ON A UNIQUENESS CONDITION FOR SOLUTIONS OF THE
DIRICHLET PROBLEM CONCERNING A QUASI-
LINEAR EQUATION OF ELLIPTIC TYPE

By YOSHIKAZU HIRASAWA

§1. Introduction.

In the present paper, we are concerned with a uniqueness condition for
solutions of the Dirichlet problem concerning a quasi-linear elliptic equation of
the second order

0*u

S ; — D
(L.1) z.'jz‘;la”(oc, u) o007, Sz, u, Fu).

Recently, Kusano [1]® has established the maximum principle for quasi-
linear elliptic equations of the general form, and as its application, he has
given a uniqueness condition for solutions of the equation (1.1). We will here
show that the uniqueness of solutions may be established under a weaker con-
dition, by the method adopted in author’s previous note [2].

In this paper, x denotes a point (x;, X3, + + -, &,) in the m-dimensional Euclid-
ean space, and we use the notations d,u for ou/0x;, and 0,0,u for 0%u/0x,0x,.
Furthermore we introduce a differential operator L[v; u] of elliptic type by
the expression

L[v; u]:lilaﬁ(w, v)0,0;u,
%, =

and then the equation (1.1) can be written as follows:
(1.2) L{w; u] =f(x, u, Fu).

By a solution of the equation (1.2) in a domain D, we mean a function
belonging to C2[D] and satisfying the equation (1.2) in D.

§2. Hypotheses on the functions a:j(x, p) and f(x, u, p).

Let D be a bounded domain in the m-dimensional Euclidean space and let

D be the boundary of D.
We define a domain ®, in the 2m-dimensional Euclidean space as follows:

Do =A{(x, p); x€ D, |p|<+ 0},»
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1) Pu denotes the vector (0u/0x;, Ou/0x2, - - -, Ou/0xy).
2) The numbers in brackets refer to the list of references at the end of this paper.
3) The notation |p| means {3, | p:|*}'/?, where p =(ps, -+, Pm)-
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UNIQUENESS CONDITION ON DIRICHLET PROBLEM 163
and regarding the coefficients a,;(x, p), we assume the following hypotheses.

HyporHESIS 1: The functions a.;(x, p) are continuous in the domain D,
and the quadratic form >, a,;(x, p)§:£, is positive definite for any (x, p) € D,.

HypoTHESIS 2: The functions a;i(x, p) satisfy a Lipschitz condition

{ % [a.i(x, ) — a:(x, q)]z} l/zé H@,p,q)lp—ql

% 9=1

for any (x,p), (x,9)=D,, and H(z,p,q) is a positive function of (z, p,q),
bounded in any domain

{@,2,0);xz8, |pl, gl <M},

where S is any compact subdomain of D, and M is any positive quantity.

REMARK. In the subsequent section, as a matter of fact, the following
hypothesis will suffice for our discussion.

HypoTHESIS 2/: For at least an index k, the functions a,;(x, p) satisfy a
Lipschitz condition
m 172
{ 3 (a0~ oo, D1} <H, 5,5 19~ B,

2, 9=1
where p=(D1, ***, Dty *** Pu)y D=(D1, ***, Dry ** *, Dm)-

We now define a domain ®,; in the (2m + 1)-dimensional Euclidean space
as follows:
@1'—"-—{(%, u’p); xEDy lul<+°°, |p]<+°°}y

and regarding the function f(x, u, p), we assume the following hypotheses.

HyproTHESIS 3: The function f(x, u, p) is defined in the domain ®, and is
non-decreasing with respect to u.

HyproTHESIS 4: The function f(x,u,p) satisfies one of the following
conditions:
(I) — G, u, p, Pr)Dr — i) = Sf (%, u, ) — f(, u, D),
(II) f(xs u, i)) _f(xr U, p) é G(xy u, p, ﬁk)(ﬁk - pk),

where p:(pi,"‘,pk,"‘,pm), i)z(ply"'95k7'°°1pm)y pk<5k’ and k is a

fixed index.
Furthermore G(x, u, p, Px) is a function of (x, u, p, Pr), bounded in any

domain
{(xr uipyﬁk)» xES: ‘uléM, lp!éMr |5k[§M}’

where S and M have the same meaning as in Hypothesis 2.



164 YOSHIKAZU HIRASAWA

§3. Main theorem.
LEMMA. If ¢(x), yr(x) € C?, then we have
LLv; ] = oLLv; ¥1+¥ LLv; 9142 31 aife, P00
The proof is omitted.
The principal part of this paper is to prove the following

THEOREM 1. Let Hypotheses 1-4 be fulfilled, and let wi(x) and wus(x) be
solutions of the equation

3.1) Llw; u] =f(=, u, Fu).
If the inequality
(3.2) im | us(@) — ua(@) | < &

holds for any boundary point #eD and for a mon-negative real mumber e,
then we have

3.3) [us(e) —us(x) | < ¢ wn D.

Proof. We will first prove the inequality
(3.3") U(x) — ws(u) < & in D,

by assuming Hypothesis (4, I), and to this end, we show that, a contradiction
arises, if the inequality (3.3’) does not hold.

Suppose that the inequality (3.3”) is not true. Then, since there exists a
point €D, such that ¢ < ux(®) — u,(X), we see

Irll)f {e — (ua(x) — ua(2))} <0,
and the inequality (8.2) implies that there exists a point =D, such that

I%f {& — (Ua(®) — us(@))} = {& — (ua(x®) — us(x))}
= —0.
The function {e— (us(x) — u:(2x))} assumes therefore the negative minimum
— ¢ in D, which is attained at the point x®=D.
Put
G(x) = G(x, ux(x), Fui(x), 0xu()),
H(x) = H(zx, Fui(zx), Pus(x)),
and let {D,} be a sequence of domains, such that D,cD,,; and Uz, D,=D,

then we can choose four sequences {G,}, {H,}, {U,} and {a,} of positive
numbers, such that

Sup G(@) <Gn,  Sup H(x) <H,
Dn Dn

m 172
Syp{ X 1I 0,0,u1() 12} <Un,  Infawlx, Pus®)) > an,
Dy,

Dy, o=
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and the sequence {(G,-+H,U,)/a,} tends monotonely to infinity for #— oo.
The existence of such sequences {G,}, {H,}, {U,}, {a,} can be verified by
virtue of the hypotheses of the theorem.
Define functions ¢,(x) and v,(x) as follows:

ua) =P~ exp| =~ (Ga+ HuUNw:—5) |
1

(@)

where x; is the k-component of xD, and B is a real number such that xz,— 8

is positive for any x =D, and P is a real number greater than unity.
Then we have

e — (ua() — us(2))},

(&) =

P>¢,(x)>0 in D

and
lim v,(%) =0

for any boundary point #D. Therefore each of functions v,(x) may assume
negative values smaller than —4/P in D.

On the other hand, the inequality (3.2) implies that, for any boundary point
# D, there exists an open neighborhood V(&) of the point @, such that

0

& — (ug() — us(x)) = — 5} in V)~ D,
and then we obtain
& - (uUzx(x) — us(2)) = — % in VD,
where
V= U V(&).
:iei)

Now, it follows from the definitions of the functions ¢,(x) and the sequence
{D,}, that there exists a natural number %, such that

VoD —Dn, and ¢n(x)> g,

hence we see

Vno(X) = — 5P =—% in D— Dgy,.
The function vx,(x) therefore assumes the negative minimum in D which is
attained at a point x®0) belonging to the domain Dy,.
After all, renewing the notations, we arrive at the following conclusion.
If we choose adequately a bounded domain D, (D, c D) and four positive
numbers G, H, U and «, such that

Sup G(x) < G, Sup H(x) < H,
Do Do
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m 172
Sup{ >3 10:05u lz} <U, Inf aw(z, Fux(x)) > «,
Do o=t Do
and if we put
1
¢(@)=P—exp| =G +HU) @~ B) ],

then the function

o(@) = —q,(%)—{e — (ual®) — w3}

assumes the negative minimnm in D, which is attained at a point & belonging
to Do.

Thus we have
3.4) v <0, @) =0,
3.5) Lux(8); v(€)1=0.
On the other hand, since
v(@)p(@) = & — (ua() — us()),
by virtue of Lemma, we obtain

Lus(z); v(x)] = {—L[uz(x); Uo(x) ] + L[ us(); wi(e)]

1
(@)

~2 31 0,0, Puso)igl@)dsoe)— o) L Lus(o); ¢(@)]},
and hence

Llus(®); v(@)] = ;(15 {—f(é, usl®), Pus(®) + £ (&), Pun(8)

= %_ {00(&, Pual®)) — i€, Pun(@N0du(®)
— 0(8) LLus(E); <p(6)]} .

Furthermore, since
u1(§) = u2(E) + v(E)p(§) —e <ux(§), P =0,

by virtue of the fact that the function f(x, u, p) is non-decreasing with re-
spect to u, we have

Lus(&); ()]

< ﬁ {—f<s, UalE), Pusl®)) + F &, 1), Ps(&) + vEF ()

+ 3 e @) - aue, ruene] | 3 joom@r]”

, 9= 2, 9=1

— 2@ LLux(®); 4»(&)]} ,

and therefore it follows from Hypothesis (4, I) and the relation
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Pua(§) = Pus(6) + v(§)Fp(§)
= (0,u2(§), O2u(8), « - -, Onua(8))

+ (07 R 09 1)(5)0;;?(5), O: %y O)v
that

Lux(); v(6)]

1 -
) {G(s, Us(8), Ps(8), B,ua(E)g©)

m 172
+HE, Puy(®), V’MZ(E))I:_ 31 100,u() 12] Bep(6)

2, 9=1
+ LlusE); so(&)]} (— v(),

< 70(15—) (26 +HUY - aute, Pus@)] 26 +10)

(~o@)exp| =G +HV)@—8) | <0.
Thus we obtain
Lluy(8); ()1 <0,

which contradicts the inequality (3.5).
Hence we have proved the inequality (3.3’), and similarly we can verify
the validity of the inequality

— & Z us(x) — i) in D.
The theorem may be proved under Hypothesis (4, II), by letting B be a

real number such that x;,—/@ is negative for any x= &y, «++, Ti, * + +, &) ED,
and by using the functions

ou(@) =P — exp| 3G+ HLUDE— ) |
and
¢a) =P —exp| LG +HUw:—H) |
in stead of the functions adopted in the above process of the proof.

REMARK. In the case of ¢=0, Theorem 1 gives a theorem of uniqueness
for solutions of the Dirichlet problem concerning the equation (3.1).

§4. Harnack’s first theorem.

As a corollary of Theorem 1, we have Harnack’s first theorem for solutions
of the equation (3.1).

THEOREM 2. Let Hypotheses 1-4 be fulfilled, and let {u,(x)} be a sequence
of solutions of the equation (3.1) which are all continuous im D.
If the sequence {u,(x)} converges uniformly on the boundary D of D, then
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this sequence converges to a continuous fumction u(x) uniformly in D.

Proof. For any positive number & there exists a natural number N
such that

4.1) [ Un(2) — Un(2) | < &

for any m, n’>N, and x € D. This fact derives from the uniform convergence
of the sequence {u.(x)} on D.

It follows therefore from Theorem 1, that the inequality (4.1) holds for
any n, »’>N and any « €D, which implies the fact that the sequence {u,(x)}

converges to a continuous function u(x) uniformly in D, q.e.d.

ADDENDUM. In the discussion of the present paper, it is obvious that
Hypothesis 1 may be replaced by the following hypothesis which is assumed in
Kusano’s paper:

HyroTHESIS 1’: There exists a positive lower semi-continuous function
h(x, p) such that
m
21“”'@’ p)&if; = h(z, p) | €7
%, 9=

for any (x, p) €Dy and any real vector &.
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