of the points on R lying
over p;. We can select a subsequence of the point sequence §, (j=1, 2, ...) that
tends to an ideal boundary component y of B. Without loss of generality, we may
assume that p;—7y (j—oo). Then, B;"(H;)—r (j—oo; for each m=+1, ...). For, there
exists a number j, for any compact region Kc R, such that two points B;~1(p;)
and B,™(p;) can be connected by one of the curves 8, on R—K lying over B, for
all j =4, Now, either 2,ey or 2,€y, e.g. let 2,€7. Then there exists a number
71 such that 8;cR—C and fp;ef, for all j =5, and thus

(2) B™Bpel, (j =jy; for each m=0, +1, ...),

where C=C (mod ®). On the other hand, for an arbitrarily positive integer j there
exists a positive integer m, such that

(3) Bi™(Bs)eR, (or B, ™(py)eR;)  for any m=m,.
For, B, (7=1,2,...) is a non-trivial generator of & by the assumption and T™(p)—r,
(m—oo; Pek). (3) contradicts to (2).

(ii) We would assume that only a (non-zero) finite number of elements in a

canonical homology basis of dividing cycles are non-trivial generators of &, and let
B be a system of such ones. There exists an element By.. 0 (j5>1) in B such

that at least one of ends of the conjugate relative cycle Sjo.. #* of Bjo..50 does not

tend to an ideal boundary component in common with any end of a conjugate one
of any other element of B. On the end B0 * intersects with an infinite number

of dividing cycles ;0..;01, 80 %11 - OF B30 4y B0 11, ... For instance, we
shall assume that the first case occurs. Then

Sjo... 40
]l ]71

By o1~ Barso 1L (Bio. 05,07

In41=2
and
Bite i =1 (Gna=2, o0y Si0.50)
For, if Bjo. 8,151, B30 1%,,,€B and an end of B;0. 0, * would tend to the ideal
boundary component in common with ke end of Bjo. ;0% Thus Bjo. 0,=8;0. j0.
By the similar procedure, we have that
Bis. i, =PBj0. 191 =P0.. 011 =

and thus each Bjo..j0,, Bj0..j01, -.. is @ non-trivial generator. In the second case,
we can also show by the similar argument that each ;0.9 . Bj0. 0 1, .. IS @

non-trivial generator. Then we may apply the argument in (i) for a system of such
ones and deduce a contradiction,
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LemMmA 8. In the case 1. (H), only a finite number of «, can be non-trivial
generators of ©.

We can prove the lemma by the argument similar to the lemma 7. We shall
omit its proof.

LeMMA 9. In the case 1., 1f only a finite number of elements ay, ---, as, of

canonmical homology basis modulo the ideal boundary I of R form a system of
generators of &, then R is the type (H) and a suitable cycle C on R whose projection
on R is homologous to the cycle C=I1,_, as;_y ™ az/™21-1, forms a dividing cycle of
R separating 1, from 1., where m, are the integers such that a,=T™ ( i=1, ..., 2x).

We shall prove the present lemma in 11.
By the lemmas 7, 8 and 9, we have the following theorem.

THEOREM 1. In the case 1, R is of hyperbolic type (H) if and only of a finite
number of elements a, ..., as. of canonical homology basis modulo the ideal boundary

& of R form a system of generators of O.
By the theorem, if R is the type I (HI) then it must be
0(]=Tm.7 (]:1’ (RS} 2’6)’

(4) (my, ..., ma)=1,

aj=[ (]=2/€+1, ),
for some k=1 since {7} is a base of &, where m, (j=1, ..., 2t) are integers and
(m,, ..., mz,) denotes the greatest common measure of the integers my, ..., #z,.

By the theorem we have immediately the following corollary.
COROLLARY. In the case 1., of R is closed, then R is of hyperbolic type (H).

10. Lemma 10. In the case 1. (H), we can always select a canonical homology
basis &, @,, ... on R, called regular for R which satisfies the condition

C-(Zj—l:I)
(5) (j=1,2,..),
Azj= T;‘J,

where ;=0 tf Mmz_1=m2,=0, otherwise ;= Mz;—1, M2;)>0.
Conversely, we can always select a canonical homology basis a,, «,, ... on R from
a gwen regular canonical homology basis (5) for R which satisfies the condition

gy 1= T"LZJ—I s
(]:1’ 2) ...),
gy =T ™2,

where me;—1, May (=1, 2, ...) are arbitrarily given integers such that (ms;—1, Mej)=7n,
if i1, >0 and may1=ms;=0 if m,=0.
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Proof. If mzy1=ms;=0 we put @z;-1=as;,-; and a@,;,=a,,. Otherwise we put
(6) @py—1= Olpy—y ™23 M2g=1,M2P) g =21 [CMpg—1,ma )

Then &,;-1=1I. Now there always exists a unique pair of integers x:—1 and xs,
such that

(7 ) $21—17ﬂ2]—1+$2ﬂ’}’l2]=(7}12]-1 s Wsz).
For such x,,-; and x,, we put
(8) Aoy =0lp;_ 17201 Oty %20,

Then by (7)

Qzy= YASCIERCTN

Conversely, by (6), (7) and (8) we have

Oy 1=y 1720 @p™29~1 ' (M2g—1,m2)
oy = Blpy—q~T20=1 @y M2d | Mag=1, M)

Thus the condition (a) or (a’) in 3 is satisfied by the new basis &, @, .... And
also it is immediately shown that the condition (b) or (b’) for the intersection
number in 3 is satisfied.

The converse statement is also easily shown.

11. The proof of the lemma 9. By using the proof of the lemma 10, the pre-
sent lemma is reduced to the case where as; (as,=T™s, m,>0; j=1, ..., ) form a
system of generators of . Then we need only to show that a suitable cycle Con
R the projection on R of which is homologous to C=I1,, a5, ,~™, forms a dividing
cycle on R separating 7, from 7,.

Let § be a fixed point on £ We can connect § to as;(f) (j=1, ..., x) by simple
curves, say @, on R the projections on R of which are homologous to as,, respec-
tively. At the same time we can select simple closed curves, say @,-; (j=1, ..., &),
on R which intersect to @, just one time and the projections on R of which are
homologous to «a,-1, respectively.

Let

~ I3 ’"L]‘
C=H H T~k+1(&21_1—1).
J=1k=1
We shall first prove that if C* is an arbitrary curve connecting § to 7(p) on R
then C* intersects to C andNthus C separates T(p) from p. Without loss of gener-
ality we may assume that C* have the form

é*= ﬂ Tkv (&Zlvsv ),
=1

because only the homotopy classes containing a,, (j=1, ..., ¥) among all homotopy
classes of R can be non-trivial generators of &. Here 1=j,=«, d,=+1, &, are in-
tegers (v=1, ..., ¢), and the initial points 7°%+(p) and the terminal points T*'(p) of T*
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(@2,,%) (v=1, ..., ¢) satisfy that TF(p)=p, Trn(p)=TF () (v=1, ..., 1), TF(p)
= T(p), respectively. There exists the minimum v, say v, such that z,=<0, £ >0.
Then, d,,=1, kyy=k., kuy+if,,=k.," and thus —m,,+1=k, =0. Therefore, noting
that 7%(a,,.,,) intersects to T*w(@;,-1), We see that C* intersects to C.

Now it is immediately seen that C separates 7, from 7,. For there exists a
relative cycle from § to 7, e.g. II;_,T-%™(&,) which does not intersect to C and
similarly one from 7(p) to 7..

§3. Abelian covering surface with finite spherical area

12. Let R be an arbitrary Riemann surface and f be a meromorphic function
on R. We introduce a quantity defined by

ldfdgl® .

I(f)‘SRS arie S
where {=&+17 is a local uniformizing parameter at a point on R. It expresses the
spherical area of the covering surface over the Riemann sphere which is formed
by the image of R by /. We denote by Oxp the class of Riemann surfaces R
which do not admit any non-constant meromorphic function f with I(f)< oo (cf.
[17]). We say briefly that R has finite spherical area if R¢Oyp.

By the wvalence vy of f we mean the function on the w-sphere S defined by
by(w)= 3 wp; f),  weS,

Jp)=w
where p(p; f) is the multiplicity of fat p. Let B(R) be the class of non-constant
meromorphic functions of bounded valence on R. We denote by Oy the class of
Riemann surfaces R with B(R)=¢.

It is known (cf. [5], [10]) that if ReOgs, O¢ being the class of Riemann surfaces
not admitting Green’s function, two alternative cases can occur; namely

(i) v(w)=const<co except for a set of w of capacity zero, and

(i) v (w)=oco except for a set of w of capacity zero.

Thus we can easily see that if ReOg, either R belongs to Oy and Oyp simul-
taneously or not.

In the present section we shall state a function-theoritic character of abelian
covering surfaces with finite spherical area of the class Os. For some special cases,
related problems have already been discussed by Ozawa [13], M. Tsuji [18] and the
author [9].

In the present paper we concern ourselves with the problem for only the case
I. () in 8. In the next paper we will concern ourselves with the similar problem
for the other cases I. (P), II. and IIL in 8.

13. Let R be an open Riemann surface of the class Og and £ be an end of R.
Throughout the following, by 2 we shall mean an end (with subscripts if neces-
sary). We shall need several lemmas (the lemmas 11, 12 and 13) for an analytic
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function on an end £, which have been proved in [4] for the case where the end
has only one ideal boundary component (see [4] and also cf. [7]). Since in our case
they can also be proved analogously, we omit their proofs. (Cf. the theorems 4.1,
4.2 and 5.1 in [4] for the proof of the following lemmas 11, 12 and 13, respectively.)

LemMa 11. Any analytic function bounded on 2 possesses a limit at each ideal
boundary component of L.

Let ¢ be an analytic function on an end £,. In analogy to [4], we define the
local degree d(p, 1) of © at y (2,€7) as follows: Let £ be a generic end such that
Rc, (Rey) and n(p, L)=maXw=p@)peaVe(w). We then put d(p, 7)=mingen(p, 2).

Lemma 12. If ¢ (= const) is meromorphic on 2 and 2¢y, then either (i) ¢ pos-
sesses a limit at y and is then (1, d(¢, 7)) on some subend 2,(C2 and 2,ey) with
the exception of a set of capacity zero, on which ¢ is of valency less than d(p, 1), or
else (ii) the set of limiting values at v 1s the extended plane and ¢ assumes every
value wifinitely often except for a set of capacity zevo.

We suppose that ¢, is a preferred analytic function bounded on £ which has
the minimal local degree d, at y (2€y) and that (i) ¢, possesses a zero limit at y and
a non-zero limit at every other ideal boundary component of £, (ii) ¢, does not
assume zero on £ and is (1, d,) on the closure of £ with the exception of a set of
capacity zero, and (iii) |¢,|=1 on the frontier of £.

LeMmMA 13. If there exists the above-mentioned analytic function ¢, on Q, then
Sfor each bounded analytic function ¢ (|o|<1) on £ there exists a unique analytic
function ¢ (|¢|<1) on |z|<1 such that o=¢-p, holds on £.

14. In the following we shall assume that R is a Riemann surface of the class
O which admits a conformal transformation group &= {7’} of the type L (H) in 8.
Then we have

THEOREM 2. If R has finite spherical area there exists a function £, €BWR) uni-
quely determined except a multiplicative constant which satisfies the conditions

foo TH)=t/(B),  beR
and
f=gof, for each feB(R),
where t is a complex constant |t|>1 uniquely determined by B and &, and gisa
rational function.

The theorem can be proved by a similar argument with somewhat difference
to the proposition 1 in [13]. For completeness, we shall state the proof in detail
(15—20).

15. If R has finite spherical area, then there exists a function FeB(R) and
b (w)=const<oo except for a set of w of capacity zero. We can regard that R is
a finite covering surface over the w-sphere S such that f is the projection map of
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R onto S. By the lemma 12, f has a limit at every ideal boundary component of
R. Especially there exist the limits
lim fo T-m($) and lm fo T™(p).

Without loss of generality, we may assume that lim,,_..f° T-"($)=0. We shall fix
such a function f and make constructively the function f, in the theorem from it.

16. We can find a suitable end 2,(2.€r,) of R and a preferrved analytic func-
tion ¢, on L2, which has the munimal local degree d, at y, and such that (i) ¢, and
S possess a zero limit at v, and a non-zero limit at every other ideal boundary com-
ponent of 2, (ii) ¢, and f do not assume zero on 2, and ¢, 1s (1, d,) on the closure
of 2, except for a set of capacity zevo, and (iii) |p,|=1 on the boundary of 2, and
supa,| f<1.

Proof. Since f has bounded valence, it has only a finite number of zero points
and only a finite number of ideal boundary components such that limz., f($)=0
(r=7r). Then we can take an end £*(ey,) which does not contain any zero point
and which separates all those ideal boundary components from 7,. We can select
a constant 7, such that 0<7 =min(minse«| f|, 1) and any point on |w|=7, is not a
defect value of f. Then, 2,={p||f(p)|<n}(c2*) is an end of 7, and f/», on 2,
satisfies the conditions (i), (ii) and (iii) imposed for ¢, on £2,. Let ¢,* be one of the
functions analytic, bounded on £, such that lim;_,.0,*($)=0 and which have the
minimal lozal degree at y;. By the similar procedure as for f, we can find a subend
Q.Cery) of 2, such that p,=7,p,* (7, being a suitable positive constant) satisfies all
the conditions imposed for ¢, on 2,. Of course, f also satisfies all the conditions
imposed for f on £, Here, owing to taking the subend 2,(c£,), we can no more
guarantee in general that ¢,* provides the minimal local degree at y, among a
family of the functions on £,. However, by taking 7, sufficiently small previously,
we can guarantee that the minimal local degree at r, is invariant even if we take
any subend 2,(er;) of 2,.

17. By 16 and the lemma 13, there holds f=¢, ¢, on £, where ¢, is a unique
analytic function on |w| <1, |¢ol <1, ¢,(0)=0 and ¢,(w)=0 for w=x0. We may suppose
that ¢, has no multiple points except possibly at the origin, by reselecting 2, and ¢,
if necessary. Let ¢, have the multiplicity x#(=1) at the origin. Then w'rc¢, is
one-valued, univalent on |w|<1, and thus @=w#c f=w o ¢, ¢, is a one-valued
analytic function defined on £, which has the minimal local degree d, at r,, pos-
sesses a zero limit at y; and is (1, d,) on the closure of £, except for a set of
capacity zero.

Let 2={p] |p(p)|<#} be a subend of 2,~T-2,) such that 2= {p| ()| =7}
forms the compact boundary of £ and does not contain multiple points of f, where
the real constant 7 should be selected suitably small. Then ¢ maps £ onto an 7
disk G={|z|<#} with some defect set of capacity zero, and ¢ - T is bounded, |¢° 7
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<1, on 2cT-8,). Further, ¢ and ¢-T possess a zero limit at 7, are (1, d;) on
the closure of 2 except for a set of capacity zero, and have the minimal local degree
d, at 7,. Therefore, by the lemma 13, we have a functional relalion

(9) oo T=¢op on 2,
where ¢ is an analytic function of z on G which is one-valued, uniwalent, bounded,
lp1 <1, and H(0)=0.

18. o=w"" - f maps £ onto the r-disk with the defect set of capacity zero. Let G’
be a set of points of G={|z|<7} which are not defect values of ¢ and also which
are not images of multiple points of ¢. Then, G—G’ is a set of capacity zero and
thus 2—£’ is possibly a Green null set on £, being 2’ =¢YG’).

Let z, be an arbitrarvily point of G’, P!, ..., Py, be all points with the o-image
20, .. 2g=0(P%) (v=1, ..., d,). Then we have that

fo Tm(p)="=foT™(py,) (m=0,1,..).
Proof. First, obviously
FB)="=f(Plug)=ws(=2:").
Let pt=T(), ..., ph,=T(H%,). Then by (9) we have
FB)=Fe T(E)=2"c 0o T(B)=2"c o p(B)=2"c fz)=w, (=1, ..., dy),

that means, f takes the common value w, at all p! (v=1, ..., d,).

If we take w=f($) as local uniformizers at the points f!, ..., p%,, then by (9)
we have
(10) Fo T(By=2ro§o gp(B)=2r o o w''n s fi(f)=2r o § o w'/n(u)

in p.e U(pY) (=1, ..., dy)
on taking a branch of w'* such that w'#«(w,)=z, where U(p’) (v=1, ..., d,) are the
definition regions of the local uniformizers w=#(p,) at ° such that AUPY)={w||w
—w,| <r(wy)} and U(P)cL. It means that fo T(p,) v=1, ..., d,) are the common
analytic functions of local uniformizers w=£(5,) on U(pY).

We can find an analytic curve A(w,, w,) on S from w, to w, such that each
image curve C(§°) running from §° (v=1. ..., d,) of A(w,, w,) by f~* is a simple curve
on 2~T(2) not passing through the multiple points of f. Then each C(§?) (v=1,
..., dy) ends one-to-one corresponding to one of p}, ..., p4,. If we continue analytically

the functions f«7(p,) along C(§}) (v=1, ..., d,), then by (10) we see that fo T(5!) (v
=1, ..., d,) takes a common value independent of v, that is,

fo ThY="=f° T(Py)=ws.
By the similar successive process, we see that
Jo Tm@)=+-=f T™bY,) (m=0, 1, ...).

We identify the points 7™(5), ..., T™(fy,) on R for each z,€G’ and each m (m
=0, 1, ...). Then any point on R possibly with the exception of a Green null set
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takes a part in this identification process. For there exists a positive integer m,
for any peR such that T-7(p)e? for m=m, By this successive identification
process, we obtain a finitely-sheeted covering surface W’ over S over which &' is
a d,-sheeted covering surface, where R'=Ug_, T™(2’).

19. Let | be a projection map of R” onto W’. Then the covering transfor-
mation T of R onto itself induces the one-to-one conformal transformation g of W’
onto itself which is uniquely determined by the functional relation

an feT=g-F

Now let 4" m=0, 1, ...) be the images on W’ of T™(2’) by §, respectively. Then,
g™ (m=1, 2, ...) map one-to-one conformally 4.’ onto 4f, respectively. Since ¢ o §-!
is a one-valued function on 4} independent of the choice of branches of §-! and defines
a one-to-one conformal mapping of 4f onto the #-disk G’ with the exception of a
set of capacity zero, we see that 4 can be uniquely continued to a region 4, con-
formally equivalent to the whole »-disk G, preserving the original conformal struc-
ture of 4y, and thus 4" (m=1, 2, ...) can also be continued to regions 4n conformally
equivalent to G, respectively. Then, W= U;,.,4»" can be uniquely continued to the
covering surface W=Ug_,4m on S, preserving the original conformal structure of
W, and the mapping | of & onto W’ can be analytically continued to the projec-
tion map (again denoted by f) of R into W. Further, g can be extended to the
one-to-one conformal transformation of W onto .

W 1s a simply-connected covering surface on S with only one ideal boundary
component p,, corresponding to the ideal boundary component r, of R by3, and thus
W can bz continued to a simply-connected compact Riemann surface W, preserving
the original conformal structure.

Proof. Since 94, (v=0,1, ...) are analytic curves on W, Wo=Um,4, (cW)
(m=0, 1, ...) are bordered Riemann surfaces. Further W, (m=0,1, ...) are planar,
for there exists a number m’ (>m) for each m such that W, is one-to-one mapped
into 4, by g-™. If we note that there exists a number m, (>m,) for any number
m, such that WinoC W, for all m=m, and gn(p) for any peW tends to the ideal
boundary component p, of W, corresponding to the ideal boundary component 7, of
R by §, as m—oco, then we see that W, tends to p, as m—co. Thus we see that
W is planar and has only one ideal boundary component p,.

Now let | be again the projection map of R into W and g be again a one-to-
one conformal mapping of W onto itself. It is easily seen that g has two fixed
points p, and p, on W corresponding to the ideal boundary components y, and 7, of
R by i, respectively. Then, we have the functional relation (11) on R.

The Riemann surface W can be mapped one-to-one conformally onto S. Let
be one of such mapping functions satisfying

12) 2(h)=0 and x(p,)=co.

Then yogoyx~! is a one-to-one conformal mapping of S onto itself with the only
fixed points 0 and co. Thus it must be
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xogox (w)=tw,
where ¢ is a constant with [f|%1. Thus, by (11) we have

13) xofoT=ty-¥.
If we define a meromorphic function £,eB(R) on R by ¥ o, then by (13) we have
(14) foo T=tf, on R.

Obviously, max. b,(w)=d,. By (12) and the definition of f, we have lim,,_...f, - T™(p)
=co (peR) and thus by (14) it must be |¢|>1.

If we put g=weoy% tw being the projection map of W onto S, then ¢ is
obviously a rational function on S and there holds

f=wef=wey~lofi=gof,.

20. The proof of uniqueness. Let f, be another function of B(R) and let f,, be
the function of B(R) constructed from f, by the above procedure which satisfies
the conditions

flo oT = tlfm
and
15) fi=01°fio

where #, is a complex constant [f,|>1 and ¢, is a rational function on S. Then,
by the construction method of f, and f,,, we see that there exists a function g,
which maps one-to-one conformally S onto itself and which satisfies the condition

S10=910 ° fo-
Since ¢,, has two fixed points w=0 and w=co, it must be of the form
g1o(w) =c,w,
¢, being a constant. Then we have
(16) Jro=c1fo
Substituting (16) to (15), we have
fi=gz°1,

where g¢,(w)=g¢,(c,w) is a rational function.
Finally, let f,* be an arbitrary function of B(R) satisfying the conditions

an f*o T=t*f* on R
and
f=g*-f*  for each feB(f),

where #* is a complex constant |#*|>1 and ¢* is a rational function. Then there
exist rational functions g,, g,* on S such that

Jo¥=gs°fo, Jo=g5% o fo*.
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Then we have
gy t=g0*.

Thus we see that g, maps one-to-one conformally S onto itself with two fixed
points w=0 and w=oo and thus it has the form

go(w) =cw,
¢ being constant. Then we have
18) fo*=cfo
Substituting (18) to (17), we have

cfoo T=tcf,

or
(19) foo T=t*f,.
Comparing (19) with (14), we see that it must be

tr=t.

21. In the theorem 2, f, is a function which has the minimal local degree d,
at two ideal boundary components 7, and 7, of K, and maxw vr(w)=d,. Thus f
takes all values on S d,-times, except for a set of capacity zero, and never takes 0
and co on B. Thus we can find a subregion 2 of R defined by |f, |<7 (#>0) and
such that no point on |w|=r is an exceptional point of f, or the image of a mul-
tiple poislt of f,, Then C=49 consists of a finite number of simple closed analytic
curves C, ..., 6,0 (ky=d,), and | f,|=r holds on C. By the theorem 2 the subregion
F of R defined by »=|f,|<rlt|, gives a fundamental region for the group & and
R=FR (mod ®) is obtained from F by identifying C, to T(C;) for each j=1, ..., .
Thus R must be conformally equivalent to such a d,-sheeted covering surface R*
on S that #* is mapped onto itself by the transformation w | tw.

22. TueoreMm 3. Let m, (j=1, ..., 25) be arbitrarily given integers with (m;,
vy Mar)=1. Then there exists a marked Riemann surface (R)'® of finite or in-
fimite genus q (k<q=oo) such that an abelian covering surface R of (R with a
covering transformation group S={T; a,=T™ (=1, ..., 2x), a;,=1 (j=2x+1)} has
finite sphevical area.

Proof. By the lemma 10, it is sufficient to prove the theorem for only the case

mz;-1=0 and m», =0 (=1, ..., £). Further it is not an essential restriction to assume
that m., >0 (=1, ..., k).

(i) The case where m,=0, m,=1, and r=q=1.
Let R={0<|z|<oo}, ®={T; T=tz (: real, t>1)}, &={|z2|=1}, @={1=Rz<t,
Jz=0} and F={1=|z|<t}. Let R be a Riemann surface (torus) obtained from F

12) By a marked Riemann surface (R) we mean the Riemann surface R preassigned
a canonical homology basis. cf. (3])
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by identifying & to T(&,), and «,, @, be the images on R of &, @&, respectively.
Then the marked Riemann surface (R) obtained by the suitable selection of the
orientation of a;, a,, provides a required one for the present case.
(ii) The case where m,=0, m,=1, t=1 and g>1.
Let
T =tz (& real, t>1),

T 1
17 __ — f1/4
lv ’['Zl_t ’ Dk =sargz= o }’

22}“ )”é arg z= (1+ —:212—)7? }

=1, ...,q—1, if g<co; v=1,2, ..., if g=00),

= f 2] =1, (1+

Fr={0<lzl<eo} = U Tm(urrur),
m=-—oo v v

a/={|z|=1},
a = {1=Rz < 1"?, Jz=0}.

Let F be a two-sheeted covering surface over w-plane obtained as an image of F’
by the transformation w=2z2 Then, we denote the images of IV, /¥ (v=1, 2, ...).
&/ and &, by I, I, & and @, respectively, and 7=fw. Let F be a Riemann surface
obtained from F by connecting crosswise each other along 7™(%!) and 7™ for
each v and each m, respectively, and F be a subregion of R surrounded by &, and
T(&,). Let R be a Riemann surface obtained from F by identifying &, with 7(a,),
and «;, and a, be the images on R of &, and &, Then. by the suitable selection of
the orientation of «,, a, and of the remaining basis a,, @, ... on R, we shall obtain
one of the desired marked Riemann surfaces (R) for the present case.

(iii) The case except the cases (i) and (ii).
Then, necessarily £>1. Let

&= {T; T=tz (¢t real, >1)},

l]——-[lzl:t‘/?, -212%1—7r§ arg ZEJT”‘ (j=1, ..., x=1),

;cz{ |z[=t1/z(1+ %)n‘ = arg zg(l—l- 221—_1) 71'}
(=1, ..., q—=, if g<oo; k=1, 2, ..., if g=00),

~ “+oco
1= {0<z[<oo} — U Tmm (1~ Ul

m=-—co k

~ +oo
Fy={0<lz|<co) — U T™m(,_ 1) (j=2, ..., 1),

m=—co
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~ +oo / ,
Fi={0<]z|<c0}— U Tmam [~ UL,
Mm=—co P '

Fr=T(FY) (=1, .., msy; j=1, ..., 5),

whe{e Uil =¢ if g=k. Let a,-1=1{|z|=1} and &,= {1=Rz<i"», Jz=0} be curves
on F} (=1, ..., ), and F} be a subregion of ﬁ‘; surrounded by @s;-1 and T ™(@s,_1).

Let B be a Riemann surface obtained from F, ..., Fr . B .. Fme by connecting
crosswise along the each slit corresponding up and down each other, where each
slit corresponds obviously to one and only one slit. Since (m,, ..., ms)=1, R is

obviously connected. Further R admits obviously the covering transformation
group ®. Let F* be a subregion of R surrounded by &, 7™(&,), ..., dy-1 and
T™u(@s,-,) and thus F* consists of the portions F}, ..., F}! connected along the cor-
responding slits. Let R be a Riemann surface obtained from F* by identifying &,
to T™i(a@,-y) (j=1, ...,x), and a, (7=1, ..., 2r) be images on R of &, respectively.
Then it is easily shown that R=R (mod ®&). Then, by the suitable selection of
the orientation of aj, ..., as, and of the remaining basis @sc.1, ... on R, we shall
obtain one of the desired marked Riemann surfaces (R) for the present case. We
shall omit the detailed argument.

23. Let R be an open Riemann surface. We now consider a system of curves
L= {L} such that LcR—K,, K, being a simply connected compact subregion of R,
and L~0K,. Suppose further that L consists a finite number of disjoint analytic
dividing cycles of R. Let E={R,}3., be an exhaustion of R such that dR,e¥ and
£y be the union of ¥, for all » where &, is a set of curves of ¥ contained in annuli
including 0R,.'*» We shall denote by O” a class of Riemann surfaces on which an
exhaustion E exists such that 1{€s} =0, where {8} denote the extremal length
of &4 It is known that O”cOg (see [8]).

24. Let R be a Riemann surface with finite spherical area in 14 and let R=F
(mod ®). Let a;, a,, ... be a canonical homology basis belonging to an exhaustion
E={R,} of R. Here if R is a closed Riemann surface of genus ¢, we may take
an arbitrary canonical homology basis aj, ..., azq. We assume that &= {7} and a,
=Tm™ (j=1, 2,...) where m,=0 for j>2«¢ and (m,, ..., ma)=1.

Let ¢=&($) be a local uniformizing parameter at peR. By the theorem 2 the
differential (f,//f,) d¢ is invariant under the group &, and thus it is an abelian dif-
ferential of the first kind on the Riemann surface R. We can easily verify that it
has a finite Dirichlet integral over R.

It is known (see [1]) that there exists a system of abelian differentials dw, of
the first kind with finite Dirichlet integrals on R such that

g dw,=d, , and S dw,=t%, th=tk.
agx—1 X2k

13) By an annulus including L¢® we mean the union of doubly connected domains each
of which includes a component of L.



48 HISAO MIZUMOTO

We shall assume that R is a Riemann surface of the class O” or is a closed
Riemann surface of genus ¢.!* Then, if a,, a,, ... is a canonical homology basis
belonging to the exhaustion E={R,} of R satisfiying 2{%s} =0, we have

’ S
(20) id{=2m’ > cidw;,
fo J=1
where
_1 S
CJ‘EJS%_I I3
In the case of R of infinite genus, (20) can be verified as follows. Putting
v 7
Z}lcjdwjzduv—l-idvy, {}—dc=du+idv;
J= 0

du,, dv,, du, dv: real differentials,

and using the theorem 6 in [8], we obtain

Dr(u—u,)= f (S dug dv—S duS dv).
Byl Jagp—, Yoy oy, F9k—1
Since the right hand side tends to zero as yv—oo (see [9]), we obtain
Dr(u—u,)—0 (y—00),

and the desired equality.
By calculating the periodicity moduli of (20) along C=II%, as,_, ™2 az;™s-1 and
each homology base «, (j=1, 2, ...), we have the following system of equations

Znidozg I e =25 ”’S do,
¢ fo =1 Je

=2m1 i: ( —‘leka—l‘ﬂizk_li ¢, Tk ) ,
k=1 =1
’ o
@) Map—110g 42708 My * :S deC=2m'Zl ng do,
-1 /0 J= Tgp—1

=27i ¢ (k=1,2,..),

mgklogt—l—Zfrimzk*:S é—dCzZm’fic]S do,
2

o JO ok

=i Y el (k=12 ..).
7=1

Here m,,_,*, m,,* (k=1, 2, ...) are integers. However we have

14) In the following, the argument shall be done for only the case where R is of
infinite genus because it is done similarly and more easily for the other cases.



ABELIAN COVERING SURFACE, I 49

LemMA 14. There exists a number * such that m;*=0 for all k>2r*.

Proof. We would assume that m,*=0 for an infinite number of &, e.g. m,,*=0
(v=1,2,...). Then for any 6 (0=6<2r) there exists at least one point p,(f) on ax,
such that arg fo($.(0))=6 (mod 27 ; v=1, 2, ...), where 5,(0) (=1, 2, ...) is the point
on F={p| r=|£(P)|<r|t]} lying over p,(#). We may assume that two point se-
quences {p.(0)}, and {p.(m)}=, tend to ideal boundary components y” and y” of R,
respectively, if necessary by taking subsequences with a set of common subindices
of them. Then, two number sequences {f,(p.(0)} =, and {f,(h.(=))}, converge, and
r<lim,,.fo(H.(0)<rlt| and —r|f|<lim,..fo p.(m))<—7. Thus, by the lemma 11,
7"%7”. On the other hand, for any compact region K on R there exists a number
v, such that ax,c R—K for all y=v, which shows that y"=y”. Contradiction.

Therefore by (21) and the lemma 14 we have a system of algebraic equations:

¥ ¥
2 My FT—my* X my, Foh—m*
(22) =1 _J=t _
3 - K -
21 Mgy T5— My 21 May—1 T5— My
J=1 7=1

(my*=0  for j>«*),

and a relation

(23) (Mz—y Wi — Mgp My, *) = d ,

1

Nl

where X5, m,, X ok — my¥= 0 if and only if X5, mee—, 78 — Mar = 0.

25. Now we shall proceed to the converse problem. If (22) has a solution
(m,*, ..., m,¥) for some #*=1 whose menbers are all integers and at least one of

them is not zero, then (m,*, ..., m,¥) is called to be an admissible integral system
for (22). With this terminology we see that (m,*/m, ..., m,¥/m) for a common
measure m of m.*, ..., m, ¥ and (m'm*, ..., m'm,*) for any non-zero integer m’ are

also admissible for (22), if so is (m,*, ..., m,¥). Among all the admissible integral
system for (22) there exists an unique system (m,*°, ..., m,.*") for which the minimum
d, in (23) is provided,

Now we shall assume that (22) has an admissible integral system (#,*°, ..., #,+*°)
with the minimum d, in (23). Then, putting

x* *
23 My T —mif 2] My 5005 —mif
J=1 =1
Z:— = =y
£ £
2L Mz ;1 Ty — My 2 May_1ti—m,

7=1 J=1

the differential
dh=13, (ms,-s Z-myy *do,
=

satisfies the period relations
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( S dh =ty Z e ¥ (k=1,2, ..),
%op—1
S dh=m2kZ+m2k*0 (k—:l, 2, ...),
ayy
S dh—d,,
N c

where #**=max(x, £*) and m,,*=m,,**=0 for all k>r*. Here the imaginary part of
Z does not reduce to zero, because no non-zero abelian differential of the first kind
on ReO” with finite Dirichlet integral has a real periodicity modulus along every
cycle. Thus the potential function

f(ﬁ)zexp(2m’85dh)

has the periods #”* (|¢t|x1) along ax (k=1, 2, ...), where t=exp(2niZ). Thus f isan
analytic function one-valued and regular on R, satisfies the functional relation

fo T(h)=tfih)

and has the minimum local degree d, at two ideal boundary components 7, and 7,
of R. Then the function f,=f or f,=1/f corresponding to |#{>1 or |{|<1, respec-
tively, provides the property in the theorem 2.

26. By the argument throughout 24 and 25, we obtain the following consequence.

THEOREM 4. Let R be a Riemann surface of O, a,, a,, ... be a canonical
homology basis belonging to the exhaustion E satisfying 2{n} =0, and (t})sr-1. 2, ..
be the period matrix corresponding to the canonical homology basis a,, a,, .... Let R
(€0q) be an abelian covering surface of R, and have a covering transformation
group &={T} and a system of generators ay, ..., as. with a,=T™ (j=1, ..., 2¢).
Then, B has finite spherical area if and only if there exists an admissible integral
system (m)*, ..., m,*) for some «* such that the period matrix (z});, k=1, 2. ... Satisfies
the system of algebraic equations

x* *

k1 - X .2 *

my; % o —my¥ > my, Kt —m,
(22) J=1 . J=1 .
- - »

£ K
23 May1 Ty — Mg 3 Mayo1 75 —m,
=1 7=1

where ms;=0 for j>r and m,,*=0 for j>r*.

If the canonical homology basis ai, a, ... is regular for R which can be taken
by the lemma 10, the condition (22) is replaced by the simpler system

* '
* ml k -2 b
23 Mg * T —ma* 2 Mgy F T —mt | =,

24) |, )='m4 (

(Cf. [9] for the case where m.;=1 (j=1, ..., ) and m,=0 for other j.)
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If R is of finite genus q, then the condition (22) has the following form

(25

q q
1 * q
2 Mgy ¥ Th—m, 2 My ¥t — g™
=1 J=1
q . T T g .
20 May—1 Ty — M2 D iMay-1T5 — Mg

1

<
U
-
<
il

(Cf. [13] for the case where m,=1 and m;=0 for other j.)

The author should like to express his heartiest thanks to Professor Yasaku
Komatu and Professor Kotaro Oikawa for their many valuable advices.
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