ON A UNIQUENESS CONDITION FOR SOLUTIONS OF THE DIRICHLET PROBLEM CONCERNING A QUASILINEAR EQUATION OF ELLIPTIC TYPE

By Yoshikazu Hirasawa

§ 1. Introduction.

In the present paper, we are concerned with a uniqueness condition for solutions of the Dirichlet problem concerning a quasi-linear elliptic equation of the second order

$$
\begin{equation*}
\sum_{i, \partial=1}^{m} a_{2 j}(x, \nabla u) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=f(x, u, \nabla u) .^{11} \tag{1.1}
\end{equation*}
$$

Recently, Kusano [1] ${ }^{2)}$ has established the maximum principle for quasilinear elliptic equations of the general form, and as its application, he has given a uniqueness condition for solutions of the equation (1.1). We will here show that the uniqueness of solutions may be established under a weaker condition, by the method adopted in author's previous note [2].

In this paper, x denotes a point $\left(x_{1}, x_{2}, \cdots, x_{m}\right)$ in the m-dimensional Euclidean space, and we use the notations $\partial_{i} u$ for $\partial u / \partial x_{i}$, and $\partial_{i} \partial_{j} u$ for $\partial^{2} u / \partial x_{i} \partial x_{j}$. Furthermore we introduce a differential operator $L[v ; u]$ of elliptic type by the expression

$$
L[v ; u]=\sum_{i, \jmath=1}^{m} a_{\imath j}(x, \nabla v) \partial_{i} \partial_{j} u,
$$

and then the equation (1.1) can be written as follows:

$$
\begin{equation*}
L[u ; u]=f(x, u, \nabla u) . \tag{1.2}
\end{equation*}
$$

By a solution of the equation (1.2) in a domain D, we mean a function belonging to $C^{2}[D]$ and satisfying the equation (1.2) in D.
§2. Hypotheses on the functions $a_{i j}(x, p)$ and $f(x, u, p)$.
Let D be a bounded domain in the m-dimensional Euclidean space and let \dot{D} be the boundary of D.

We define a domain \mathfrak{D}_{0} in the $2 m$-dimensional Euclidean space as follows:

$$
\left.\mathfrak{D}_{0}=\{(x, p) ; x \in D,|p|<+\infty\},{ }^{3}\right)
$$

Received June 28, 1962.

1) ∇u denotes the vector $\left(\partial u / \partial x_{1}, \partial u / \partial x_{2}, \cdots, \partial u / \partial x_{m}\right)$.
2) The numbers in brackets refer to the list of references at the end of this paper.
3) The notation $|p|$ means $\left\{\sum_{\imath=1}^{m}\left|p_{i}\right|^{2}\right\}^{1 / 2}$, where $p=\left(p_{1}, \cdots, p_{m}\right)$.
and regarding the coefficients $\alpha_{\imath j}(x, p)$, we assume the following hypotheses.
Hypothesis 1: The functions $a_{\imath j}(x, p)$ are continuous in the domain \mathfrak{D}_{0} and the quadratic form $\sum_{i, y=1}^{m} a_{2 j}(x, p) \xi_{i} \xi_{j}$ is positive definite for any $(x, p) \in \mathfrak{D}_{0}$.

Hypothesis 2: The functions $a_{i j}(x, p)$ satisfy a Lipschitz condition

$$
\left\{\sum_{i, j=1}^{m}\left[a_{i j}(x, p)-a_{i j}(x, q)\right]^{2}\right\}^{1 / 2} \leqq H(x, p, q)|p-q|
$$

for any $(x, p),(x, q) \in \mathfrak{D}_{0}$, and $H(x, p, q)$ is a positive function of (x, p, q), bounded in any domain

$$
\{(x, p, q) ; x \in S,|p|,|q| \leqq M\}
$$

where S is any compact subdomain of D, and M is any positive quantity.
Remark. In the subsequent section, as a matter of fact, the following hypothesis will suffice for our discussion.

Hypothesis 2': For at least an index k, the functions $a_{\imath j}(x, p)$ satisfy a Lipschitz condition

$$
\left\{\sum_{2, j=1}^{m}\left[a_{i j}(x, p)-a_{i j}(x, \bar{p})\right]^{2}\right\}^{1 / 2} \leqq H(x, p, \bar{p})\left|p_{k}-\bar{p}_{k}\right|,
$$

where $p=\left(p_{1}, \cdots, p_{k}, \cdots, p_{m}\right), \bar{p}=\left(p_{1}, \cdots, \bar{p}_{k}, \cdots, p_{m}\right)$.
We now define a domain \mathfrak{D}_{1} in the ($2 m+1$)-dimensional Euclidean space as follows:

$$
\mathfrak{D}_{1}=\{(x, u, p) ; x \in D,|u|<+\infty,|p|<+\infty\},
$$

and regarding the function $f(x, u, p)$, we assume the following hypotheses.
Hypothesis 3: The function $f(x, u, p)$ is defined in the domain \mathscr{D}_{1} and is non-decreasing with respect to u.

Hypothesis 4: The function $f(x, u, p)$ satisfies one of the following conditions:
(I) $-G\left(x, u, p, \bar{p}_{k}\right)\left(\bar{p}_{k}-p_{k}\right) \leqq f(x, u, \bar{p})-f(x, u, p)$,
(II) $f(x, u, \bar{p})-f(x, u, p) \leqq G\left(x, u, p, \bar{p}_{k}\right)\left(\bar{p}_{k}-p_{k}\right)$,
where $p=\left(p_{1}, \cdots, p_{k}, \cdots, p_{m}\right), \bar{p}=\left(p_{1}, \cdots, \bar{p}_{k}, \cdots, p_{m}\right), \quad p_{k}<\bar{p}_{k}$, and k is a fixed index.

Furthermore $G\left(x, u, p, \bar{p}_{k}\right)$ is a function of $\left(x, u, p, \bar{p}_{k}\right)$, bounded in any domain

$$
\left\{\left(x, u, p, \bar{p}_{k}\right), x \in S,|u| \leqq M,|p| \leqq M,\left|\bar{p}_{k}\right| \leqq M\right\},
$$

where S and M have the same meaning as in Hypothesis 2.

§ 3. Main theorem.

Lemma. If $\varphi(x), \psi(x) \in C^{2}$, then we have

$$
L[v ; \varphi \psi]=\varphi L[v ; \psi]+\psi L[v ; \varphi]+2 \sum_{\imath, j=1}^{m} \alpha_{i j}(x, \nabla v) \partial_{i} \varphi \partial_{j} \psi .
$$

The proof is omitted.
The principal part of this paper is to prove the following
Theorem 1. Let Hypotheses 1-4 be fulfilled, and let $u_{1}(x)$ and $u_{2}(x)$ be solutions of the equation

$$
\begin{equation*}
L[u ; u]=f(x, u, \nabla u) . \tag{3.1}
\end{equation*}
$$

If the inequality

$$
\begin{equation*}
\varlimsup_{x \rightarrow \dot{x}}\left|u_{1}(x)-u_{2}(x)\right| \leqq \varepsilon \tag{3.2}
\end{equation*}
$$

holds for any boundary point $\dot{x} \in \dot{D}$ and for a non-negative real number ε, then we have

$$
\begin{equation*}
\left|u_{1}(x)-u_{2}(x)\right| \leqq \varepsilon \quad \text { in } D . \tag{3.3}
\end{equation*}
$$

Proof. We will first prove the inequality

$$
\begin{equation*}
u_{2}(x)-u_{1}(u) \leqq \varepsilon \quad \text { in } D, \tag{3.3'}
\end{equation*}
$$

by assuming Hypothesis (4, I), and to this end, we show that, a contradiction arises, if the inequality (3.3^{\prime}) does not hold.

Suppose that the inequality (3.3^{\prime}) is not true. Then, since there exists a point $\bar{x} \in D$, such that $\varepsilon<u_{2}(\bar{x})-u_{1}(\bar{x})$, we see

$$
\operatorname{Inf}_{D}\left\{\varepsilon-\left(u_{2}(x)-u_{1}(x)\right)\right\}<0,
$$

and the inequality (3.2) implies that there exists a point $x^{(0)} \in D$, such that

$$
\begin{aligned}
\operatorname{Inf}_{D}\left\{\varepsilon-\left(u_{2}(x)-u_{1}(x)\right)\right\} & =\left\{\varepsilon-\left(u_{2}\left(x^{(0)}\right)-u_{1}\left(x^{(0)}\right)\right)\right\} \\
& \equiv-\delta .
\end{aligned}
$$

The function $\left\{\varepsilon-\left(u_{2}(x)-u_{1}(x)\right)\right\}$ assumes therefore the negative minimum - δ in D, which is attained at the point $x^{(0)} \in D$.

Put

$$
\begin{aligned}
G(x) & \equiv G\left(x, u_{2}(x), \nabla u_{1}(x), \partial_{k} u_{2}(x)\right), \\
H(x) & \equiv H\left(x, \nabla u_{1}(x), \nabla u_{2}(x)\right),
\end{aligned}
$$

and let $\left\{D_{n}\right\}$ be a sequence of domains, such that $\bar{D}_{n} \subset D_{n+1}$ and $\cup_{n=1}^{\infty} D_{n}=D$, then we can choose four sequences $\left\{G_{n}\right\},\left\{H_{n}\right\},\left\{U_{n}\right\}$ and $\left\{\alpha_{n}\right\}$ of positive numbers, such that

$$
\begin{gathered}
\operatorname{Sup}_{\bar{D}_{n}} G(x)<G_{n}, \quad \operatorname{Sup}_{\bar{D}_{n}} H(x)<H_{n}, \\
\operatorname{Sup}_{\bar{D}_{n}}\left\{\sum_{i, j=1}^{m}\left|\partial_{i} \partial_{j} u_{1}(x)\right|^{2}\right\}^{1 / 2}<U_{n}, \quad \operatorname{Inf}_{\bar{D}_{n}} a_{k k}\left(x, \nabla u_{2}(x)\right)>\alpha_{n},
\end{gathered}
$$

and the sequence $\left\{\left(G_{n}+H_{n} U_{n}\right) / \alpha_{n}\right\}$ tends monotonely to infinity for $n \rightarrow \infty$.
The existence of such sequences $\left\{G_{n}\right\},\left\{H_{n}\right\},\left\{U_{n}\right\},\left\{\alpha_{n}\right\}$ can be verified by virtue of the hypotheses of the theorem.

Define functions $\varphi_{n}(x)$ and $v_{n}(x)$ as follows:

$$
\begin{aligned}
\varphi_{n}(x) & =P-\exp \left[-\frac{1}{\alpha_{n}}\left(G_{n}+H_{n} U_{n}\right)\left(x_{k}-\beta\right)\right], \\
v_{n}(x) & =\frac{1}{\varphi_{n}(x)}\left\{\varepsilon-\left(u_{2}(x)-u_{1}(x)\right)\right\},
\end{aligned}
$$

where x_{k} is the k-component of $x \in \bar{D}$, and β is a real number such that $x_{k}-\beta$ is positive for any $x \in \bar{D}$, and P is a real number greater than unity.

Then we have

$$
P>\varphi_{n}(x)>0 \quad \text { in } \quad D
$$

and

$$
\lim _{x \rightarrow \dot{x}} v_{n}(x) \geqq 0
$$

for any boundary point $\dot{x} \in \dot{D}$. Therefore each of functions $v_{n}(x)$ may assume negative values smaller than $-\delta / P$ in D.

On the other hand, the inequality (3.2) implies that, for any boundary point $\dot{x} \in \dot{D}$, there exists an open neighborhood $V(\dot{x})$ of the point \dot{x}, such that

$$
\varepsilon-\left(u_{2}(x)-u_{1}(x)\right) \geqq-\frac{\delta}{2} \quad \text { in } \quad V(\dot{x}) \frown D,
$$

and then we obtain

$$
\varepsilon-\left(u_{2}(x)-u_{1}(x)\right) \geqq-\frac{\delta}{2} \quad \text { in } \quad V_{\frown} D,
$$

where

$$
V=\bigcup_{\dot{x} \in \dot{D}} V(\dot{x}) .
$$

Now, it follows from the definitions of the functions $\varphi_{n}(x)$ and the sequence $\left\{D_{n}\right\}$, that there exists a natural number n_{0}, such that

$$
V \supset D-D_{n_{0}} \text { and } \varphi_{n_{0}}(x)>\frac{P}{2}
$$

hence we see

$$
v_{n_{0}}(x) \geqq-\frac{\delta}{2} \frac{2}{P}=-\frac{\delta}{P} \quad \text { in } \quad D-D_{n_{0}} .
$$

The function $v_{n_{0}}(x)$ therefore assumes the negative minimum in D which is attained at a point $x^{\left(n_{0}\right)}$ belonging to the domain $D_{n_{0}}$.

After all, renewing the notations, we arrive at the following conclusion.
If we choose adequately a bounded domain $D_{0}\left(\bar{D}_{0} \subset D\right)$ and four positive numbers G, H, U and α, such that

$$
\operatorname{Sup}_{\bar{D}_{0}} G(x)<G, \quad \operatorname{Sup}_{\bar{D}_{0}} H(x)<H,
$$

$$
\operatorname{Sup}_{\bar{D}_{0}}\left\{\sum_{i, j=1}^{m}\left|\partial_{i} \partial_{j} u\right|^{2}\right\}^{1 / 2}<U, \quad \operatorname{Inf}_{\bar{D}_{0}} a_{k k}\left(x, \nabla u_{2}(x)\right)>\alpha,
$$

and if we put

$$
\varphi(x)=P-\exp \left[-\frac{1}{\alpha}(G+H U)\left(x_{k}-\beta\right)\right],
$$

then the function

$$
v(x) \equiv \frac{1}{\varphi(x)}\left\{\varepsilon-\left(u_{2}(x)-u_{1}(x)\right)\right\}
$$

assumes the negative minimnm in D, which is attained at a point ξ belonging to D_{0}.

Thus we have

$$
\begin{gather*}
v(\xi)<0, \quad \nabla v(\xi)=0, \tag{3.4}\\
L\left[u_{2}(\xi) ; v(\xi)\right] \geqq 0 . \tag{3.5}
\end{gather*}
$$

On the other hand, since

$$
v(x) \varphi(x)=\varepsilon-\left(u_{2}(x)-u_{1}(x)\right),
$$

by virtue of Lemma, we obtain

$$
\begin{aligned}
L\left[u_{2}(x) ; v(x)\right]=\frac{1}{\varphi(x)}\{ & -L\left[u_{2}(x) ; u_{2}(x)\right]+L\left[u_{2}(x) ; u_{1}(x)\right] \\
& \left.-2 \sum_{\imath, j=1}^{m} a_{2 j}\left(x, \nabla u_{2}(x)\right) \partial_{i} \varphi(x) \partial_{j} v(x)-v(x) L\left[u_{2}(x) ; \varphi(x)\right]\right\},
\end{aligned}
$$

and hence

$$
\begin{aligned}
L\left[u_{2}(\xi) ; v(\xi)\right]=\frac{1}{\varphi(\xi)}\{ & -f\left(\xi, u_{2}(\xi), \nabla u_{2}(\xi)\right)+f\left(\xi, u_{1}(\xi), \nabla u_{1}(\xi)\right) \\
& +\sum_{2, j=1}^{m}\left\{a_{i j}\left(\xi, \nabla u_{2}(\xi)\right)-a_{i j}\left(\xi, \nabla u_{1}(\xi)\right)\right\} \partial_{i} \partial_{j} u_{1}(\xi) \\
& \left.-v(\xi) L\left[u_{2}(\xi) ; \varphi(\xi)\right]\right\} .
\end{aligned}
$$

Furthermore, since

$$
u_{1}(\xi)=u_{2}(\xi)+v(\xi) \varphi(\xi)-\varepsilon<u_{2}(\xi), \quad \nabla v(\xi)=0
$$

by virtue of the fact that the function $f(x, u, p)$ is non-decreasing with respect to u, we have

$$
\begin{aligned}
& L\left[u_{2}(\xi) ; v(\xi)\right] \\
& \leqq \frac{1}{\varphi(\xi)}\left\{-f\left(\xi, u_{2}(\xi), \nabla u_{2}(\xi)\right)+f\left(\xi, u_{2}(\xi), \nabla u_{2}(\xi)+v(\xi) \nabla \varphi(\xi)\right)\right. \\
& \quad+\left[\sum_{2, j=1}^{m}\left|a_{2 j}\left(\xi, \nabla u_{2}(\xi)\right)-a_{2 j}\left(\xi, \nabla u_{1}(\xi)\right)\right|^{2}\right]^{1 / 2}\left[\sum_{2, j=1}^{m}\left|\partial_{i} \partial_{j} u_{1}(\xi)\right|^{2}\right]^{1 / 2} \\
& \\
& \left.\quad-v(\xi) L\left[u_{2}(\xi) ; \varphi(\xi)\right]\right\},
\end{aligned}
$$

and therefore it follows from Hypothesis (4, I) and the relation

$$
\begin{aligned}
\nabla u_{1}(\xi)= & \nabla u_{2}(\xi)+v(\xi) \nabla \varphi(\xi) \\
= & \left(\partial_{1} u_{2}(\xi), \partial_{2} u_{2}(\xi), \cdots, \partial_{m} u_{2}(\xi)\right) \\
& +\left(0, \cdots, 0, v(\xi) \partial_{k} \varphi(\xi), 0, \cdots, 0\right),
\end{aligned}
$$

that

$$
\begin{aligned}
& L[\left.u_{2}(\xi) ; v(\xi)\right] \\
& \leqq \frac{1}{\varphi(\xi)}\left\{G\left(\xi, u_{2}(\xi), \nabla u_{1}(\xi), \partial_{k} u_{2}(\xi)\right) \partial_{k} \varphi(\xi)\right. \\
&+ H\left(\xi, \nabla u_{1}(\xi), \nabla u_{2}(\xi)\right)\left[\sum_{i, \jmath=1}^{m}\left|\partial_{i} \partial_{j} u_{1}(\xi)\right|^{2}\right]^{1 / 2} \partial_{k} \varphi(\xi) \\
&+\left.L\left[u_{2}(\xi) ; \varphi(\xi)\right]\right\}(-v(\xi)), \\
& \leqq \frac{1}{\varphi(\xi)}\left\{\frac{1}{\alpha}(G+H U)^{2}-a_{k k}\left(\xi, \nabla u_{2}(\xi)\right)\left[\frac{1}{\alpha}(G+H U)\right]^{2}\right\} \\
& \quad \cdot(-v(\xi)) \exp \left[-\frac{1}{\alpha}(G+H U)\left(x_{k}-\beta\right)\right]<0 .
\end{aligned}
$$

Thus we obtain

$$
L\left[u_{2}(\xi) ; v(\xi)\right]<0,
$$

which contradicts the inequality (3.5).
Hence we have proved the inequality (3.3^{\prime}), and similarly we can verify the validity of the inequality

$$
-\varepsilon \leqq u_{2}(x)-u_{1}(x) \quad \text { in } \quad D .
$$

The theorem may be proved under Hypothesis (4, II), by letting β be a real number such that $x_{k}-\beta$ is negative for any $x=\left(x_{1}, \cdots, x_{k}, \cdots, x_{m}\right) \in \bar{D}$, and by using the functions

$$
\varphi_{n}(x)=P-\exp \left[\frac{1}{\alpha_{n}}\left(G_{n}+H_{n} U_{n}\right)\left(x_{k}-\beta\right)\right]
$$

and

$$
\varphi(x)=P-\exp \left[\frac{1}{\alpha}(G+H U)\left(x_{k}-\beta\right)\right]
$$

in stead of the functions adopted in the above process of the proof.
Remark. In the case of $\varepsilon=0$, Theorem 1 gives a theorem of uniqueness for solutions of the Dirichlet problem concerning the equation (3.1).

§4. Harnack's first theorem.

As a corollary of Theorem 1, we have Harnack's first theorem for solutions of the equation (3.1).

Theorem 2. Let Hypotheses 1-4 be fulfilled, and let $\left\{u_{n}(x)\right\}$ be a sequence of solutions of the equation (3.1) which are all continuous in \bar{D}.

If the sequence $\left\{u_{n}(x)\right\}$ converges uniformly on the boundary \dot{D} of D, then
this sequence converges to a continuous function $u(x)$ uniformly in \bar{D}.
Proof. For any positive number ε, there exists a natural number N such that

$$
\begin{equation*}
\left|u_{n}(x)-u_{n^{\prime}}(x)\right| \leqq \varepsilon \tag{4.1}
\end{equation*}
$$

for any $n, n^{\prime}>N$, and $x \in \dot{D}$. This fact derives from the uniform convergence of the sequence $\left\{u_{n}(x)\right\}$ on \dot{D}.

It follows therefore from Theorem 1, that the inequality (4.1) holds for any $n, n^{\prime}>N$ and any $x \in \bar{D}$, which implies the fact that the sequence $\left\{u_{n}(x)\right\}$ converges to a continuous function $u(x)$ uniformly in \bar{D}, q.e.d.

AdDendum. In the discussion of the present paper, it is obvious that Hypothesis 1 may be replaced by the following hypothesis which is assumed in Kusano's paper:

Hypothesis 1': There exists a positive lower semi-continuous function $h(x, p)$ such that

$$
\sum_{i, j=1}^{m} a_{2 j}(x, p) \xi_{i} \xi_{\jmath} \geqq h(x, p)|\xi|^{2}
$$

for any $(x, p) \in \mathfrak{D}_{0}$ and any real vector ξ.

References

[1] Kusano, T., On a maximum principle for quasi-linear elliptic equations. Proc. Jap. Acad. 38 (1962), 78-82.
[2] Hirasawa, Y., Principally linear partial differential equations of elliptic type. Funkcialaj Ekvacioj 2 (1959), 33-94.

Department of Mathematics, Tokyo Institute of Technology.

