ON A UNIQUENESS CONDITION FOR SOLUTIONS OF THE DIRICHLET PROBLEM CONCERNING A QUASI-LINEAR EQUATION OF ELLIPTIC TYPE

BY YOSHIKAZU HIRASAWA

§1. Introduction.

In the present paper, we are concerned with a uniqueness condition for solutions of the Dirichlet problem concerning a quasi-linear elliptic equation of the second order

(1.1)
$$\sum_{i,j=1}^{m} a_{ij}(x, \nabla u) \frac{\partial^2 u}{\partial x_i \partial x_j} = f(x, u, \nabla u).^{1}$$

Recently, Kusano $[1]^{2}$ has established the maximum principle for quasilinear elliptic equations of the general form, and as its application, he has given a uniqueness condition for solutions of the equation (1.1). We will here show that the uniqueness of solutions may be established under a weaker condition, by the method adopted in author's previous note [2].

In this paper, x denotes a point (x_1, x_2, \dots, x_m) in the *m*-dimensional Euclidean space, and we use the notations $\partial_i u$ for $\partial u/\partial x_i$, and $\partial_i \partial_j u$ for $\partial^2 u/\partial x_i \partial x_j$. Furthermore we introduce a differential operator L[v; u] of elliptic type by the expression

$$L[v; u] = \sum_{i, j=1}^{m} a_{ij}(x, \nabla v) \partial_i \partial_j u,$$

and then the equation (1.1) can be written as follows:

$$(1.2) L[u; u] = f(x, u, \nabla u)$$

By a solution of the equation (1.2) in a domain D, we mean a function belonging to $C^2[D]$ and satisfying the equation (1.2) in D.

§2. Hypotheses on the functions $a_{ij}(x, p)$ and f(x, u, p).

Let D be a bounded domain in the *m*-dimensional Euclidean space and let \dot{D} be the boundary of D.

We define a domain \mathfrak{D}_0 in the 2*m*-dimensional Euclidean space as follows:

$$\mathfrak{D}_0 = \{(x, p); x \in D, |p| < +\infty\}, \mathcal{D}_0$$

Received June 28, 1962.

¹⁾ ∇u denotes the vector $(\partial u/\partial x_1, \partial u/\partial x_2, \dots, \partial u/\partial x_m)$.

²⁾ The numbers in brackets refer to the list of references at the end of this paper.

³⁾ The notation |p| means $\{\sum_{i=1}^{m} |p_i|^2\}^{1/2}$, where $p = (p_1, \dots, p_m)$.

and regarding the coefficients $a_{ij}(x, p)$, we assume the following hypotheses.

HYPOTHESIS 1: The functions $a_{ij}(x, p)$ are continuous in the domain \mathfrak{D}_0 and the quadratic form $\sum_{i,j=1}^{m} a_{ij}(x, p) \xi_i \xi_j$ is positive definite for any $(x, p) \in \mathfrak{D}_0$.

HYPOTHESIS 2: The functions $a_{ij}(x, p)$ satisfy a Lipschitz condition

$$\left\{\sum_{i, j=1}^{m} [a_{ij}(x, p) - a_{ij}(x, q)]^2\right\}^{1/2} \leq H(x, p, q) | p - q |$$

for any (x, p), $(x, q) \in \mathfrak{D}_0$, and H(x, p, q) is a positive function of (x, p, q), bounded in any domain

$$\{(x, p, q); x \in S, |p|, |q| \leq M\},\$$

where S is any compact subdomain of D, and M is any positive quantity.

REMARK. In the subsequent section, as a matter of fact, the following hypothesis will suffice for our discussion.

HYPOTHESIS 2': For at least an index k, the functions $a_{ij}(x, p)$ satisfy a Lipschitz condition

$$\left\{\sum_{i, j=1}^{m} [a_{ij}(x, p) - a_{ij}(x, \overline{p})]^2
ight\}^{1/2} \leq H(x, p, \overline{p}) \mid p_k - \overline{p}_k \mid,$$

where $p = (p_1, \dots, p_k, \dots, p_m), \ \overline{p} = (p_1, \dots, \overline{p}_k, \dots, p_m).$

We now define a domain \mathfrak{D}_1 in the (2m+1)-dimensional Euclidean space as follows:

$$\mathfrak{D}_1 = \{(x, u, p); x \in D, |u| < +\infty, |p| < +\infty\},\$$

and regarding the function f(x, u, p), we assume the following hypotheses.

HYPOTHESIS 3: The function f(x, u, p) is defined in the domain \mathfrak{D}_1 and is non-decreasing with respect to u.

HYPOTHESIS 4: The function f(x, u, p) satisfies one of the following conditions:

- (I) $-G(x, u, p, \overline{p}_k)(\overline{p}_k p_k) \leq f(x, u, \overline{p}) f(x, u, p),$
- (II) $f(x, u, \overline{p}) f(x, u, p) \leq G(x, u, p, \overline{p}_k)(\overline{p}_k p_k),$

where $p = (p_1, \dots, p_k, \dots, p_m)$, $\overline{p} = (p_1, \dots, \overline{p}_k, \dots, p_m)$, $p_k < \overline{p}_k$, and k is a fixed index.

Furthermore $G(x, u, p, \overline{p}_k)$ is a function of $(x, u, p, \overline{p}_k)$, bounded in any domain

$$\{(x, u, p, \overline{p}_k), x \in S, |u| \leq M, |p| \leq M, |\overline{p}_k| \leq M\},\$$

where S and M have the same meaning as in Hypothesis 2.

§3. Main theorem.

LEMMA. If $\varphi(x)$, $\psi(x) \in C^2$, then we have

$$L[v; \varphi \psi] = \varphi L[v; \psi] + \psi L[v; \varphi] + 2 \sum_{i, j=1}^{m} a_{ij}(x, \nabla v) \partial_i \varphi \partial_j \psi.$$

The proof is omitted.

The principal part of this paper is to prove the following

THEOREM 1. Let Hypotheses 1-4 be fulfilled, and let $u_1(x)$ and $u_2(x)$ be solutions of the equation

$$L[u; u] = f(x, u, \nabla u).$$

If the inequality

(3.2)
$$\overline{\lim_{x \to \hat{x}}} | u_1(x) - u_2(x) | \leq \varepsilon$$

holds for any boundary point $\dot{x}\!\in\!\dot{D}$ and for a non-negative real number arepsilon, then we have

$$(3.3) | u_1(x) - u_2(x) | \leq \varepsilon in D.$$

Proof. We will first prove the inequality

$$(3.3') u_2(x) - u_1(u) \leq \varepsilon in D,$$

by assuming Hypothesis (4, I), and to this end, we show that, a contradiction arises, if the inequality (3.3') does not hold.

Suppose that the inequality (3.3') is not true. Then, since there exists a point $\tilde{x} \in D$, such that $\varepsilon < u_2(\tilde{x}) - u_1(\tilde{x})$, we see

$$\inf_{D} \left\{ \varepsilon - (u_2(x) - u_1(x)) \right\} < 0,$$

and the inequality (3.2) implies that there exists a point $x^{(0)} \in D$, such that

$$egin{aligned} & \lim_{D} \left\{ arepsilon - (u_2(x) - u_1(x))
ight\} = \left\{ arepsilon - (u_2(x^{(0)}) - u_1(x^{(0)}))
ight\} \ &\equiv - \delta. \end{aligned}$$

The function $\{\varepsilon - (u_2(x) - u_1(x))\}$ assumes therefore the negative minimum $-\delta$ in D, which is attained at the point $x^{(0)} \in D$. Put

$$egin{aligned} G(x) &\equiv G(x,\, u_2(x),\,
abla u_1(x),\, \partial_k u_2(x)), \ H(x) &\equiv H(x,\,
abla u_1(x),\,
abla u_2(x)), \end{aligned}$$

and let $\{D_n\}$ be a sequence of domains, such that $\overline{D}_n \subset D_{n+1}$ and $\bigcup_{n=1}^{\infty} D_n = D$, then we can choose four sequences $\{G_n\}$, $\{H_n\}$, $\{U_n\}$ and $\{\alpha_n\}$ of positive numbers, such that

$$\begin{split} & \sup_{\overline{D}_n} G(x) < G_n, \qquad \sup_{\overline{D}_n} H(x) < H_n, \\ & \sup_{\overline{D}_n} \left\{ \sum_{i, j=1}^m |\partial_i \partial_j u_1(x)|^2 \right\}^{1/2} < U_n, \qquad \inf_{\overline{D}_n} a_{kk}(x, \nabla u_2(x)) > \alpha_n, \end{split}$$

164

and the sequence $\{(G_n + H_n U_n) / \alpha_n\}$ tends monotonely to infinity for $n \to \infty$.

The existence of such sequences $\{G_n\}$, $\{H_n\}$, $\{U_n\}$, $\{\alpha_n\}$ can be verified by virtue of the hypotheses of the theorem.

Define functions $\varphi_n(x)$ and $v_n(x)$ as follows:

$$arphi_n(x) = P - \exp\left[-rac{1}{lpha_n}(G_n + H_nU_n)(x_k - eta)
ight],$$

 $v_n(x) = rac{1}{arphi_n(x)} \{\varepsilon - (u_2(x) - u_1(x))\},$

where x_k is the k-component of $x \in \overline{D}$, and β is a real number such that $x_k - \beta$ is positive for any $x \in \overline{D}$, and P is a real number greater than unity.

Then we have

$$P > arphi_n(x) > 0$$
 in D
 $\lim_{x \to \dot{x}} v_n(x) \ge 0$

and

for any boundary point
$$\dot{x} \in D$$
. Therefore each of functions $v_n(x)$ may assume negative values smaller than $-\delta/P$ in D.

On the other hand, the inequality (3.2) implies that, for any boundary point $\dot{x} \in \dot{D}$, there exists an open neighborhood $V(\dot{x})$ of the point \dot{x} , such that

$$\varepsilon - (u_2(x) - u_1(x)) \ge -\frac{\delta}{2}$$
 in $V(\dot{x}) \supset D$,

and then we obtain

$$\varepsilon - (u_2(x) - u_1(x)) \ge -\frac{\delta}{2}$$
 in $V \cap D$,

where

$$V = \bigcup_{\dot{x} \in \dot{D}} V(\dot{x}).$$

Now, it follows from the definitions of the functions $\varphi_n(x)$ and the sequence $\{D_n\}$, that there exists a natural number n_0 , such that

$$V \supset D - D_{n_0}$$
 and $\varphi_{n_0}(x) > \frac{P}{2}$,

hence we see

$$v_{n_0}(x) \ge -rac{\delta}{2} rac{2}{P} = -rac{\delta}{P}$$
 in $D-D_{n_0}$.

The function $v_{n_0}(x)$ therefore assumes the negative minimum in D which is attained at a point $x^{(n_0)}$ belonging to the domain D_{n_0} .

After all, renewing the notations, we arrive at the following conclusion.

If we choose adequately a bounded domain D_0 $(\overline{D}_0 \subset D)$ and four positive numbers G, H, U and α , such that

$$\sup_{\overline{D}_0} G(x) < G, \qquad \sup_{\overline{D}_0} H(x) < H,$$

YOSHIKAZU HIRASAWA

$$\sup_{\overline{D}_0} \left\{ \sum_{i, j=1}^m |\partial_i \partial_j u|^2 \right\}^{1/2} < U, \qquad \inf_{\overline{D}_0} a_{kk}(x, \nabla u_2(x)) > \alpha,$$

and if we put

$$\varphi(x) = P - \exp\left[-\frac{1}{\alpha}(G + HU)(x_k - \beta)\right],$$

then the function

$$v(x) \equiv \frac{1}{\varphi(x)} \{ \varepsilon - (u_2(x) - u_1(x)) \}$$

assumes the negative minimum in D, which is attained at a point ξ belonging to D_0 .

Thus we have

(3.4) $v(\xi) < 0, \quad \nabla v(\xi) = 0,$ (3.5) $L[u_2(\xi); v(\xi)] \ge 0.$

On the other hand, since

$$v(x)\varphi(x) = \varepsilon - (u_2(x) - u_1(x)),$$

by virtue of Lemma, we obtain

$$egin{aligned} L[u_2(x);\,v(x)] &= rac{1}{arphi(x)} \left\{ -L[u_2(x);\,u_2(x)] + L[u_2(x);\,u_1(x)]
ight. \ &- 2\sum\limits_{i,\;j=1}^m a_{ij}(x,\,arphi u_2(x)) \partial_i arphi(x) \partial_j v(x) - v(x) L[u_2(x);\,arphi(x)]
ight\}, \end{aligned}$$

and hence

$$egin{aligned} L[u_2(\xi); v(\xi)] &= rac{1}{arphi(\xi)} igg\{ -f(\xi, \, u_2(\xi), \,
abla u_2(\xi)) + f(\xi, \, u_1(\xi), \,
abla u_1(\xi)) \ &+ \sum_{i, \, j=1}^m \{ a_{ij}(\xi, \,
abla u_2(\xi)) - a_{ij}(\xi, \,
abla u_1(\xi)) \} \partial_i \partial_j u_1(\xi) \ &- v(\xi) L[u_2(\xi); \, arphi(\xi)] igg\}. \end{aligned}$$

Furthermore, since

$$u_1(\xi) = u_2(\xi) + v(\xi) arphi(\xi) - arepsilon < u_2(\xi), \qquad
abla v(\xi) = 0,$$

by virtue of the fact that the function f(x, u, p) is non-decreasing with respect to u, we have

and therefore it follows from Hypothesis (4, I) and the relation

166

$$egin{aligned} &
abla u_1(\xi) =
abla u_2(\xi) + v(\xi)
abla eta (\xi), \ \partial_2 u_2(\xi), \ \cdots, \ \partial_m u_2(\xi)) \ &+ (0, \ \cdots, \ 0, \ v(\xi) \partial_k arphi(\xi), \ 0, \ \cdots, \ 0), \end{aligned}$$

that

$$\begin{split} L[u_2(\xi); v(\xi)] \\ &\leq \frac{1}{\varphi(\xi)} \left\{ G(\xi, u_2(\xi), \nabla u_1(\xi), \partial_k u_2(\xi)) \partial_k \varphi(\xi) \\ &\quad + H(\xi, \nabla u_1(\xi), \nabla u_2(\xi)) \bigg[\sum_{i, j=1}^m |\partial_i \partial_j u_1(\xi)|^2 \bigg]^{1/2} \partial_k \varphi(\xi) \\ &\quad + L[u_2(\xi); \varphi(\xi)] \bigg\} (-v(\xi)), \\ &\leq \frac{1}{\varphi(\xi)} \left\{ \frac{1}{\alpha} (G + HU)^2 - a_{kk}(\xi, \nabla u_2(\xi)) \bigg[\frac{1}{\alpha} (G + HU) \bigg]^2 \right\} \\ &\quad \cdot (-v(\xi)) \exp\bigg[-\frac{1}{\alpha} (G + HU) (x_k - \beta) \bigg] < 0. \end{split}$$

Thus we obtain

$$L[u_2(\xi); v(\xi)] < 0,$$

which contradicts the inequality (3.5).

Hence we have proved the inequality (3.3'), and similarly we can verify the validity of the inequality

$$-\varepsilon \leq u_2(x) - u_1(x)$$
 in D.

The theorem may be proved under Hypothesis (4, II), by letting β be a real number such that $x_k - \beta$ is negative for any $x = (x_1, \dots, x_k, \dots, x_m) \in \overline{D}$, and by using the functions

$$\varphi_n(x) = P - \exp\left[\frac{1}{\alpha_n}(G_n + H_nU_n)(x_k - \beta)\right]$$

and

$$\varphi(x) = P - \exp\left[\frac{1}{\alpha}(G + HU)(x_k - \beta)\right]$$

in stead of the functions adopted in the above process of the proof.

REMARK. In the case of $\varepsilon = 0$, Theorem 1 gives a theorem of uniqueness for solutions of the Dirichlet problem concerning the equation (3.1).

§4. Harnack's first theorem.

As a corollary of Theorem 1, we have Harnack's first theorem for solutions of the equation (3.1).

THEOREM 2. Let Hypotheses 1-4 be fulfilled, and let $\{u_n(x)\}$ be a sequence of solutions of the equation (3.1) which are all continuous in \overline{D} .

If the sequence $\{u_n(x)\}$ converges uniformly on the boundary D of D, then

167

YOSHIKAZU HIRASAWA

this sequence converges to a continuous function u(x) uniformly in \overline{D} .

Proof. For any positive number ε , there exists a natural number N such that

 $(4.1) | u_n(x) - u_{n'}(x) | \leq \varepsilon$

for any n, n' > N, and $x \in \dot{D}$. This fact derives from the uniform convergence of the sequence $\{u_n(x)\}$ on \dot{D} .

It follows therefore from Theorem 1, that the inequality (4.1) holds for any n, n' > N and any $x \in \overline{D}$, which implies the fact that the sequence $\{u_n(x)\}$ converges to a continuous function u(x) uniformly in \overline{D} , q.e.d.

ADDENDUM. In the discussion of the present paper, it is obvious that Hypothesis 1 may be replaced by the following hypothesis which is assumed in Kusano's paper:

HYPOTHESIS 1': There exists a positive lower semi-continuous function h(x, p) such that

$$\sum_{i, j=1}^m a_{ij}(x, p) \xi_i \xi_j \ge h(x, p) |\xi|^2$$

for any $(x, p) \in \mathfrak{D}_0$ and any real vector ξ .

References

- KUSANO, T., On a maximum principle for quasi-linear elliptic equations. Proc. Jap. Acad. 38 (1962), 78-82.
- [2] HIRASAWA, Y., Principally linear partial differential equations of elliptic type. Funkcialaj Ekvacioj 2 (1959), 33-94.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.