ON GENERATING ELEMENTS OF SIMPLE ALGEBRAS

By AKIRA INATOMI

§1. Introduction.

Let K be a division ring which is a finite Galois extension of division sub-
ring L of K. Some years ago, Nagahara [10] proved the following theorem:
K is a simple extension of L, if and only if L is not contained in the center
of K or K is commutative.

Recently, by Nagahara-Tominaga [12], the theorem is extended to simple
ring, in case the dimensionality of L over its center is infinite.

In this note, at first, we shall prove the following theorem: Let A be a
finite-dimensional simple algebra over the center C and let B be a subring of
A. If B.C=P is a field and C is finite separable extension of P, then A is
simple extension of B, if and only if B is not contained in C or A is com-
mutative. In case A is division ring, this theorem has been proved by Nagahara.
From the recent result of Nagahara-Tominaga and this theorem, we can see
easily that the Nagahara’s theorem is still valid for simple ring.

Finally we shall be concerned with generating elements of some intermediate
simple ring between B and A.

These results correspond to some part of results of Nagahara in division ring.

§2. Preliminaries.

In this section, we make preparations for the theorem which will be proved
in the next section. Here, we shall prove the following theorem:

THEOREM 1. Let A be a finite-dimensional simple algebra over the center
C which s not a division algebra. We suppose that C is an infinite field.
Let R be a proper subring of A which is not contained in C. If R~C=P
18 a field and C is a separable and finite extension of P then there exists a
nilpotent element b of A such that (1 + bx)r(l+ bx)~t (or A+ bx) r(1+bx)) & R
for some element r of R, and for an infinite number of elements, x’s of P.

LEMMA 1. Let A be an algebra with a unit element over an infinite field
P (dimensionality over P is finite or infinite). Let R be a P-submodule of A.
If there exists a milpotent element b (b°=0) such that brb*~! (or b*~1rdb) & R for
some element r in A then there exist at most s elements x’s of P with (14 bx)r
@+ bx)t (or A+ bx)"'r(1l+bx)) = R.
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Proof. Let us take b as above, then
A+d)rA+bd)1t=A+b)r@—>b+b>—-- -+ (—1)"*1)
and hence this can be represented in the form
Uo + Uy + -« -+ Us,

where wuo=7r, u;=(—1°1rdb*' and wu,=(—1)@b*—brd"!) for 1<i<s—1.
Therefore

A+ bx)r(d 4+ bx) = U + U+ - - - + U’

for every x = P. Let %, 2y, ---,2;, be different elements of P. Suppose that
A +bx)r(l +bx;)=t,R for ©=0,---,s. Since, in the system of linear
equations

Uo + Uy + - o UL =T,

for 1=0,.--,s, |1, 2, 2% ---, 25| =0, u, is represented in the linear form
aoly + aste + -« - + aits,

where ;= P for ©=0, ---,s. This shows that brb*-' belongs to R. Similarly
for b*~rb.

In the rest of this section, A will denote a finite-dimensional simple algebra
over a field P which is not a division algebra. Hence A is represented in the
form >%,-1De;; (n>1) with matric units e;,’s and a division algebra
D=V ,{e,}).” Let C be the center of A. Then we may suppose that C2 P.

LEMMA 2. We suppose that D is nmon-commutative. Let r=1>%,_17, 6.,
where r,, €D, r15+0 and r.1=1, and let R be the subring of A which is
generated, over P, by the element r and the set of all elements in the forms
brb°-t and b*~'rb, where b is a nmilpotent element of A and b*=0. Then R= A.

Proof. We obtain R > d%,,, for every é € D, because (de;2)>=0 and 0%;,;
=(0ey,2)r(0es,s). Similarly, B> 7 ze:; and rites. Now 6%,1 = (0%,2) (71,262,1)€1,2
«(riYes,1). Hence d%;,; = R. Since D is a non-commutative division algebra over
P, it is generated, over P, by the set of all elements in the form 6% where
6 D.® Hence R>d;,e,, for every d;;D. Next let

b=e 2+ es+ -+

where 2<k <n, then v*=0, b*-!=¢,, and hence bre;;=brb*-! = R. We have
€15 = €1,27¢1,;, = €1,,brb* ! and therefore e, = R. Let

bV =e,+e2++eri-1,

1) |1, x% ---,2¢| denotes the Vandermonde’s determinant. Since o, 21, -+, %; are
different, we can see easily that this is not zero.

2) Let B be a subset of a ring A, then V4(B) denote the commutator of B in A.

3) (D:P)< oo, 80 an intermediate ring between P and D is a division ring. See Hua
[4] and Kaplansky [6].
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where 2= k< n, then b'*=0, b’*'=e,; and hence b'*~lrd’'(rike: ) = exires 7}
=e;1 €R. Then d, e ,=e.,i(d. e1,1e,, for every d.,= D, and therefore d, se;,
€R. Thus R=A.

LEMMA 2/. We suppose that C is separable over P. Let us take R such
as in the lemma 2. Then R= A, even if D is commutative.

Proof. If 2z* belongs to P for every element z of C, the irreducible equation
of y over P, where y & P, is f(x) =2®>— a=0, where « € P. From the assump-
tion for C, f(x) has the other root y’ which is different from y and y' = —y.
And (14 y)? is mapped to (1 —¥)? by a suitable isomorphism leaving P element-
wise fixed. Since 1+ y)2€ P, 1+9)?=1—1y)?. Therefore y=y’. From this
contradiction, it must hold that P(0*) D P for some 6 C. Since (C:P)< o, it
follows that C is generated, over P, by the set of all 6*’s, where 6 € C.* Noting
the above fact, we can prove this lemma by the same way as in lemma 2.

LEMMA 3. We suppose that a field P is infinite. Let R be a proper subring
of A which contains P and an element, r=77,-17. 6, , where r:;=1 and
r1,,£0. If D is mon-commutative, or C is separable over P then there exists
a nilpotent element b of A such that (bx + 1)r(bx + 1)~* (or (bx + 1) r(bx +1))&ER
Sfor an infinite number of elements x’s of P.

Proof. Since R is a proper subring of A, from lemma 2 and lemma 2/,
brb*~! (or b*-'rb) & R for some nilpotent element b (b°=0). On the other hand,
R is a P-submodule of A, so, from lemma 1, (bx+ 1)r(bx + 1)~! (or (bx + 1)
-(bx +1)) & R for an infinite number of elements z’s of P.

REMARK. In lemma 2 and 2/, we supposed that (A:P)< o and either D
or C has some condition. But, in case % > 2, these assumptions are superfluous.
Indeed, if we choose an element, b=e; .-+ de. 3, where d =D, then b%=/e,;,
b®=0 and hence de; s = e; o1(0e1,3) = €1,:brb?. Hence dey 3 belongs to B. Similarly,
using an element b =eq ;1 + 7r74€s,2, €31 € R. We have dey; = (des,3)es,s and hence
dei; € R. The rest of the proof is analogous to that of lemma 2.

Therefore, if »>2 and P is an infinite field, the same assumptions as above
are superfluous in lemma 3, too.

Again, we suppose that a field P is infinite. Let a=3%7;.10.,6:,, be a
regular element of A.
If a.,,,+0, where i, jo, then let

n n n
d= < e, + ai—o{Jer,2>< 21 €t 62, + elo,2>< Zzei,t + €15, + 670y1>9
=1 1= 1=

2$2 1$2,2 2%+ Jo

and we have a; =dad' =301 a1,,,;6., where a;21=1. If as1,=0, then let
di=1+ ae;,, where P2 a=+0, and a1 —a122+a, and we have a;=di'a:d

4) Cf. lemma in Kaplansky [6].
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= EZ]:I Az,,5€1,75 where Q221 = 1 and az,1,2 +=0.

Next, we consider the case a.,=0 for all 4%7; that is, a=727.10a,€.,..
If ai;+azs then let f=1+e; and we have faf~'=3>),_ial,, where
ab1+0. If a,, =0 for all 1=1,---,n and 6 & C, then let g =371 526, + Pl22,
where p€ D and pd =+ dp, and we have gag™'=2>7,1ale., where af;=+ afs.

In short, if a is a regular element of A which is not contained in C, we
can transform it to the form »=>",;7, €., where ;=1 and 7,2+0, by a
suitable inner automorphism of A.

Generally, we say that two elements (or two sets) of a ring are conjugate
with each other, if the one is transformed to the other by a suitable inner
automorphism.

Proof of theorem 1. Since P is an infinite field and (R:P)< o, R is
gererated by regular elements of R.” We can choose a regular element r
which is not contained in C, for R is not contained in C. Hence, from lemma
3 and the above remark, we can see easily that this theorem holds for the
suitable conjugate ring R’ to R. Thus the theorem holds for E.

REMARK. This theorem is a specialization of a theorem of Kasch.®

§3. Generating element of a simple algebra.

Throughout this section, let A be a simple algebra which has finite dimen-
sionality over the center C. We shall use the same notation as in §2. Let
P?=(D:C) and let t=1In, where (A:D)=n2

The main theorem of this section is the following:

THEOREM 2. Let B be a subring of A such that B ~C =P is a field, and
C is a seperable and finite extension of P. Then A is generated by some
regular element d of A over B, if and only if B is not contained in C or A
s commutative.

Nagahara has proved this theorem in case A is a division algebra,” so we
may suppose that n > 1.

1. In cagse C is an infinite field.

Let m=(C:P) and let K be a maximal subfield of D which is separable
over C. Since C is separable and finite over P, K = P(f) with some # of K.
Now, let

= ey10 + ez2(0 + c2) -+ - + e, 1 (0 + cn),
where ¢, is such an element of P that is decided as f,(¢# +¢:;) =0 for 1< 5 <3, if
Six)=0 and f.(x)=0, for 1=2,---,7n, are the irreducible equations of # and

5) See Bialynicki-Birula [1] and Shoda [14].
6) See ‘““Satz 8" in Kasch [7].
7) See proposition 1 in Nagahara [11].
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#/ 4+ ¢;, over P, respectively. Let
W= 61’1K® s @en,nKy
then clearly P(w) S W. On the other hand, we have
Ji(@) fow): +« fil®) = erar i@ iirien + 20 o+ €n,nX 1 0,1y
where «;,,,+0 and €K for all j=1+41,---,%, in particular, fi(w):-- fn_1(w)
=€pnp-1nn Therefore P(w)2 Ke,,. Then we have P(w)= W.

Since P is an infinite field, B has a regular element  which is not contained
in C. Let S be the set whose elements are conjugate to ». Then we can choose
such an element 7' =drd-! from S that (W(r’):P) is as great as possible. If
W(r')=R=+ A, then, from theorem 1, there exists a nilpotent element b such
that ;=0 + xb)r’(1 + 2b)~! (or (1 + xb)"'(1 + xb)) € R for an infinite number
of elements, «’s of P.

Let £ be a splitting field of A over P which contains a Galois extension of
P(f), then we have

A;( .Q:fl.gc@"'®fmgt,

where 2; is ¢ X ¢ full matrix ring over £ and
ft (7’ =j);
f‘ffz{ 0 (i)
Let ¢}, be a matric unit of f.2;,, where 1<=k<m and 1=<4,5<¢. In this re-
presentation, we have W X2 =3%.,>",Dg; ;2, where g;,<f;2 and
0, 4=+ or j*j,
g"”""""f’z{ 0., i=1 and 5=,

therefore, if A’ is the suitable ring conjugate to A in A Xp82, then W/ Xp2
=3¢ S Dek, 2. Hence, we may suppose that Wxp2=3"_,>", ®ek, 2.
When we use the same notation as lemma 1, we have
75 = Uo + U + - - - + U’
where b°=0. Let 7%, , be a matric component of 7, in A Xp£2, then
’rg,cz,j = ug,@,] + u.’;‘,z,jx + ce + ulsc,z,jws-
When uf.,+ 0, there exists at most a finite number of elements 2’s in P such
that 77%,,=0. Therefore we can choose such an element x, in P that »{,.,=+0,
if uf.,=+0, and that 7, & R X, 2. We can see easily that W(r}) X £ contains
r’, 80
(W(rh) x 2:2)> (W) Xp2:2).
Hence
(W(rL):P)>(W('): P).
Since 7}, €S, being contrary to the maximality of (W(r'):P), W(»')=A; that
is, A = P(w, drd') and hence we have A =d 'Ad =d-'P(w,drd )d = P(d'wd, 7).
Let b = d-'wd, then we have P(r, d) = P(r)(d) € B(d) S A = P(r,b). Thus B(d)= A.



154 AKIRA INATOMI

REMARK. If C has an infinite field and a separable finite extension of P,
A is generated by two conjugate regular elements over P. For, if we set
B=W, A= P(w, d" 'wd).?

2. In case C is a finite field.?

Since C is a finite field, A=C,. We may consider only the case where
n>1.

First, we suppose that B has a nilpotent element, so B has a nilpotent
element b such that 5>=0. Let M be a left representation module of A4 with
respect to C and let My = {x|bx =0:2 =M}, then M =M; +M;. Since dPM = dM,
My, M=, + T + Iy, where M, + b, =M.. Hence, relative to a suitable
basis, we obtain the following representation of b:

b= €51+ 65410+ + €nn+1-sy

where n=s>[n+1/2].
Let F' be a subring of A represented in the form C(ei, + -+ €,:) D Clers1,141
ot e )@ - ®DCle,++ -+ e,,), where 1<i<n—1. Let

w=¢ez1+e2+ "+ €yn-1+ aey,

where 0o =C. Then A= F(w), because, FF2C and F(w)>ae;,=(e1,1+---
+e)ole,+-tenn), 80 Flo)yDu=es+ess+- - +ep1 vV=€1+es+---
+ enn-1.12 Now, since C is a separable finite extension of P, let us put a
primitive element of C over P in a. Then P(w)2C. Let R=P(b, w), then
R>oej 1+ e+ +ensitn-ss1=a 0" b, where 1=n—s+1<mn, and hence
R>F. Therefore, R=A. Thus A= B(w).

If BC has a nilpotent element, choosing the same element » as above,
B(w) D BC. Hence B(w)= A.

If BC has no nilpotent element, BC is a direct sum of commutative fields.
Moreover, if BC is not a field, we may suppose that BC =F. On the other
hand, we have B(w) D BC. Hence B(w)= A.

If BC is a field, let us take a element » of B which is not contained in C.
Let k=(C(r):C) and let ¢ =n/k. Then r is represented by a suitable basis in
the following form :'V
ay
ag

M X E,, where M = .. : (a; € O).

O

1 a
When ¢=1, let o' =1+ wei,, where C=P(a), and let R=P(r,w’). Then

R>egi,0="ae, for 1=<s=<n—1, so R>de,, where d =C, and hence R > o,
where » is the same element as above. Hence RO C and R > wu,v. Therefore

8) This fact holds, even if C is a finite field. These are proved by Kasch-Tominaga [8].
9) Here, we shall identify B with B’ which is conjugate to B.

10) We see in Kasch-Tominaga [8] that e;,, = v*"'u" 1o 1yd-1,

11) See Jacobson [5].
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R=A. Thus B(w')=A. When q>1, we choose the following element :1?’
NE 0

. a
o = : , Where N=[ j|}k
0 E 0
E

Then P(r, )= A.

Clearly, @ and «’ used above are regular elements.

The converse part of this theorem is trivial. Thus, theorem 2 is proved
completely.

REMARK. In 2, it is not essential that C is a finite field; that is, if A =C,,
we can take a generating element such as in 2.

COROLLARY. Let B be a subring of A such that B~C=P is a field and
(C:P)< oo, and let T be an intermediate simple subring between B and A.
If the characteristic of C is zero, then T = B(d) with some regular element b,
iof and anly if BE V(T) or T is commutative; ¢f. Nagahare [11].

Proof. Clearly, Vo(T)2 P and (V(T):P)<oo. Since the characteristic
of C is zero, V,(T) is a separable extension over P, and hence, if B & V(T),
T = B(b) with some regular element b, from theorem 2. The converse part will
be trivial.

§4. Application to Galois extension.

Throughout this section, by a simple ring we shall mean a two-sided simple
ring with a unit element which satisfy minimum condition for left ideals.

A simple ring A is called a finite Galois extension of a simple subring B,
if (A:B), <, B is a ring fixed by a group of automorphisms of A and V,(B)
is a simple ring. Then the group & of all the automorphisms which leave all
the elements of B fixed is called a Galois group of A with respect to B. Let
3 be the group which consists of all the inner automorphisms contained in &
and let R(®) be a ring which is generated by all the regular elements inducing
J. Then R(®)= V4(B). Conversely, I has the inner automorphism of A which
is induced by a regular element in V4(B); that is, ® is complete. And (A:B)
=(®:IJ)(R(®):C), where C is the center of A; so /I is a finite group. Let
P=BC. Then P is elementwise fixed by &/I in C, 8o (V4(B):P) < 0¥

If A is a finite dimensional algebra over C which is a finite Galois extension
over B, we have

B;S C=BC=V4V4B)) and the center of BC=ZC= Zl>§ Cc,

12) The suggestion of this generating element is due to M. Okuzumi.
13) See Nakayama [138] and Tominaga [16].
14) See Hochsehild [3].
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where Z is a center of B. Clearly, (A:P)< o, C and ZC are finite Galois
extensions over P and Z, respectively.

In this section, we are concerned with a finite Galois extension, so a simple
ring A will be a finite Galois extension over a simple subring B, and the other
notations will be used as in the explanation above.

By Kasch and Tominaga [8], it is proved that A is generated by two con-
jugate regular elements over B. Moreover, the following theorem is proved in
the recent paper of Nagahara and Tominaga [12]:

THEOREM (Nagahara and Tominaga). Let T be a intermediate subring
between B and A. If (B:Z)= oo, then T = B(d) with some element d of T, in
particular, A= B().

If (B:Z)<o, A is a finite dimensional algebra over C.'® Hence the
following two theorems hold, from theorem 2, corollary and the above theorem.

THEOREM 3. A= B(b) with some element d in A, if and only if BEC or
A is commutative.

THEOREM 4. Let T be a intermediate simple subring between B and A.
If the characteristic of C is zero, T = B(d) with some element d of T, if and
only of B& Vi(T) or T is commutative; cf. Nagahara [11].

Let U be ring and let §) be a group of automorphisms of U. A subring T
of U is called Y-normal, if T is fixed setwise by ).
We shall prove the following lemma:

LEMMA 4. Let U be a ring with a unit element, and let both B and S be
stmple ring whose unit elements are the unit element of U. Let S= > ,.1 De;,.
We suppose that D is meither a prime field P, with characteristic 2 nor n=2.
If B is fixed setwise by all the immer automorphisms induced by regular
elements of S, then either BZ Vy(S) or B2 S.1®

Proof. In case n=1; that is, S=D, the above is proved by Nagahara-
Tominaga [12], so we are concerned with only the case »=2. Then, clearly,
either B< V(D) or B2 D.

In case BC VU(D). Let 0= 1 + 2?211 €i+1 and (72 =1 + 2:':11 €i+1,09 then
clearly 6;(:=1,2) is a regular element. When D # P,, we can take an element
k of D such that 6;+k, for 1=1,2, is a regular element. Hence, for every a
of B, af;=0,a,:, and a(0;+k)=(0;+k)a,2, where B>a,1, a.: and hence
k(e — a,2) = 0i(@,2 — a;,1). If a,1=a,s then 0; is commutative with a. On the
other hand, if a,:— a,;+#0, the two sided ideal B(a,»— a,1)B coincides with B

15) See lemma in Tominaga [15].
16) Cf. theorem 5 in Bialynicki-Birula [1].
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and hence 1=3)2,(a,z— a,1)y,, where B>z, y,. Hence we have 3 (k'0;)
2 (k710:) a — a2y, = 3 (k10:)w (0,2 — @, 1)y, = k~10,.'  In this relation, the
left side is contained in B and so k~'¢; = B. Since k~!6; is not contained in the
center of S, B~ S has an element which which is not contained in the center
of S and hence B2 S.'® If both #’s are commutative with every a in B,
then B< Vy(D(#,0:) = Vy(S). When D =P, and n>2, then we take the two
regular elements 6= 3V={e; .11+ €n1+ens 0/ =30 €014 €51, then +1=0
and @’ + w are regular elements and D(4,¢’)=S. By the same way as above,
either # € B or # is commutative with B. If ¢ B, B2 S. If ¢ is commutative
with B, then w is so also. Then we take ¢’ and w, respectively, instead of
0; and k. If 0 '¢’ B then B2 S, and if ¢’ is commutative with B, then B
S VoD@, 6")) = Vu(S).

In case B2 D. First, we suppose that the characteristic p of D is not 2.
Then, since #;+1 is a regular element, so B2 S or both #;s are commutative
with B. In the latter, we take an element d of D which is not contained in
the center of B, then 6;+d is a regular element, so, for som element d of B,
af;=0a and a(¥;+d)=(0; + d)a,, where a,€B and a+#a,. Hence ad—da,
=#a,—a). Since the left sided element belongs to B, #; = B and hence B2 S.
Finally, we shall consider the case D+ P, and p=2. If >3, we can see
easily that B2 S or both 4 and ¢’ are commutative with B. Since P:(4,0’)
560,(1=1,2), also B2S. If n=2, we set 0 =e51+ e+ key 2, where ke D
and #1, ¢ =e;;+ e, and the same proof as above holds.

REMARK. If D=P, and n =2, generally this lemma is not true from the
Kasch’s example [7]; that is, the subring of S which is generated by the
element €2+ €21+ €22 is not contained in the center of S, but it is S-invariant.

In the following theorems, we may suppose that A is finite dimensional
algebra over the center C and C is an infinite field. Indeed, if (A4:C)= o then
from the result of Nagahara and Tominaga, these hold, even if T is arbitrary
ring. If (A:C)< o and C is a finite field, then A is a finite ring. Hence
these hold, from the same reason such as corollary in §3 or from the result
of Kasch and Tominaga [8], even if A is neither a Galois extension of B nor
T is J-normal.

THEOREM 5. Let T be an J-normal simple subring of A containing B,
then T = B(d,d 'dd) with some elements b and d of T.

Proof. From lemma 4! either TS V4(V4(B)=BC or T2 V4B). If
T < BC, the center Z’ of T contains Z and is contained in ZC. Since ZC is
separable over Z, Z’ is so over Z. Hence, from theorem 2, T = B(b) with some

17) Cf. proof of theorem in Brauer [2].

18) See ““Satz 3" in Kasch [7].

19) Lemma 4 is generalization of a theorem of Birula, but we can use Birula’s result
for the proof of this theorem.
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regular element d of 7. In the latter case, we represent 7 in the form
Stoei Deesj. Let A’ =V,({e;,,}) and we set B’ =B({e;,,}) = >%,-1 Dse;,;, where
Dy = Vs({e;,}) is a division ring and, clearly, D; 2 D;. We can see easily that
A’ ig a finite Galois extension of D; and D2 V4.(D;). Hence D, = Ds(z,y) with
some conjugate regular element x, ¥ and therefore T = B(b, d~'dd), where b is
a regular element.??

THEOREM 6. Let T be an I-normal simple subring of A containing B. If
B is not a division ring then T = B(d).

Proof. We may suppose that T2 V(B). Clearly, the center Z’ of T is
contained in V4(B) ~BC=ZC. Let K=BC and B=>,,D'f,,, We set K
=Ve({f.,;}) and T/ =V:({f.,,;}), then both K’ and T’ are simple rings and
T'2K' 2D'. Clearly K’ =D'(x) and T'=K'(y), so T’ = D'(%,y), where x and
y are regular elements. Let b=ua+ fi.y, then b is a regular element and
T = B(b).

REMARK. In case A is a division ring. If B is non-commutative and T is
J-normal division ring which contain B, T = B(d); see Nagahara [10].
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