
A NOTE ON AN ABELIAN COVERING SURFACE, I

BY HISAO MIZUMOTO

§1. An abelian covering surface

1. We shall begin with a preliminary on a concept of a covering surface.υ

Throughout the present paper we assume that R is a closed or open Riemann sur-
face, and R is an unramified and unbounded covering surface of R.

LEMMA 1. For a given subgroup 2 of the fundamental group g of R, there
exists an unramified and unbounded covering surface $ of R such that the funda-
mental group g of R corresponds to ®.

LEMMA 2. Let R and R* be unramified and unbounded covering surfaces of R.
If the fundamental groups § and § * of R and R* correspond to a common sub-
group 2 of the fundamental group § of R, then R* coincides with RP

R is called to be normal, if for any closed curve C on R all curves in R lying
over C are simultaneously closed or are simultaneously not closed. R is normal if
and only if the subgroup $ of f? corresponding to R is a normal subgroup of ££.

By a covering transformation of R we mean a homeomorphism of R onto itself
which maps each point pςR over pGR into a point p* lying over the same point
p. The covering transformation T which maps p into p* is unique, provided it
exists.

The set of covering transformations of R clearly forms a group (S under the
operation of composition of mappings which is called the covering transformation
group.

There exists a transformation of the group (S which carries any point p over p
into any other prescribed point p* over p if and only if R is normal. In this case,
the covering transformation group © is isomorphic to §/$, where ί? is the normal
subgroup of fί corresponding to R.

2. DEFINITION.^ A normal covering surface R of R is called to be an (unrami-
fied) abelian covering surface of R> if its covering transformation group (S is abelian.
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1) Cf. [2], [12], [15], etc.

2) We say that the two covering surfaces R and §* of R coincide each other if there

exists a one-to-one conformal mapping of R* onto R such that two points corresponding

each other by the mapping lie over the same point of R.

3) Cf. [11].
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Let R have the fundamental group $ and (£ be the commutator subgroup oί $.
(£ determines a normal covering surface R$ which we call the homology covering
surface. R$ is an abelian covering surface of R, for the quotient group g/6 is
abelian. Further R$ is the strongest abelian covering surface of R, for (£ is the
smallest subgroup whose quotient group is abelian. The quotient group §•/(£ is
called the homology group of R. Let £> be the 1-dimensional singular homology group
of R. Then ξ> is isomorphic with the quotient group g/K and thus with the cover-
ing transformation group of R%.

3. First let R be a closed Riemann surface of genus q. Then there exists a
system of 2q cycles alf ...,a2q on R satisfying the following conditions:

(a) Any cycle C on R is homologous to a linear combination of au ..., α2Q,
that is

Xj being integers;
(b) The intersection number between them satisfies

<5J being the Kronecker's symbol. Such a system is called a canonical homology
basis of i?.

Next let i? be an open Riemann surface. A singular cycle is said to be a
dividing cycle, or homologous to 0 modulo the ideal boundary, if it is homologous
to a singular cycle which lies outside of any given compact set. The group formed
by the homology classes of dividing singular cycles is denoted by Cv The quotient
group ξ>/ξ>β is the homology group modulo dividing cycles. It can also be called the
relative homology group with respect to the ideal boundary.

It is known that there exists a system of cycles alf a2, ...5) on an open Riemann
surface R satisfying the following conditions (cf. [1]):

(a') Any cycle C on R is homologous to a linear combination of a finite number
of the cycles al9 a2, ..., that is

C~Uafj (mod 3),

where x3 are integers and 3 is the ideal boundary of R;
(br) The intersection number between them satisfies

a2j-iXa2k-i=a2jXa2k=0, α2j_iXα2*=dJ O' = l, 2, ... k=ly 2, ...).

Such a system is called a canonical homology basis of R modulo the ideal boundary.
Now, let {Rn} be an exhaustion of R. Then there exists a system of cycles

satisfying moreover the following condition (cf. [1]):

4) In the present paper, we shall denote a sum of cycles by a product notation for
convenience.

5) Here it may arise that the number of the cycles α l t α2, ••• is finite.
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(cθ For every n there exists a number κn such that ax. ..., a2Kn form a relative
homology basis of Rn mod dRni that is, any cycle CaRn is homologous to a linear
combination of alf ..., α2«n, i. e.

(mod dRn).
3 = 1

We shall call such a system a canonical homology basis belonging to the exhaustion

4. Let R be an open Riemann surface and K be a compact subregion of /?.
We shall call K a canonical subregion, if its boundary consists of a finite number
of simple closed analytic curves, all components of R—K are non-compact, and have
a single contour.

Let {Rn}n=i be an exhaustion of R. We shall call {Rn]n^i a canonical exhaus-
tion if all the Rn are canonical.

Let the contours of R1 be denoted by βJtj=l, ..., s. The orientation will be
chosen such that dR1=IίβJ.

Consider the complement R2—R1} always in the sense that the border is included
in the complement. Because the exhaustion is canonical there will be exactly s
components, and we denote by Q3 the component which has the contour β3 in
common with Rv The remaining contours of Q3 will be denoted by β3k) l^k^s3,
and we choose the orientation so that dQ3—Ukβjkβ3~

ι. Next, the complement R^—R2

consists of components QJk where Q3 and QJk have the common contour βjk.
When we continue in this way we obtain the symbol βji...Jn for each contour

of Rn with the subscript j n running from 1 to a number sJr..Jn_1. The components
of Rn+ι-Rn have names Q3v..Jn and further dQJι...Jn=lljβj1...jnJβjr..Jn.ι. For the sake
of conformity, Q will be another name for Ru and β will be null.

LEMMA 3. A (strong) homology basts for the open Riemann surf ace R is formed
by the combined system of all cycles a3 of a canonical homology basis belonging to
a canonical exhaustion {Rn} and all cycles β3r.3n with jn>l.

Such a system of cycles shall be called a (strong) canonical homology basts of
R. Each cycle C satisfies a unique homology relation

where x3 and yJv..3n are integers, the products are finite, and C is a dividing cycle
if and only if all x3 are 0.

The system of cycles βjr..3n, jn>l, determines a basis for ξ>β, which we shall
call a canonical homology basis of dividing cycles.

5. Let Γ be a one-dimensional chain. We shall say that Γ is a relative cycle
if and only if dΓ=Q. The group of relative cycles contains the subgroup of cycles
(or finite cycles).

Consider a point on βjr..Jn, jn>l- It can be joined by a simple curve in Q3r..3n

to a point on βJr..3ni. This point can be joined to a point on βJv..jnn by a simple
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curve in QJr..jnl, and so on. In the opposite direction we can pass from the point
on βjr..Jn through QJ^.J^ to a point on βjr..Jn_lU then through Q3v..3n_λi to a point
on βjr..jn_lllf and so on. Here we take the curves so that each of them does not
intersect with any element a3 of canonical homology basis belonging to the exhaus-
tion {Rn}, which is possible. Then the product of the curves between consecutive
points is a relative cycle, which we denote by βJr.Jn* and we call the conjugate
relative cycle of βJr..Jn. Its direction can be fixed so that βJr..jnxβjr..Jn*=l. Then
Ai" J B I-I x Ai-jn*=l» Ai-jn-ii-i x Ai";„*= - 1 . and for all others βkγ.*n, xft r..,n*=0,

« ; X A i V = 0

6. Let R be an arbitrary Riemann surface6) and R be an abelian covering sur-
face of R with its covering transformation group (S.

Let p be an arbitrarily fixed point on R. For each j = lt 2, ..., we denote by
otj(p) the end point of the curve on R starting from p, whose projection on R is
closed and homotopic with the curve a3. Similarly, we denote by βjr.Jn{p) (jn>l)
the end point of a curve on R starting from p, whose projection on R is closed and
homotopic to the curve βjr..jn. Since R is normal by the assumption, there exists
a unique covering transformation of R, which carries p into aj(p) (j=l, 2, ...) or
βJγ..jn{p) O'n>l), respectively. Further, since R is an abelian covering surface of R,
by the consequence in 2 and the lemma 3, these transformations form a system of
generators of the group ©, which shall be denoted by the same letters a3 and βjr..Jnt

respectively.10

Let ©n be the subgroup of © generated by the strong canonical homology basis
a3 (j=l, ..., 2κn), βJr..Jv 0 = 1, ..., n; jv>l) of Rn. For simplicity of notation, we shall
agree to denote the canonical homology basis βJr..Jv (v = l, ..., n; jv>l) of dividing
cycles of Rn by βlf ..., βίn with the changed subindices.

Now, there exists a finite number of defining relations between the elements
of ®n:

( 1 ) Π tf/fcjΠ βjak. 2Kn+J = I
.1 = 1 3 = 1

with integral exponents a^j such that each relation

βj
3=1 3 = 1

is generated by the system (1), where / is the identical transformation.^ Here, if

the λnx(2icn+ίn) matrix

6) Here the result will be stated for the case that R is most general, but it will be

done more easily for the other cases (of closed one or finite genus, etc.). Cf. [11] for the

case of closed one.

7) In general, these transformations depend also on the choice of the point p. In the

case of abelian ©, however, they are uniquely determined by the curves a3 or βn...jn

8) Cf. [14].
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is of rank pw(^Λw), then the number 2κn

Jrcn—pn=σn is the rank (Betti number) of
the abelian group (Sra.

Conversely, when we give the defining relations (1) for each n such that the
relations (1) for n contains all ones for n—1, an abelian group © with the system
of generators a3 and β3 (i = l, 2, ...) satisfying (1) is uniquely determined and further
a subgroup $ of the fundamental group $ of R uniquely corresponds to it. Then,
by the lemmas 1 and 2, there exists one and only one abelian covering surface R
of R whose fundamental group §? corresponds to $ and whose covering transforma-
tion group is ©.

Now we shall show one of the methods of constructing the abelian covering
surface R of R with the covering transformation group ® when a Riemann surface
R and a group @ with the system of generators a3 and β3 (j—1, 2, ...) satisfying
(1) are given.

We shall represent the elements U^afjϊl^βf^n+j of ®n, where Xj(j=l, ...,
2κn+cn) are integers, by the lattice points (xlf ..., x2Kn+ίn) of a 2κn+^-dimensional
euclidean space (£2^+x Let 3« be the group of transformations of @2*«+'» generated
by the 2κn-\-cn translations carrying the origin into (1, 0, ..., 0), ..., (0, ..., 0, 1) respec-
tively, and gn* be its subgroup generated by the λn translations carrying the origin
into ton, ..., ak,2κn+ίn), (k=l, ..., λn\ respectively. Obviously, two lattice points of
(p*n+<n represent one and the same element of (§>n if and only if they are equivalent
with respect to $n*, and ©Λ is isomorphic with the factor group $n/Sn*.

Let the two shores of each of the curves a2J-i, a2jij=1,2, ..., be denoted by
«2j-i+, a2j-i~> oί2j

+, a2f respectively, in such a manner that the oriented curve a23

intersects a2j-i from the shore <χ2j-i+ to the other shore α2l7_Γ, and that a2j_λ in-
tersect a2j from a2j

+ to a2j~P Similarly, let the two shores of each of the curves
βj* (j=l, 2, ...), be denoted by /3y*

+, βj*~, respectively, in such a manner that the
oriented curve β3 intersects βj* from the shore /3j *+ to the other shore βj*~. We
cut R along the all curves a3 (j=l, 2, ...) and βj* O'=l, 2, ...) to obtain a surface F
of planar character having an (infinite) number of boundary components, one of
which consists of all βj*+, βj*~ (j=l,2, ...) and the ideal boundary $, and other
ones of which consist of four sides α2;-i+, &2j+, a2j-i~, &2Γ. To each residue class
(xlf ...,x2*n+ln) mod 3n*, we associate a replica F(xly ...,^2^+ίJ of F. Next, we
identify the side a2j

+(j=l% ..., κn) of each F(xu ...,x2j-i, Xzj, ..., X2Kn+ln) with the side
a2f Of F(Xi, ..., # 2 , - 1 + 1 , ^ , ..., ^2, w + , w ) , «2;-l+ ( j = l , ..-, ΛΓn) θf F ( # i , ..., X2j-1, X2j, ...,

^2* n + ί n ) w i t h α 2 , - Γ of JP(Λ?I, . . . , x2j-i, X2J+1, X2κn+ln), a n d ^ * + (j=l, . . . , ^ ) of JF(Λ?I,

..., X2κn+J, ..., #2«n+ίn) with βj*~ of F(#! , ..., a?2«n+y+l, •••, #2«n+*n), where each point on
α ;

+ and /3y*+ must be identified with the corresponding point on af and βj*~,
respectively.

By these procedures, the sides a3 (j=l, ..., 2κn), ft* (.7 = 1, ..., n̂) of each F is
identified with the unique side of some other (or the same; F, and at each vertex

9) We should note that in each homology class (a3) there exists a simple closed curve
and thus so a3 may be assumed itself to be.
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of e a c h F , t h e r e m e e t four F ' s ; F(xi, ..., Xzj-u Xzj, •••, X2Kn+cn), F(xu ..., x2j~i-\-l, x2j,

..., #2«n+ιn), F(a?!, ..., α?2j-i, # 2 y + l , ..., few+,w) and F(#i, ..., x2j-ii~ly # 2 H - 1 , ..., #2.n +,n)
(.7 = 1, ..., «n) (some of these four may be mutually identical). Let Fn be a surface
obtained by such a procedure. Here we should note that Fn+ί is obtained by the
identification process of a number of replicas of Fn along the sides a2Kn+ί

+, α ^ + Γ ,
..., «2«w+1

+, «2«n+1", /3,n+i*+, i8cn+i*", ..., ftn+i*+, frn-n*" according to (1) replaced n by
w+1. According to the present procedure, in the first step we construct Fx of a
number of replicas of F, in the second step F2 of a number of replicas of Flf and
so on. By these infinite identification process, the unramified and unbounded cover-
ing surface R of R with the covering transformation group © is constructed

§ 2. A free abelian covering surface

7. Let R be an open Riemann surface. A non-compact subregion Ω of R
whose relative boundary consists of a finite number of disjoint closed analytic curves
will be called an end.

We introduce the following definition of an ideal boundary component
An ideal boundary component is a non-void collection γ of ends Ω which satisfies

the following conditions:
( i ) If ΩOGT and Ωz>Ω0, then Ωsγ;

(ii) If ΩuΩ2Gγ, there exists an Ω3cΩί^Ω2 which belongs to γ;
(iii) The intersection of all closures Ω, Ωeγ, is empty.
Let {pj}J=ι be a sequence of points of R. If for any Ωeγ there exists a number

j Q such that pjGΩ for all j^j0, we say that the point sequence {pj}J^ tends to the
ideal boundary component γ.

8. In the present section we shall state a topological character of a Riemann
surface R admitting a group © of one-to-one conformal transformations onto itself
which is free abelian, finitely generated and properly discontinuous.1^ Here we
assume that no transformation of ® other than the identity has a fixed point. Let
R be a Riemann surface constructed from R by identifying equivalent points by ©,
denoted by R=R (mod ©). Then, R is an abelian covering surface of R with its
covering transformation group ©.

We distinguish several cases by a number of elements of basis of © in the
following.

I. The case where © is generated by only one element T.

LEMMA 4. Let p be a fixed point on R. Then the point sequence {Tm(p)}%^

(and also {T~m(p)}%=ι) tends to an ideal boundary component of R.

Proof. Let Co be a curve from p to T(p) on R, Cm=Tm(C0) (m=0,1, ...) and
K be any compact region of R. Then there exists a number m0 such that Cmc:R

10) For any abelian group @, let % be the torsion group of ®, then the quotient group
%l% is a free abelian group without torsion. Thus, in the present problem there is an
essential interest for only the case that ® is free abelian.
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~K for all m^m0 and thus all Tm(p) (m^m0) lie on a common connected com-
ponent of R—K. Thus {Tm(p)}Z=i tends to an ideal boundary component of R.

LEMMA 5. Let px and p2 be any two points on R. Then two point sequences
{^(ftMS-i and {Tm(p2)}^i {or {T-TO(ft)}£βl and {T~m{p2)}Z=d tend to a common
ideal boundary component of R.

Proof. Let Co be a curve from px to p2 on R and Cm=Tm(C0) (m=0, 1, ...).
Then we may apply a similar argument as in the lemma 4.

In the case I., two subcases can be distinguished.
(H) The case where {T~m(p)} and \T™(p)} (pεR; m=l,2, ...) tend to distinct

ideal boundary components γ1 and γ2 of R, respectively. Then R will be called the
hyperbolic type.

(P) The case where both sequences of points {T~m(p)} and {Tm(p)} (psR; m
= 1, 2, ...) tend to a common ideal boundary component γ of R. Then R will be called
the parabolic type.

II. The case where © is generated by two elements 7\, T2.

LEMMA 6. Let p be a fixed point on R. Then the four point sequences
{ΓrTO(£)}»=i, {?Y*(jδ)}£U {T2-

m(£)}m=i and {T2

m{p)}~^ tend to a common ideal
boundary component of R.

Proof. Let £(0, 0) and C2(0, 0) be curves from p to Tx(p) and T2(p\ respec-
tively, and T^oT^CάO, 0))=C(mlt m2) and T^°Γ2

ms(C2(0, 0)) - C2(mu m2) (mu m2

=0, ± 1, ...)• Then for any compact subregion K of R there exists a number m0

such that Cx{mly m2)aR—K and C2(mly m2)czR—K for all pairs (mly m2) except for
\mλ\<mO1 \m2\<m0, simultaneously. Then T r m ( ί ) , Tx

m{p), T2~
m(p) and T2

m(p) (m
^m0) can be connected each other by a curve on R—K (e. g. so can be T^ip) and
T2

m(p)(m^mQ) by the curve C2(m, 0)...C2(m, m~\)C{-\m-\, m^.Cr'CO, m)), and
thus they all lie on a common connected component of R—K.

III. The case where © is generated by three or more elements Tlt ..., TN (7V^3).

In this case also each point sequence [T{-m{p)}f {Tx

mφ}9 ..., [TN-m(p)}y {TN

m(p)}
(p€R; m = l, 2, ...) always tends to a common ideal boundary component of R.

In the following we concern ourselves with only the case I. (H). In the next
paper we will concern ourselves with the other cases I. (P), II. and III.

9. The strong homology basis of R determines a system of generators of the
covering transformation group (S of R as was discussed in § 1.

LEMMA 7. In the case I. (H), no dividing cycle on R can be a non-trivial
generator of ®.n)

Proof, (i) We would assume that an infinite number of elements in a canonical
homology basis of dividing cycles are non-trivial generators of (S, and let 35= {βly

11) Here by a non-trivial generator of ($ we mean the element of ($ which is not the
identical transformation,
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β2, ...} be the system of such ones.
Since T-m(β)-*Ti, Tm(p)^>γ2 (m—>oo; pςR; γ1^γ2), there exists a dividing cycle

C of R such that C divides R into two ends Ωλ and Ω2 being Ω1€γ1 and Ω2€γ2.
Let />y be a point on βj (j=l, 2, ...) and p3 be one of the points on R lying

over pj. We can select a subsequence of the point sequence p0 ( i = l , 2, ...) that
tends to an ideal boundary component γ of R. Without loss of generality, we may
assume that pj-^γ (j-*°°) Then, βjm(pj)->r 0"—•<*>; for each w = ± l , ...)• For, there
exists a number j 0 , for any compact region KczR, such that two points βjm~Kpj)
and βjm{pj) can be connected by one of the curves β3 on R—K lying over j9; for
all i ^ i o Now, either Ω1eγ or £2€r, e. g. let Ω^γ. Then there exists a number
j λ such that βjdR—C and pj^Ω1 for all y ̂ / x and thus

(2) βjm(pj)£Ω1 (j^j\; for each m=0, +1, ...),

where C=C (mod ®). On the other hand, for an arbitrarily positive integer; there
exists a positive integer m3 such that

(3) βjm(pj)sΩ2 (or βj-m(pj)€Ω2) for any m^m3.

For, /3, O"=l, 2, ...) is a non-trivial generator of © by the assumption and Tm(p)—>γ2

(m-*oo; pςR). (3) contradicts to (2).
(ii) We would assume that only a (non-zero) finite number of elements in a

canonical homology basis of dividing cycles are non-trivial generators of ©, and let

55 be a system of such ones. There exists an element βj\...fn (Λ>1) in 33 such

that at least one of ends of the conjugate relative cycle βj\. .j*n* of βj°...j°n does not

tend to an ideal boundary component in common with any end of a conjugate one

of any other element of 23. On the end A?;...^* intersects with an infinite number

of dividing cycles β,i\...j»nl> βj\...fnn< ... or βj°ι...3°n_ιu ^ 0

1 ^_1n» •••• For instance, we

shall assume that the first case occurs. Then

S j 0 7Ό
l" n

βj ° / i ~ βj°-J° Π (βjo.. jo ,, λ-1

Jn -t 1 = 2

and

For, if fa*.. j°njn+1*I, βjl-jo

njn+i^ a n d a n e n d o f A ΛJn+i* would tend to the ideal

boundary component in common with the end of βj\~ 3*n*. Thus A;.. 41=^0.. ^ .

By the similar procedure, we have that

βjθ...jθ = / 3 / 0 . . . ? 0 λ = βjO jO n = . . .
" • Ί •'TΪ J^-71 •'r?1 rJ 1 Jnll

and thus each ^yj. .^i, βj°...j°nli, ... is a non-trivial generator. In the second case,

we can also show by the similar argument that each βj\...j«n_ιX, βj\-j^u, ••• is a

non-trivial generator. Then we may apply the argument in (i) for a system of such

ones and deduce a contradiction.
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LEMMA 8. In the case I. (H), only a finite number of a3 can be non-trivial
generators of ©.

We can prove the lemma by the argument similar to the lemma 7. We shall
omit its proof.

LEMMA 9. In the case I., if only a finite number of elements alf •••, a2κ of
canonical homology basis modulo the ideal boundary 3 of R form a system of
generators of ©, then i? is the type (H) and a suitable cycle C on R whose projection
on R is homologous to the cycle C=U3=1a2J_rm2j a2j

m2j-i, forms a dividing cycle of
R separating γ2 from γ1} where m3 are the integers such that a3—TmJ (j=l, ..., 2κ),

We shall prove the present lemma in 11.
By the lemmas 7, 8 and 9, we have the following theorem.

THEOREM 1. In the case L, R is of hyperbolic type (H) if and only if a finite
number of elements alf ..., a2κ of canonical homology basis modulo the ideal boundary
3 of R form a system of generators of ©.

By the theorem, if R is the type I. (H) then it must be

( 4 ) j (mlf ..., m2κ)=l,

aj=I (j=2ιc+l, ...),

for some Λ ̂ I since {T} is a base of ©, where m3 (j = l, ..., 2κ) are integers and
(mlf ..., m2κ) denotes the greatest common measure of the integers mly ..., m2κ.

By the theorem we have immediately the following corollary.

COROLLARY. In the case I., if R is closed, then R is of hyperbolic type (H).

10. LEMMA 10. In the case I. (H), we can always select a canonical homology
basis άlf ά2, ... on iv>, called regular for R which satisfies the condition

• ά2j-l=I,

( 5 )

where fΰj—O if m2j-i=m2j—0, otherwise rn3 — {rn%3-u w
Conversely, we can always select a canonical homology basis au α2, ... on R from

a given regular canonical homology basis (5) for R which satisfies the condition

( i = l, 2, ...),

2 , = Γ T O 2 J ,

where m2j-i, m2J (j=l, 2, ...) are arbitrarily given integers such that (m23-if m2j)=ίή3

if M3>0 and m23-1 = rn2j=0 if m3 = 0.
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Proof. If M2j-i = m2j=0 we put ά2J-i=cx2j-1 and ά2j=a2j. Otherwise we put

( 6 ) a2j-1 = a2j-1

m2J^m2j-i,^2pa2j-
m2J-i n^-i.mfi.

Then &2j-i=L Now there always exists a unique pair of integers x2J-i and x23

sucίi that

( 7 ) %2j~itn2j-i-\-X2jm2j = (M2j-i, m2j).

For such x2j-i and x2J we put

( 8 ) ά2j = a2j-1

χ2J-ia2j

xv.

Then by (7)

ά2j=TOn2J-^m2J\

Conversely, by (6), (7) and (8) we have

Thus the condition (a) or (a') in 3 is satisfied by the new basis άly ά2, .... And
also it is immediately shown that the condition (b) or (br) for the intersection
number in 3 is satisfied.

The converse statement is also easily shown.

11. The proof of the lemma 9. By using the proof of the lemma 10, the pre-
sent lemma is reduced to the case where a2j (a2j = TmJ, m ; >0; j = l, ..., tc) form a
system of generators of (S. Then we need only to show that a suitable cycle C on
R the projection on R of which is homologous to C=ΐlj=1a2j-rmJ, forms a dividing
cycle on R separating γ2 from γv

Let p be a fixed point on R. We can connect p to a2j(p) (/=1, ..., tc) by simple
curves, say ά2j, on R the projections on R of which are homologous to a2j, respec-
tively. At the same time we can select simple closed curves, say ά2j-i (.7 = 1, ..., «),
on R which intersect to ά2j just one time and the projections on R of which are
homologous to a2j-i, respectively.

Let

„ - mJ

j = l k=l

We shall first prove that if C* is an arbitrary curve connecting p to T(p) on R
then C* intersects to C and thus C separates T(p) from p. Without loss of gener-
ality we may assume that C* have the form

because only the homotopy classes containing a2j (j=l, ..., fc) among all homotopy
classes of R can be non-trivial generators of (S. Here l^kjv^κ, δv=±l, kv are in-
tegers (v = l, ..., c), and the initial points ΓE*(j>) and the terminal points T*»'(β) of Tk»
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(ct2jυ

8») 0 = 1, ..., 0 satisfy that THp)=P, T~k^(P)=T^'(p) 0 = 1 , ..., <-l), Γ **'(£)
= T(p), respectively. There exists the minimum v, say v0, such that £ ^ 0 , ^ > 0 .
Then, δVQ=l, £„„=&,,„, kv^Λ mJVί=kv^ and thus — m ^ + l ^ & ^ O . Therefore, noting
that Tk»0(ά2JV0) intersects to Tk-o(ά2jVo-i)J we see that C* intersects to C.

Now it is immediately seen that C separates γ2 from γλ. For there exists a
relative cycle from jδ to γlf e.g. ΠX^Γ-*" 1 ^) which does not intersect to C and
similarly one from T(p) to γ2.

§3. Abelian covering surface with finite spherical area

12. Let R be an arbitrary Riemann surface and / be a meromorphic function
on R. We introduce a quantity defined by

where ζ —f+z?? is a local uniformizing parameter at a point on R. It expresses the
spherical area of the covering surface over the Riemann sphere which is formed
by the image of R by /. We denote by OMD the class of Riemann surfaces R
which do not admit any non-constant meromorphic function / w i t h / ( / ) < oo (cf.
[17]). We say briefly that R has finite spherical area if R$0MD.

By the valence &/ of / we mean the function on the ^/-sphere S1 denned by

ϋ/(«0= Σ μ(P; / ) , wεS,

where μ(p /) is the multiplicity of / at p. Let 93(/?) be the class of non-constant
meromorphic functions of bounded valence on R. We denote by Ov the class of
Riemann surfaces R with ?β(R) = φ.

It is known (cf. [5], [10]) that if RSOG, OG being the class of Riemann surfaces
not admitting Green's function, two alternative cases can occur; namely

(i) Ό/(w) = const<oo except for a set of w of capacity zero, and
(ii) \)f(w) = oo except for a set of w of capacity zero.

Thus we can easily see that if RGOG, either R belongs to Ov and OMD simul-
taneously or not.

In the present section we shall state a function-theoritic character of abelian
covering surfaces with finite spherical area of the class OG- For some special cases,
related problems have already been discussed by Ozawa [13], M. Tsuji [18] and the
author [9].

In the present paper we concern ourselves with the problem for only the case
I. (H) in 8. In the next paper we will concern ourselves with the similar problem
for the other cases I. (P), II. and III. in 8.

13. Let R be an open Riemann surface of the class OG and Ω be an end of R.
Throughout the following, by Ω we shall mean an end (with subscripts if neces-
sary). We shall need several lemmas (the lemmas 11, 12 and 13) for an analytic
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function on an end Ω, which have been proved in [4] for the case where the end
has only one ideal boundary component (see [4] and also cf. [7]). Since in our case
they can also be proved analogously, we omit their proofs. (Cf. the theorems 4.1,
4. 2 and 5.1 in [4] for the proof of the following lemmas 11, 12 and 13, respectively.)

LEMMA 11. Any analytic function bounded on Ω possesses a limit at each ideal
boundary component of Ω.

Let φ be an analytic function on an end Ωo. In analogy to [4], we define the
local degree d(φ, γ) of φ at γ (Ω0£γ) as follows: Let Ω be a generic end such that
ΩczΩ0 (Ωεγ) and n(φ, Ω)=mΆκw=ψ^,p£Ω

luφ(w). We then put d(φ, γ)=miaΩern(φ, Ω).

LEMMA 12. If ψ (^ const) is meromorphic on Ω and Ωζγ, then either (i) φ pos-
sesses a limit at γ and is then (1, d(φ, γ)) on some subend Ω^aΩ and Ωx£γ) with
the exception of a set of capacity zero, on which φ is of valency less than d(φ, γ), or
else (ii) the set of limiting values at γ is the extended plane and ψ assumes every
value infinitely often except for a set of capacity zero.

We suppose that <p0 is a preferred analytic function bounded on Ω which has
the minimal local degree d0 at γ (βsγ) and that (i) <p0 possesses a zero limit at γ and
a non-zero limit at every other ideal boundary component of Ω, (ii) φ0 does not
assume zero on Ω and is (1, d0) on the closure of Ω with the exception of a set of
capacity zero, and (iii) \φo\ = l o n the frontier of Ω.

LEMMA 13. If there exists the above-mentioned analytic function φ0 on Ωf then
for each bounded analytic function φ(\φ\<l) on Ω there exists a unique analytic
function ψ ( |0|<1) on \z\<l such that φ=ψ°φ0 holds on Ω.

14. In the following we shall assume that R is a Riemann surface of the class
OG which admits a conformal transformation group ©= {T} of the type I. (H) in 8.
Then we have

THEOREM 2. If R has finite spherical area there exists a function foe^S(R) uni-
quely determined except a multiplicative constant which satisfies the conditions

and

f=Q°fo for each

where t is a complex constant \t\yl uniquely determined by R and (S, and g is a

rational function.

The theorem can be proved by a similar argument with somewhat difference
to the proposition 1 in [13]. For completeness, we shall state the proof in detail
(15—20).

15. If R has finite spherical area, then there exists a function f€%$(R) and
tof(w) = const <oo except for a set of w of capacity zero. We can regard that R is
a finite covering surface over the w-sphere S such that f is the projection map of
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R onto S. By the lemma 12, / has a limit at every ideal bounda^ component of

R. Especially there exist the limits

iimfoT-m(p) and limfoTm(p).
m-+oo ra-»oo

Without loss of generality, we may assume that l im^^/o T-m(p)=0. We shall fix

such a function / and make constructively the function f0 in the theorem from it.

16. We can find a suitable end Ωo {Ω^γx) of R and a preferred analytic func-
tion <p0 on Ωo which has the minimal local degree d0 at γ1 and such that (i) φ0 and
f possess a zero limit at γx and a non-zero limit at every other ideal boundary com-
ponent of Ωo, (ii) φ0 and f do not assume zero on Ωo and φ0 is (1, d0) on the closure
of Ωo except for a set of capacity zero, and (iii) | ^ 0 | = l on the boundary of Ωo and

Proof. Since / h a s bounded valence, it has only a finite number of zero points
and only a finite number of ideal boundary components such that \im.p^rf(p) = 0
(7^7^). Then we can take an end 42*(€7Ί) which does not contain any zero point
and which separates all those ideal boundary components from γx. We can select
a constant rλ such that 0<r 1 ^min(min 9 β * |/ | , 1) and any point on \w\ = rλ is not a
defect value of/. Then, Ωx={p\ \f(p)\<r1}(czΩ*) is an end of γx and f/r, on Ωλ

satisfies the conditions (i), (ii) and (iii) imposed for φ0 on ΩQm Let <£>0* be one of the
functions analytic, bounded on Ωx such that lim^->ri^0*(^)=0 and which have the
minimal local degree at γx. By the similar procedure as for / we can find a subend
Ω0(^ϊi) of Ωx such that <po=roφo* (r0 being a suitable positive constant) satisfies all
the conditions imposed for φ0 on Ωo. Of course, / also satisfies all the conditions
imposed for / on Ωo. Here, owing to taking the subend Ω^aΩ^, we can no more
guarantee in general that φύ* provides the minimal local degree at γ1 among a
family of the functions on Ωo. However, by taking rx sufficiently small previously,
we can guarantee that the minimal local degree at γλ is invariant even if we take
any subend J20(€7Ί) of Ωx.

17. By 16 and the lemma 13, there holds f=ψ0 ° φ0 on Ωo, where ψ0 is a unique
analytic function on |w |<l , |^ol<l» ^o(O)=O and ψo(w)^O for w^O. We may suppose
that ψ0 has no multiple points except possibly at the origin, by reselecting Ωo and φ0

if necessary. Let ψ0 have the multiplicity μ(^l) at the origin. Then wυ^ψ0 is
one-valued, univalent on M < 1 , and thus φ=wιlμ°f=w1Iμ ° ψ0 ° Ψo is a one-valued
analytic function defined on Ωo which has the minimal local degree d0 at γlt pos-
sesses a zero limit at γx and is (1, d0) on the closure of Ωo except for a set of
capacity zero.

Let Ω={p\ \φ(p)\<r] be a subend of Ωor^T~\ΩQ) such that 3Ω={p\ \φ(p)\=r}
forms the compact boundary of Ω and does not contain multiple points of / where
the real constant r should be selected suitably small. Then ψ maps Ω onto an r-
disk G={\z\<r] with some defect set of capacity zero, and φ <> T is bounded, \<p°T\



42 HISAO MIZUMOTO

<1, on Ω{cT-\Ω0)). Further, φ and f T possess a zero limit at γu are (1, d0) on
the closure of Ω except for a set of capacity zero, and have the minimal local degree
d0 at ft. Therefore, by the lemma 13, we have a functional relalion

(9) ψ ° T=ψ oφ on Ω,

where ψ is an analytic function of z on G which is one-valued, univalent, bounded,
\Φ\<1, and 0(O)=O.

18. ψ=w

llμ °f maps Ω onto the r-disk with the defect set of capacity zero. Let Gr

be a set of points of G~{\z\<r) which are not defect values of ψ and also which
are not images of multiple points of ψ. Then, G—Gf is a set of capacity zero and
thus Ω—Ω' is possibly a Green null set on Ω, being Ω'=φ~ι{Gf).

Let z0 be an arbitrarily point of G\ pi, ..., p°dQ be all points with the φ-image

zQ, i.e. zo=φ(p°v) 0 = 1, ..., d0). Then we have that

Proof. First, obviously

Let p\=T(pΐ), ..., fa, = T{p\). Then by (9) we have

that means, / takes the common value wλ at all # (v = l, ..., d0).
If we take w=f(p) as local uniformizers at the points pi, ..., j&°ώo, then by (9)

we have

(10) fo T(pυ)=Z^ o φ o (p(pv)=ZV o φ o WVμ of(pv)=Zμ o φ

in faUtfΐ) (v=l, ..., Jo)

on taking a branch of M;1^ such that w1/μ(w0)=z0, where U(pΐ) (v = l, ..., ύf0) are the
definition regions of the local uniformizers w=f(pv) at />; such that f(U(pΐ))=^{w\\w
—wo\<r{wύ)} and ί / © c f t It means that /° Γ(j?υ) (y = l, ..., rf0)

 a r e t n e common
analytic functions of local uniformizers w=f(pv) on U(pΐ).

We can find an analytic curve Λ(w0, wλ) on 5 from w0 to wι such that each
image curve C(pl) running from pi 0 = 1 , ..., d0) of Λ(w0, wλ) by/- 1 is a simple curve
on Ω^Tφ) not passing through the multiple points of /. Then each C(pΐ) 0 = 1 ,
..., d0) ends one-to-one corresponding to one of p\, ..., pλ

do. If we continue analytically
the functions f°T(β») along Cψv) 0 = 1 , ..., d0), then by (10) we see that fo T(pl) 0
= 1, ..., d0) takes a common value independent of v, that is,

By the similar successive process, we see that

We identify the points Tm(p«), ..., Tm(β°do) on ^ for each z^G' and each m im
=0,1, ...)• Then any point on R possibly with the exception of a Green null set
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takes a part in this identification process. For there exists a positive integer m0

for any pQR such that T~m(p)£Q for m^m0. By this successive identification
process, we obtain a finitely-sheeted covering surface W over 5 over which Rf is
a ^-sheeted covering surface, where R/=Um-=ίT

m(Ω/).

19. Let f be a projection map of R' onto W. Then the covering transfor-
mation T of R onto itself induces the one-to-one conformal transformation β of W
onto itself which is uniquely determined by the functional relation

(11) \°T = $o\.

Now let am (w=0, 1, ...) be the images on W of Tm(Ω') by f, respectively. Then,
Q~m (m=l, 2, ...) map one-to-one conformally Λ/ onto JJ, respectively. Since ^ o f-1

is a one-valued function on ά[ independent of the choice of branches of \~λ and defines
a one-to-one conformal mapping of Δ[ onto the r-disk Gf with the exception of a
set of capacity zero, we see that Δf

Q can be uniquely continued to a region Δo con-
formally equivalent to the whole r-disk G, preserving the original conformal struc-
ture of Jo ', and thus J m ' ( m = l , 2, ...) can also be continued to regions Δm conformally
equivalent to G, respectively. Then, W' = U%=0Δm' can be uniquely continued to the
covering surface W=\j^Δm on S, preserving the original conformal structure of
W\ and the mapping f of R! onto W can be analytically continued to the projec-
tion map (again denoted by f) of R into ty. Further, Q can be extended to the
one-to-one conformal transformation of ty onto ffi.

W is a simply-connected covering surface on S with only one ideal boundary
component p2t corresponding to the ideal boundary component γ2 of R by f, and thus
ffl can be continued to a simply-connected compact Riemann surface W, preserving
the original conformal structure.

Proof Since dΔv (y=0, 1, ...) are analytic curves on W, Wm= U?=OΔV (czW)
(m=0,1, ...) are bordered Riemann surfaces. Further Wm (m==0, 1, ...) are planar,
for there exists a number mf (>m) for each m such that Wm is one-to-one mapped
into Δo by $~m>. If we note that there exists a number mx (>m0) for any number
m0 such that WmO^Wm for all m^mι and Qm(ρ) for any pζffl tends to the ideal
boundary component p2 of ffl, corresponding to the ideal boundary component γ2 of
R by f, as m-^oo, then we see that dWm tends to p2 as m-^co. Thus we see that
T^ is planar and has only one ideal boundary component p2.

Now let f be again the projection map of R into W and Q be again a one-to-
one conformal mapping of W onto itself. It is easily seen that $ has two fixed
points pλ and p2 on VF corresponding to the ideal boundary components γλ and γ2 of
/? by f, respectively. Then, we have the functional relation (11) on R.

The Riemann surface W can be mapped one-to-one conformally onto 5. Let χ
be one of such mapping functions satisfying

(12) χ(Pi)=O and χ(t>2)=oo.

Then χ o g o χ-1 is a one-to-one conformal mapping of 5 onto itself with the only
fixed points 0 and oo. Thus it must be
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xo$oχ~Kw)=tw,

where t is a constant with \t\^l. Thus, by (11) we have

(13) χ ° ϊ ° Γ = * χ o f .

If we define a meromorphic function fo€?β(R) on $ by χ o f, then by (13) we have

(14) fo°T=tfo on β

Obviously, maxwl3/0(ίί;) = 4 By (12) and the definition of/0 we have lim^oo/o ° ΓmQS)
= oo (pςR) and thus by (14) it must be | ί | > l .

If we put g=tooχ-1, tυ being the projection map of W onto S, then g is
obviously a rational function on 5 and there holds

20. The proof of uniqueness. Let fλ be another function of $8(#) and let /1 0 be
the function of $8(/?) constructed from /i by the above procedure which satisfies
the conditions

Ao°T= fi/io

and

(15) Λ = flfi °/io,

where tλ is a complex constant \tx\>l and gλ is a rational function on 5. Then,
by the construction method of /0 and f10, we see that there exists a function g10

which maps one-to-one conformally S onto itself and which satisfies the condition

Since g10 has two fixed points w=0 and ^=oo, it must be of the form

d being a constant. Then we have

(16) fιo=c1fo-

Substituting (16) to (15), we have

/l = 02 °/θ>

where g2(^) = Qi(c1w) is a rational function.
Finally, let /0* be an arbitrary function of S5(Λ) satisfying the conditions

(17) / 0 *oT=/*/o* o n ^

and

/=flf* °/o* for each /€93(^),

where ί* is a complex constant |/* |>1 and g* is a rational function. Then there
exist rational functions g0, g0* on 5 such that
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Then we have

g o " 1 = 0 o * .

Thus we see that g0 maps one-to-one conformally S onto itself with two fixed
points w=0 and w=oo and thus it has the form

go(w)=cw,

c being constant. Then we have

Substituting (18) to (17), we have

cf0oT=t*cf0

or

(19) f0oT=t*f0.

Comparing (19) with (14), we see that it must be

f* = t.

21. In the theorem 2, f0 is a function which has the minimal- local degree d0

at two ideal boundary components γλ and γ2 of i?, and maxu, \)fo(w)=do. Thus/ 0

takes all values on S < 0̂"times, except for a set of capacity zero, and never takes 0
and oo on R. Thus we can find a subregion Ω of R defined by \fo\<r (r>0) and
such that no point on \w\=r is an exceptional point of f0 or the image of a mul-
tiple point of /0. Then C=dΩ consists of a finite number of simple closed analytic
curves Cu ..., C,o (fco^do)y and \fo\=r holds on C. By the theorem 2 the subregion
F of R defined by r^\fo\<r\t\, gives a fundamental region for the group © and
R=R (mod ©) is obtained from F by identifying C3 to T(Cj) for each j = l, ...,/c0.
Thus R must be conformally equivalent to such a do-sheeted covering surface R*
on S that R* is mapped onto itself by the transformation w \ tw.

22. THEOREM 3. Let m,(j=l, ..., 2/c) ^ arbitrarily given integers with (mlt

..., m2/c)=l. TΛ^^ ^ r ^ ^5^5 a marked Riemann surface <i?>12) of finite or in-
finite genus q (/r^g^oo) such that an abelian covering surface R of (R) with a
covering transformation group ©={T; α, = T w ?(/ = l, ..., 2κ)% ctj=I (j^2tc-srl)} has
finite spherical area.

Proof. By the lemma 10, it is sufficient to prove the theorem for only the case
m2./-i=0 and m2j^0 (.7 = 1, ..., K). Further it is not an essential restriction to assume
that m2J>0 O' = l, ..., K).

(i) The case where m1~09 m2=l, and κ=q=l.
Let ^={0<|2 |<oo}, ©={T; T=tz (t: real, *>1)}, άx= {|2| = 1}, ά2= {l=5Rz</,

3^=0} and F= {l^,\z\<t}. Let R be a Riemann surface (torus) obtained from F

12) By a marked Riemann surface <i?> we mean the Riemann surface R preassigned
a canonical homology basis, cf. ([3])
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by identifying άx to T(άx), and au a2 be the images on R of άu ά2, respectively.
Then the marked Riemann surface <i?> obtained by the suitable selection of the
orientation of au a2, provides a required one for the present case.

(ii) The case where m1=0, m 2 = l , κ=l and q>l.
Let

T' = t1/2z (t: real, t>l),

II'=

1 1
~2F

\2\ — /1/4 1 I _

\z\—τ Λ 22vΛ

(v = l, ..., q—1, if q<c®', v = l, 2, ..., if <7=oo),

(
m=-oo \ v v

Let F be a two-sheeted covering surface over w-plane obtained as an image of F/

by the transformation w=z2. Then, we denote the images of lλj\ 12J (v = l, 2, ...).
a[ and ά'2 by /;, /;, άx and ά2, respectively, and T=tw. Let ^ be a Riemann surface
obtained from F by connecting crosswise each other along Tm(ll) and Tm(ll) for
each v and each m, respectively, and F be a subregion of R surrounded by ά1 and
T(άλ). Let i? be a Riemann surface obtained from F by identifying άx with TCάi),
and a1 and α2 be the images on R of άλ and «2 Then, by the suitable selection of
the orientation of au a2 and of the remaining basis αr3, α4, ... on i?, we shall obtain
one of the desired marked Riemann surfaces <i?> for the present case.

(iii) The case except the cases (i) and (ii).
Then, necessarily tc>l. Let

T=tz(t: real,

^ ^ - π (; = 1, . . . , * - l

—κ, if = l , 2, ..., if q=oo),

F)={0<\z\<co}- u (;=2, ...,*-
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Fl={0<\z\<oo}- lΓ ΓT O*T O '/._iW U /*' ,
m=—oo k '

where \Jklk

r=φ if #=*. Let α2.;-i={M=l} and ά2j= {l^$lz<tmv, $2=0} be curves
on F) ( i = l , ..., /c), and Fj be a subregion of F) surrounded by ά2j-i and Tmv(ά2j-i).
Let ^ be a Riemann surface obtained from P\, ..., Ff2, ..., Fί, ..., Ff2* by connecting
crosswise along the each slit corresponding up and down each other, where each
slit corresponds obviously to one and only one slit. Since (ml9 ..., m2κ) = l, R is
obviously connected. Further R admits obviously the covering transformation
group ©. Let F * be a subregion of R surrounded by άί} Tm*(άd* ..., ά2*-i and
Tm^{a2K-d and thus F * consists of the portions F\, ...,F} connected along the cor-
responding slits. Let R be a Riemann surface obtained from F* by identifying ά2j-i
to Tm2i(α2j-i) O' = l, ...•*)> and α, (i = l, ...,2«) be images on R of ά3, respectively.
Then it is easily shown that R=R (mod ®). Then, by the suitable selection of
the orientation of aly ..., a2κ and of the remaining basis a2κ+i, ... on R, we shall
obtain one of the desired marked Riemann surfaces (R) for the present case. We
shall omit the detailed argument.

23. Let R be an open Riemann surface. We now consider a system of curves
£={L} such that LczR—K0, Ko being a simply connected compact subregion of R,
and L~dK0. Suppose further that L consists a finite number of disjoint analytic
dividing cycles of R. Let E={Rn}n=ι be an exhaustion of R such that dRn€% and
2β be the union of %n for all n where SΛ is a set of curves of 2 contained in annuli
including dRn.

1Ό We shall denote by O" a class of Riemann surfaces on which an
exhaustion E exists such that Λ{δ*j}=0, where λ{%β} denote the extremal length
of 2a. It is known that O " c O σ (see [8]).

24. Let R be a Riemann surface with finite spherical area in 14 and let R=R
(mod ©). Let alt a2t ... be a canonical homology basis belonging to an exhaustion
E= {Rn} of R. Here if R is a closed Riemann surface of genus q, we may take
an arbitrary canonical homology basis alf ..., a2q. We assume that ®= {T} and <χ3

= Tm3 O' = l, 2, ...) where mj=0 for i>2/c and (mb ..., m2*) = l.
Let ζ=ζ(p) be a local uniformizing parameter at peR. By the theorem 2 the

differential (/<///o) <̂C is invariant under the group (S, and thus it is an abelian dif-
ferential of the first kind on the Riemann surface R. We can easily verify that it
has a finite Dirichlet integral over R.

It is known (see [1]) that there exists a system of abelian differentials dω3 of
the first kind with finite Dirichlet integrals on R such that

S dω3=δJ

k , and \ dω3

<*2k-l J*2fc

13) By an annulus including LeS we mean the union of doubly connected domains each
of which includes a component of L,
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We shall assume that R is a Riemann surface of the class O" or is a closed
Riemann surface of genus #.14) Then, if alf a2, ... is a canonical homology basis
belonging to the exhaustion E={Rn) of R satisίiying Λ{2/g}=0, we have

(20)

where

/o

In the case of R of infinite genus, (20) can be verified as follows. Putting

Σ Cjda)j=duv+idvv, ^L-dζ=du+idv;

duu, dvv, du, dv: real differentials,

and using the theorem 6 in [8], we obtain

[ du[ dv-[ du\ dv).

Since the right hand side tends to zero as v—>oo (see [9]), we obtain

DR(u-uv)-*0 (v->oo),

and the desired equality.
By calculating the periodicity moduli of (20) along C=U}=1a2j-1~

mva2j

mv-1 and
each homology base a3 (j = l, 2, ...), we have the following system of equations

cj[ dω3

(21)

2πido = \ ^j-dζ =
Jc /o

m2k-ilogt+2πii

: log t+2πi nι2k* ••

-~dζ= dω3

=2πick fe=l, 2 , . . . ) ,

Σcj[ dω}

Σ
3=1

Here m2k-^, m2k* (k=l, 2, ...) are integers. However we have

14) In the following, the argument shall be done for only the case where R is of
infinite genus because it is done similarly and more easily for the other cases.
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LEMMA 14. There exists a number Λ:* such that mk*=0 for all k>2κ*.

Proof. We would assume that m ^ ^ O for an infinite number of k, e. g. m f c y*^0
(v=l, 2, ...). Then for any θ (0^θ<2π) there exists at least one point pv(β) on akv

such that arg/o(£(0)) = 0 (mod 2τr; * = 1 , 2, ...), where #,(0) (v=l, 2, ...) is the point
on F={p\ r^\fo(p)\<r\t\] lying over pv(θ). We may assume that two point se-
quences {/>*(0)}Γ=i and {^)}Γ=i tend to ideal boundary components γ' and p" of R,
respectively, if necessary by taking subsequences with a set of common subindices
of them. Then, two number sequences {fo(j)v(O))} Γ=i and {Mpv(π))} Γ=1 converge, and
r<limv_>oo/0(^(0))<r|/| and —r|/|<lim^oo/0(^(7r))<—r. Thus, by the lemma 11,
f^y". On the other hand, for any compact region K on R there exists a number
v0 such that akvczR—K for all v^v0, which shows that γ'=γ". Contradiction.

(22)

Therefore by (21) and the lemma 14 we have a system of algebraic equations:

Σ m23*γτ)-m2* Σ m^ή-mf

Σ m2j-i τ)—m2 Σ w2;-i ή—m4
" 1

Σ j )
. 7 = 1 " 3 = 1

and a relation

(23) Σ (with-! m2i~ m2k mm-*) = d0,
k=l

where Σf=1 tn^r} — tn2k*= 0 if and only if Z ^ i ^ - i ^ f — m2k = 0.

25. Now we shall proceed to the converse problem. If (22) has a solution
*, ..., m2κf) for some Λ;*^1 whose menbers are all integers and at least one of

them is not zero, then (m^, ..., m2κt) is called to be an admissible integral system
for (22). With this terminology we see that (m^/m, ..., m2κt/m) for a common
measure m of m^, ..., m^t and (rn'mf, ..., mrm2κt) for any non-zero integer m' are
also admissible for (22), if so is (m^, ..., m2κf). Among all the admissible integral
system for (22) there exists an unique system (m^0, ..., m2/c**0) for which the minimum
dQ in (23) is provided,

Now we shall assume that (22) has an admissible integral system (m^0, ..., m2κ**0)
with the minimum d0 in (23). Then, putting

* * K*

ZJ mi3\τ3 "h Z m'2ji τj—rn^

Σ m2i-i τ) — m2 Σ
J=l 3=1

the differential

dh=]

satisfies the period relations
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(*=1,2, ..

dh=d0,

where /r**=maxOr, **) and m2k*°l = m2k*°=0 for all &>**. Here the imaginary part of
Z does not reduce to zero, because no non-zero abelian differential of the first kind
on RsO" with finite Dirichlet integral has a real periodicity modulus along every
cycle. Thus the potential function

/(/>)=exp 2πi

has the periods tm* (\t\^l) along ak (k=l, 2, ...), where t=exp(2πiZ). Thus / is an
analytic function one-valued and regular on R, satisfies the functional relation

/• Άp)=tf(p)

and has the minimum local degree d0 at two ideal boundary components γλ and γ2

of R. Then the function fo=f or / 0 = l / / corresponding to | / |>1 or \t\<l, respec-
tively, provides the property in the theorem 2.

26. By the argument throughout 24 and 25, we obtain the following consequence.

THEOREM 4. Let R be a Riemann surface of O", α̂ , α2t ... be a canonical
homology basis belonging to the exhaustion E satisfying X[2R}=0} and (τJ

k)jik=u 2,...
be the period matrix corresponding to the canonical homology basis alf a2, ... . Let R
(GOG) be an abelian covering surface of R, and have a covering transformation
group ®={T] and a system of generators a1,...,a2κ with aj=TmJ O' = l, ..., 2ιc).
Then, R has finite spherical area if and only if there exists an admissible integral
system (m*, ..., m2κ**) for some tc* such that the period matrix {τ3

k)Jy k=1,2, ... satisfies
the system of algebraic equations

(22)
Σ

J=l

Σ WI23*τ] -
3=1

Σ M2J-1 τ) - m 2 Σ nt2j-i τ)
3=1 ' ι

Σ nt2j-i τ) —m4

where m2j=0 for j>tc and m2J*=0 for i>/c*.

If the canonical homology basis au a2, ... is regular for R which can be taken
by the lemma 10, the condition (22) is replaced by the simpler system

(24)
m2

*M * T 1 4*f *

WI2J-I τ3 m% 2_ι WI23-I T 3

(Cf. [9] for the case where m 2 ; = l (j=l, ..., tc) and m^=0 for other j.)
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If R is of finite genus q, then the condition (22) has the following form

(25)
Σ

Q Q

Σ m2j-i τ) —m2 Σ^j-itf —m2q
3=1 3=1

(Cf. [13] for the case where m2=l and ntj=0 for other j.)

The author should like to express his heartiest thanks to Professor Yύsaku

Komatu and Professor Kόtaro Oikawa for their many valuable advices.
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