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§ 1. Introduction.

In the present paper, we are concerned with a uniqueness condition for
solutions of the Dirichlet problem concerning a quasi-linear elliptic equation of
the second order

Recently, Kusano [1] 2 ) has established the maximum principle for quasi-
linear elliptic equations of the general form, and as its application, he has
given a uniqueness condition for solutions of the equation (1.1). We will here
show that the uniqueness of solutions may be established under a weaker con-
dition, by the method adopted in author's previous note [2].

In this paper, x denotes a point (xl9 x2, , xm) in the m-dimensional Euclid-
ean space, and we use the notations diU for du/dxif and did/n for d2u/dxβxj.
Furthermore we introduce a differential operator L[v\ u] of elliptic type by
the expression

m

i, 3=1

and then the equation (1.1) can be written as follows:

(1.2) Liu; n~\ =/(», u, 7u).
By a solution of the equation (1.2) in a domain D, we mean a function

belonging to C2[D] and satisfying the equation (1.2) in D.

§2. Hypotheses on the functions aij(x,p) and f(x, u,p).

Let D be a bounded domain in the m-dimensional Euclidean space and let
D be the boundary of D.

We define a domain ©0 in the 2m-dimensional Euclidean space as follows:

3>o = {(&, ί>);

Received June 28, 1962.
1) Ϋu denotes the vector (du/dxu du/dx2, •••, du/dxm).
2) The numbers in brackets refer to the list of references at the end of this paper.
3) The notation | p \ means (ΣΓ=i 1 Pi l2)1/2» where p = (pu -", Pm).
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and regarding the coefficients a%j{x, p), we assume the following hypotheses.

HYPOTHESIS 1: The functions aτj(xf p) are continuous in the domain ®0

and the quadratic form Σlί ί-i ^(α?, p)ξtξj is positive definite for any (x, p) e © 0 .

HYPOTHESIS 2: The functions a$/cc, p) satisfy a Lipschitz condition

ϊ 1/2

La*j(p, P) -θt^x9 q)T\ £H(x, P,q)\p~q\
)

( m

Σ

for any (x, p), (x, q) e ©0, and H(x, p, q) is a positive function of (x, p, q),
bounded in any domain

{(x,p,q); XΪΞS, \p\, \q\^M},

where S is any compact subdomain of D, and M is any positive quantity.

REMARK. In the subsequent section, as a matter of fact, the following
hypothesis will suffice for our discussion.

HYPOTHESIS 2': For at least an index k, the functions aτj{xy p) satisfy a
Lipschitz condition

{ m Π/2 _

Σ3 [α*/», V) - aυ(x, P)Y\ ^H(x, p, p) | pk -pk\,
where p=(pίf •••,!>*,•••, ί?m), P = (Pu --,Pk, , Pm).

We now define a domain ©i in the (2m + l)-dimensional Euclidean space
as follows:

and regarding the function f(x, u, p), we assume the following hypotheses.

HYPOTHESIS 3: The function f(x, u> p) is defined in the domain £)i and is
non-decreasing with respect to u.

HYPOTHESIS 4: The function f(x, u, p) satisfies one of the following

conditions:

( I ) - G(x, u, p, pk)(pk - pk) ^f(x, u, p) -/(a?, u, p),

(II) f(x, u, p) -f(x, u, p) ^ G(x, u, p, pk){pk - pk),

where p = (pίf , Pk, , Pm)9 P = (Pu ' ',Pk, - ,Pm), pk<Pk, and fc is a
fixed index.

Furthermore G(x, u, p, pk) is a function of (OJ, u, p, pk), bounded in any
domain

{(«, u, p, pk), XΪΞS,\U\ ^M, Ip ! £M, Ipk\ ^

where S and Λί have the same meaning as in Hypothesis 2.
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§3. Main theorem.

LEMMA. // <ρ(x), ψ(x) e C2, then we have
m

L[y; φψ~] = ψL\_v\ ψ~] + ψ L | > ; ψ~\ +2 2

The proof is omitted.

The principal part of this paper is to prove the following

THEOREM 1. Let Hypotheses 1-4 be fulfilled, and let m{x) and u2(x) be
solutions of the equation

(3.1) Llu;ul=f(x,u,Pu).

If the inequality

(3.2) En I Uί(x) - u2(x) I ̂  ε

holds for any boundary point x^D and for a non-negative real number ε,
then we have

(3.3) IUχ(x) - u 2 ( x ) \ ^ ε in D.

Proof. We will first prove the inequality

(3.30 u2(x) - Ui(u) ̂ ε in A

by assuming Hypothesis (4, I), and to this end, we show that, a contradiction
arises, if the inequality (3.30 does not hold.

Suppose that the inequality (3.30 is n ° t true. Then, since there exists a
point cceZ>, such that ε < u2(x) — Uι(x)y we see

{

and the inequality (3.2) implies that there exists a point # ( 0 ) eZ), such that

Inf {ε - (u2(x) - m(x))} = {ε- (u2(x^) - m(xcm))}
D

= -δ.
The function {ε — (u2(x) — Uχ(x))} assumes therefore the negative minimum

— 3 in D, which is attained at the point # ( 0 ) e D .
Put

G(x) = G(x, u2(x)f Γm(x)9 dku2(x)),

H(x) = H(x, Put*), Pu2(x))t

and let {Dn} be a sequence of domains, such that Dn^Dn+1 and Dn=iDn=Dt

then we can choose four sequences {Gn}, {Hn}, {Un} and {an} of positive
numbers, such that

Sup G(x) < Gn, Sup H(x) < Hn,
Dn Dn

\ 1/2

x) 12 <Un, Inf akk(x, Γ«,(*)) > an,
>

{ m

Σ
Dn
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and the sequence {(Gn+HnUn)/an} tends monotonely to infinity for n—>oo.
The existence of such sequences {Gn}, {Hn}, {Un}, {an} can be verified by

virtue of the hypotheses of the theorem.
Define functions ψn{x) and vn(x) as follows:

ψn(x) =P - exp [--i-(G n +HnUn)(xk - /

- (u2(x)

where Xk is the ^-component of a ε ί , and β is a real number such that Xk — β
is positive for any x e D , and P is a real number greater than unity.

Then we have

P>ψn(x)>0 in D

and
lim vn(x) ̂  0

for any boundary point x^D. Therefore each of functions vn(x) may assume
negative values smaller than ~d/P in D.

On the other hand, the inequality (3.2) implies that, for any boundary point
a Gί), there exists an open neighborhood V(x) of the point x, such that

d

and then we obtain

e -- (u2(x) — Uί(x)) ^ — ~2 i n V^ A

where
V= U V(x).

Now, it follows from the definitions of the functions φn(x) and the sequence
{Dn}, that there exists a natural number n0, such that

, , P
Dn0 and φno(ί

hence we see
( _A2___! ^ _ ^

The function ^O0*0 therefore assumes the negative minimum in D which is
attained at a point x&ύ belonging to the domain Dno.

After all, renewing the notations, we arrive at the following conclusion.
If we choose adequately a bounded domain Do (5 0 c D) and four positive

numbers G, H, U and a, such that

Sup G(x) < G, Sup H{x) < H,
Do Do
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1/2( m )

Σ \didju\2\ <U, lΌfakk(x,Pru2(x))>a9
~ υ

 i>3=1 > Doand if we put

φ(x) =P- exp[~^(G +HU)(xk - /?)],

then the function

assumes the negative minimnm in D, which is attained at a point ξ belonging
to Do.

Thus we have

(3.4) v(ξ)<0,

(3.5)

On the other hand, since

v(x)φ{x) = ε- (u2(x) -

by virtue of Lemma, we obtain

; v{x)~\ = ——- 1-Llu2(x); u2(x)'] +L[u2(x);

- 2

and hence

Σ {
1,1=1

Furthermore, since

by virtue of the fact that the function f(x, u, p) is non-decreasing with re-
spect to u, we have

Lίu2(ξ);

+f(ξ'

[ m Ί 1 / 2 Γ m

Σ I <^ (ς, Ftt2(€)) - αΛ£, P^!(ς)) I2 Σ I Siδy

Ί l/2

and therefore it follows from Hypothesis (4, I) and the relation
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that

'FUliξ)'

Σ \8idM$)\2\

• (-v(O) exp[-- | (G +^£7)(% - /9)] < 0.

Thus we obtain

which contradicts the inequality (3.5).
Hence we have proved the inequality (3.3r), and similarly we can verify

the validity of the inequality

— ε ^ u2(x) — Ui(x) in D.

The theorem may be proved under Hypothesis (4, II), by letting β be a
real number such t h a t xk — β is negative for any x = (xί9 , xk, ••, xm)
and by using the functions

φn(x) =P - exp | — (G» +HnUn)(xk - /

and

?(&) = P - exp | ^ ( G +HU)(xk - 0)

in stead of the functions adopted in the above process of the proof.

REMARK. In the case of ε = 0, Theorem 1 gives a theorem of uniqueness
for solutions of the Dirichlet problem concerning the equation (3.1).

§4. Harnack's first theorem.

As a corollary of Theorem 1, we have Harnack's first theorem for solutions
of the equation (3.1).

THEOREM 2. Let Hypotheses 1-4 be fulfilled, and let {un(x)} be a sequence

of solutions of the equation (3.1) which are all continuous in D.

If the sequence {un(x)} converges uniformly on the boundary D of D, then



168 YOSHIKAZU HIRASAWA

this sequence converges to a continuous function u(x) uniformly in D.

Proof For any positive number ε, there exists a natural number N

such that

(4.1) \un(x)-Un>(x)\^ε

for any n, n'>N, and x^D. This fact derives from the uniform convergence
of the sequence {un(x)} on D.

It follows therefore from Theorem 1, that the inequality (4.1) holds for
any n, nf>N and any x G 5 , which implies the fact that the sequence {un(x)}
converges to a continuous function u{x) uniformly in D, q.e.d.

ADDENDUM. In the discussion of the present paper, it is obvious that
Hypothesis 1 may be replaced by the following hypothesis which is assumed in
Kusano's paper:

HYPOTHESIS 1': There exists a positive lower semi-continuous function
h(x, p) such that

m

Σ aιJ{x,p)ξίξJ^h(x,p)\ξ\2

for any (x, p) e 3D0 and any real vector ξ.
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