
ON GENERATING ELEMENTS OF SIMPLE ALGEBRAS

BY AKIRA INATOMI

§ 1. Introduction.

Let K be a division ring which is a finite Galois extension of division sub-
ring L of K. Some years ago, Nagahara [10] proved the following theorem:
K is a simple extension of L, if and only if L is not contained in the center
of K or K is commutative.

Recently, by Nagahara-Tominaga [12], the theorem is extended to simple
ring, in case the dimensionality of L over its center is infinite.

In this note, at first, we shall prove the following theorem: Let A be a
finite-dimensional simple algebra over the center C and let B be a subring of
A. If B^C = P is a field and C is finite separable extension of P, then A is
simple extension of B, if and only if B is not contained in C or A is com-
mutative. In case A is division ring, this theorem has been proved by Nagahara.
From the recent result of Nagahara-Tominaga and this theorem, we can see
easily that the Nagahara's theorem is still valid for simple ring.

Finally we shall be concerned with generating elements of some intermediate
simple ring between B and A.

These results correspond to some part of results of Nagahara in division ring.

§ 2. Preliminaries.

In this section, we make preparations for the theorem which will be proved
in the next section. Here, we shall prove the following theorem:

THEOREM 1. Let A be a finite-dimensional simple algebra over the center
C which is not a division algebra. We suppose that C is an infinite field.
Let R be a proper subring of A which is not contained in C. If R^C = P
is a field and C is a separable and finite extension of P then there exists a
nilpotent element b of A such that (1 + bx)r(l + bx)~ι {or (1 + δ#)~Ml + bx)) $ R
for some element r of R, and for an infinite number of elements, x's of P.

LEMMA 1. Let A be an algebra with a unit element over an infinite field
P (dimensionality over P is finite or infinite). Let R be a P-submodule of A.
If there exists a nilpotent element b (bs = 0) such that brbs~x (or bs~xrb) φ R for
some element r in A then there exist at most s elements x's of P with (1 + bx)r
(1 + 6a;)-1 (or (1 + δff)-V(l + bx)) e R.
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Proof. Let us take b as above, then

(1 + b)r(l + b)-1 = (1 + b)r{l -b + b2 + ( -

and hence this can be represented in the form

h us,

where uo = r, us = (-l)s-1brbs~1 and uz = (- l)\rb% - brb1-1) for l ^ i
Therefore

(1 + bx)r(l + 6a?)"1 = ̂ o + iMH + usx
s

for every x<=P. Let a?0, #i, >#*, be different elements of P. Suppose that
(1 + bxi)r(l + bxi)'1 = tz<sR for i = 0, , s. Since, in the system of linear
equations

UQ + u&% H h ΪMS = U

for i = 0, , s, 11, a?z,«?, , a?{ I Φ 0,D ^ s is represented in the linear form

a o t o + αrife H h <̂ βί«>

where ^ ε P for i = 0, •• ,s. This shows that brb8'1 belongs to R. Similarly
for V-Wb.

In the rest of this section, A will denote a finite-dimensional simple algebra
over a field P which is not a division algebra. Hence A is represented in the
form Σ?,ί=i^e«,j (w>l) with matric units e«,/s and a division algebra
£>= VA{{ei,3})P Let C be the center of A. Then we may suppose that CΏ.P.

LEMMA 2. We suppose that D is non-commutative. Let r = Σΐ;?=i ^,A,J»
where rl}J e D, ri f 2 Φ 0 αncZ r2 fi = 1, and Zβί jβ 6e ί/̂ e subring of A which is
generated, over P, 62/ £&e element r and the set of all elements in the forms
brb8'1 and 6s~Vδ, where b is a nilpotent element of A and bs = 0. Then R = A.

Proof. We obtain R 3 d2e1)2 for every δ e D, because (de1}2)
2 = 0 and ^2ei,2

= (^βif2)r(3βi,2). Similarly, R^rlt2e2,i and rr,k2,i. Now ̂ 2βi,i = (β2e1)2) {r1)2e2Λ)e1}2

•(fΓ,2β2,i) Hence <52ei,i e i?. Since D is a non-commutative division algebra over
P, it is generated, over P, by the set of all elements in the form (52, where
<5eZλ3) Hence R^d1}1e1)U for every d M e 2 > . Next let

δ = βi,2 + β2,3 H h βjb-i,*,

where 2 ^ / ? ^ n , then bk = Q, bk~1 = eί}k and hence bre1>k = brbk~1 ε i 2 . We have
•βi.fc = ei,2rei,fc = ei^brb*-1 and therefore βi,* e i^. Let

b' = e2>i + 63,2 Λ— + ekflc-i,

1) | 1 , Xi, x\, - —,xsi\ denotes the Vandermonde's determinant. Since x0, xu -,xs are
different, we can see easily that this is not zero.

2) Let B be a subset of a ring A, then VA(B) denote the commutator of B in A.
3) (D : P) < 00, so an intermediate ring between P and J9 is a division ring. See Hua

[4] and Kaplansky [6].
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where 2 g k ̂ n, then b/k = 0, bfk~1 = ekΛ and hence bfk~1rb/(rτSe1)1) =
= e M e i ? . Then dzjeZ)J = el}1(dιjei)1)e1}J for every dZ)J(=D, and therefore

Thus i? = A.

LEMMA 2'. We suppose that C is separable over P. Let us take R such
as in the lemma 2. Then R = A, even if D is commutative.

Proof. If z2 belongs to P for every element z of C, the irreducible equation
of y over P, where y<£P, is f(x) = x2 — a = 0, where Λ G P . From the assump-
tion for C, f(x) has the other root yf which is different from y and y' = —y.
And (1 + yf is mapped to (1 — yf by a suitable isomorphism leaving P element-
wise fixed. Since (1 + yf ε P , (1 + yf = (1 - yf. Therefore y = #'. From this
contradiction, it must hold that P(d2) φ P for some d(=C. Since (C:P)< oo, it
follows that C is generated, over P, by the set of all <Ps, where <5 e C.4) Noting
the above fact, we can prove this lemma by the same way as in lemma 2.

LEMMA 3. We suppose that a field P is infinite. Let R be a proper subring
of A which contains P and an element, r — *Σ£,3=i rtfjeZtJ, where r2>1 = 1 and
ri,2 ΦO. If D is non-commutative, or C is separable over P then there exists
a nilpotent element b of A such that (bx + T)r(bx + 1 ) " 1 (or (bx + ly^-rφx +1))<£R
for an infinite number of elements x's of P.

Proof. Since R is a proper subring of A, from lemma 2 and lemma 2\
brb8'1 (or&s-V6)<£ R for some nilpotent element b (bs = 0). On the other hand,
R is a P-submodule of A, so, from lemma 1, (bx + l)r(bx + I)" 1 (or (bx + 1)"V
• (bx +1)) $ R for an infinite number of elements x's of P.

REMARK. In lemma 2 and 2', we supposed that (A: P) < oo and either Z>
or C has some condition. But, in case n > 2, these assumptions are superfluous-
Indeed, if we choose an element, b = e1}2 + δe2,s, where ^ ε D , then 62 = <5eM,
63 = 0 and hence deiiZ = e1)2r(de1}8) = e1}1brb2. Hence deliZ belongs to R. Similarly,
using an element br — e2,i + rτSez,2f β3j i e R. We have δeί}ι = (̂ 1,3)63,1 and hence
δe1}1^R. The rest of the proof is analogous to that of lemma 2.

Therefore, if n > 2 and P is an infinite field, the same assumptions as above
are superfluous in lemma 3, too.

Again, we suppose that a field P is infinite. Let a — Σ?j=i c^A,.? be a
regular element of A.

If α lo,Jo 4= 0, where ΐ0 Φ io, then let

Σβt,» + eί,Jo + eJoA )t

and we have αi = dαd"1 = Σ?,j=iαi,ι,A,j» where a1}2>1 = 1. If αi,i,2 = 0, then let
cZi = 1 + aeίt2, where P 3 Λf Φ 0, and a1}ίil — αi>2,2 Φ <*, and we have α2 = d^aίd

4) Cf. lemma in Kaplansky [6].
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= Σ?.J-I α2,ι,fa,], where α2,2,i = 1 and α2,i,2Φ0.
Next, we consider the case aZ)J = 0 for all i Φ j that is, α = Σ?=i αMeM

If α M φ α 2 , 2 , then let f=l + e2,i and we have / α / " 1 = Σ ^ = i <A,./> where
α2,i ΦO. If alfl = d for all i = 1, , n and d $ C, then let # = Σ?=i,ίΦ2 e M + pe2,2,
where ^ G Z ) and pdψdp, and we have ^αflr-1 = Σ?,J=I «tfA,j» where α£i=j=α£2.

In short, if a is a regular element of A which is not contained in C, we
can transform it to the form r = Σ?.J=I ^,A,J» where r2,i = 1 and n, 2 φ 0, by a
suitable inner automorphism of A.

Generally, we say that two elements (or two sets) of a ring are conjugate
with each other, if the one is transformed to the other by a suitable inner
automorphism.

Proof of theorem 1. Since P is an infinite field and (R: P) < oo, R is
gererated by regular elements of R.5) We can choose a regular element r
which is not contained in C, for R is not contained in C. Hence, from lemma
3 and the above remark, we can see easily that this theorem holds for the
suitable conjugate ring Rf to R. Thus the theorem holds for R.

REMARK. This theorem is a specialization of a theorem of Kasch.6)

§ 3. Generating element of a simple algebra.

Throughout this section, let A be a simple algebra which has finite dimen-
sionality over the center C. We shall use the same notation as in §2. Let
I2 = (D: C) and let t = In, where (A: D) = n2.

The main theorem of this section is the following:

THEOREM 2. Let B be a subring of A such that B^C = P is a field, and
C is a seperable and finite extension of P. Then A is generated by some
regular element b of A over B, if and only if B is not contained in C or A
is commutative.

Nagahara has proved this theorem in case A is a division algebra,7) so we
may suppose that n>l.

1. In case C is an infinite field.
Let m = (C: P) and let K be a maximal subfield of D which is separable

over C. Since C is separable and finite over P, K = P(Θ) with some θ of K.
Now, let

ω = e M 0 + e2>2(0 + c2) H f- en>n(θ + cn),

where c% is such an element of P that is decided as f3iβ + c*) Φ 0 for 1 ̂  j < i, if
f1(x) = 0 and f(x) = 0, for ΐ = 2, ,n, are the irreducible equations of θ and

5) See Bialynicki-Birula [1] and Shoda [14].
6) See "Satz 3 " in Kasch [7].
7) See proposition 1 in Nagahara [11].
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i, over P, respectively. Let

W = e1)1K® ®en,nK,

then clearly P(ω)^W. On the other hand, we have

/i(ω)/2(ω) fι(ω) = e?+i,z+iαrM+i,ι+i H h e n > w α r ί > T O f W ,

where aι,JtJΦ0 and e i £ for all i = Z + l, ••-,%, in particular, /i(α>) /n_i(ω)
=βn,n«n-i,n,n. Therefore P(w) 3 ift>^. Then we have P(ω) = TΓ.

Since P is an infinite field, B has a regular element r which is not contained
in C. Let S be the set whose elements are conjugate to r. Then we can choose
such an element rf = drd~1 from S that (W(r'):P) is as great as possible. If
W(r') = RΦA, then, from theorem 1, there exists a nilpotent element b such
that rί = (l + «6)r/(l + α6)-1(or(l + ίcδ)-1r/(l + ί»δ))φi2 for an infinite number
of elements, x's of P.

Let Ω be a splitting field of A over P which contains a Galois extension of
P(β), then we have

P

where Ωt is ί x ί full matrix ring over Ω and

Let e*, be a matric unit of fkΩt1 where 1 ^ k ^ m and lί^ifj^t. In this re-
presentation, we have WXPΩ — Y^i=slγ^=i®gijΩt where gί}3<=fiΩ and

0, i Φ ΐ ' or j Φ ,7V,

i = i' and ,/ = ^v,

r
= i

therefore, if A' is the suitable ring conjugate to A in AxPΩ, then W XpΩ
= Σ ί - i Σ ? - i ® < i 0 Hence, we may suppose that ΐ Γ x P i 2 = Σί a siΣ?-i®ef,i^.

When we use the same notation as lemma 1, we have

rr

x — uo + UiX H h usx
s,

where 6s = 0. Let rΐ,%t3 be a matric component of r'x in AxPΩ, then

rZ,j = ^o,ttJ + tt£,*.jB H + ul.jx8.

When ^o.i.j Φ 0, there exists at most a finite number of elements x's in P such
that rίft.j = 0. Therefore we can choose such an element x0 in P that r?0, l i7 Φ 0,
if uotl,3Φ0, and that r'Xo$ RxPΩ. We can see easily that W(rr

XQ) XPΩ contains
r', so

(ϊΓ(riβ) X Ω:Ω) >(W(r') XPΩ:Ω).
Hence

Since r'XQ^S, being contrary to the maximality of (W(r'):P), W(r') = A; that
is, A = P(ω, drd-1) and hence we have A = d~xAd = d ^ P ^ , cM- 1 )^ = P(d~ιωd, r).
Let b = d - W , then we have P(r, b) = P(r)(b) £ £(b) e A = P(r, b). Thus B(b) = A.



154 AKIRA INATOMI

REMARK. If C has an infinite field and a separable finite extension of P r

A is generated by two conjugate regular elements over P. For, if we set
B=W, A = P(ω,d

2. In case C is a finite field.9)

Since C is a finite field, A = Cn. We may consider only the case where
l.
First, we suppose that B has a nilpotent element, so B has a nilpotent

element b such that b2 = 0. Let 9Jΐ be a left representation module of A with
respect to C and let % = {% I δ# = 0: x e 9tt}, then 9W = % + 2W2. Since 69ft = 6TO±

c 3Jί2, 3W = 3Ki + 3W£ + 63Wi, where 3WJ + 63Wi = 2tt2. Hence, relative to a suitable
basis, we obtain the following representation of b:

b = eS)i + es+i,2 H h en,n+i-s>

where n ^ s > O +1/2] .
Let F be a subring of A represented in the form C(eM H h eι,

H h ek)k)@" ΘC(eM H h βn>n), where 1 ̂  i ^ w - 1 . Let

en,n-i + ae1>n,

where Oφa^C. Then A = F(ω), because, FΏ.C and F(ω)3ae^n = (eMH
+ eiyi)co(ei}i + + βn}r0, so F{ω) 3 % = e i j 2 + e2>3 + + en_iίW, v = e2}i + 63,2 +
+ eΛfn-i 1 0 ) Now, since C is a separable finite extension of P, let us put a
primitive element of C over P in #. Then P(aήΏC. Let R = P(b,ω), then
jβ3βi , i + 62,2H hen-ί+i>TO-β+i = arWι~*+1δ, where 1 ^ ^ — s + l < ^ , and hence
RZDF. Therefore, R = A. Thus A = £(ω).

If BC has a nilpotent element, choosing the same element ω as above,
B(ω) D PC. Hence 5(α>) = A.

If BC has no nilpotent element, BC is a direct sum of commutative fields.
Moreover, if BC is not a field, we may suppose that BC = F. On the other
hand, we have B(ω) z> BC. Hence B(ω) = A.

If BC is a field, let us take a element r oί B which is not contained in C.
Let k = (C(r):C) and let q — njk. Then r is represented by a suitable basis in
the following form:1 D

0

M X 2£β, where M =

When g = l, let β)/ = l + αrei,n, where C = P(αr), and let R = P(r,ωf). Then
-R3 es+i,n = τsae1}n for 1 ̂  s ^ ^ — 1, so Jf?3den,n, where ^ ε C , and hence R^ωf

where ω is the same element as above. Hence R'DC and R^u,v. Therefore

8) This fact holds, even if C is a finite field. These are proved by Kasch-Tominaga [8].
9) Here, we shall identify B with Bf which is conjugate to B.

10) We see in Kasch-Tominaga [8] that eί}J = v%-ιun~1vn-1u3'1.
11) See Jacobson [5].
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R = A. Thus B{ωf) = A. When q > 1, we choose the following element :12)

r NE 0

0 E
, where N=\ | [ fc.

Then P(r, ω) = A.
Clearly, ω and ω' used above are regular elements.
The converse part of this theorem is trivial. Thus, theorem 2 is proved

completely.

REMARK. In 2, it is not essential that C is a finite field; that is, if A = Cn,
we can take a generating element such as in 2.

COROLLARY. Let B be a subring of A such that B^,C = P is a field and
(C:P) <oo, and let T be an intermediate simple subring between B and A.
If the characteristic of C is zero, then T = B(b) with some regular element b,
if and anly if Bφ VT(T) or T is commutative] cf. Nagahara [11].

Froof. Clearly, VT(T)^P and (VT(T):P)< oo. Since the characteristic
of C is zero, VT{T) is a separable extension over P, and hence, if B $ VT(T),
T = BQή with some regular element b, from theorem 2. The converse part will
be trivial.

§4. Application to Galois extension.

Throughout this section, by a simple ring we shall mean a two-sided simple
ring with a unit element which satisfy minimum condition for left ideals.

A simple ring A is called a finite Galois extension of a simple subring B,
if (A:B)ι< oo, B is a ring fixed by a group of automorphisms of A and VA{B)
is a simple ring. Then the group (S of all the automorphisms which leave all
the elements of B fixed is called a Galois group of A with respect to B. Let
3 be the group which consists of all the inner automorphisms contained in (S
and let R(®) be a ring which is generated by all the regular elements inducing
3. Then JB(©) = VA(B). Conversely, 3 has the inner automorphism of A which
is induced by a regular element in VA(B) that is, ® is complete. And (A: B)
= (®:3)(Λ(®):C), where C is the center of A; so ®/3 is a finite group. Let
P = B^C. Then P is elementwise fixed by ®/3 in C, so (VA(B):P)<oo™

If A is a finite dimensional algebra over C which is a finite Galois extension
over Bj we have

BxC~BC=VA(VA{B)) and the center of BC=ZC~ZxC,14)

p P

12) The suggestion of this generating element is due to M. Okuzumi.
13) See Nakayama [13] and Tominaga [16].
14) See Hochschild [3].
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where Z is a center of B. Clearly, (A:P)<oo, C and ZC are finite Galois
extensions over P and Z, respectively.

In this section, we are concerned with a finite Galois extension, so a simple
ring A will be a finite Galois extension over a simple subring B, and the other
notations will be used as in the explanation above.

By Kasch and Tominaga [8], it is proved that A is generated by two con-
jugate regular elements over B. Moreover, the following theorem is proved in
the recent paper of Nagahara and Tominaga [12]:

THEOREM (Nagahara and Tominaga). Let T be a intermediate subring
between B and A. If (B:Z) = oo, then T = B(b) with some element b of T, in
particular, A = B(b).

If (B:Z) < oo, A is a finite dimensional algebra over C.15) Hence the
following two theorems hold, from theorem 2, corollary and the above theorem.

THEOREM 3. A = B(b) with some element b in A, if and only if BφC or
A is commutative.

THEOREM 4. Let T be a intermediate simple subring between B and A.
If the characteristic of C is zero, T = B(b) with some element b of T, if and
only of B^ VT{T) or T is commutative] cf. Nagahara [11].

Let U be ring and let ί) be a group of automorphisms of U. A subring T
of U is called fy-normal, if T is fixed setwise by fy.

We shall prove the following lemma:

LEMMA 4. Let U be a ring with a unit element, and let both B and S be
simple ring whose unit elements are the unit element of U. Let S = Σ£J=I Dei)3.
We suppose that D is neither a prime field P2 with characteristic 2 nor n = 2.
If B is fixed setwise by all the inner automorphisms induced by regular
elements of S, then either ΰ ς Vπ(S) or BΏS.™

Proof. In case n = l; that is, S = D, the above is proved by Nagahara-
Tominaga [12], so we are concerned with only the case n^2. Then, clearly,
either B c Vπ(D) or B 2 D.

In case BQVu(D). Let ft = l + Σ?-ίe<>t+1 and fa = 1 + ΣS-lei+i,t, then
clearly θi (i = 1,2) is a regular element. When D Φ P2, we can take an element
k of D such that θt + k, for i = 1,2, is a regular element. Hence, for every a
of B, aθi = θiaιΛ, and α(#* + k) - (θi + k)al}2, where B=>alfl, aι>2, and hence

k(a — aι>2) = θi(aι>2 — α M ) . If at}ί = al}2, then θi is commutative with a. On the

other hand, if α i j 2 — al)ί Φ 0, the two sided ideal B(aι>2 - al}1)B coincides with B

15) See lemma in Tominaga [15].
16) Cf. theorem 5 in Bialynicki-Birula [1].
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and hence l = ^ijXj(al)2 — al)i)yJf where B=>x3,y3. Hence we have >ΣiJ{k~1βτ)
'Xj(k-1diy

i(a — al)2)yj = ^!1j(k-1θi)Xj(az,2 — al)i)yj = k-1θi.m In this relation, the
left side is contained in B and so Ar1^ <E B. Since k'^θi is not contained in the
center of S,B ^S has an element which which is not contained in the center
of £ and hence B Ώ. S.m If both #*'s are commutative with every a in B,
then B <Ξ Vu(D(θlf β2)) = Vu(S). When D = P2 and n > 2, then we take the two
regular elements β = ]>ϊ=ίeM +i + en,i + ^,2, βr = *ΣS=leί,ι+ι + βn,u then θ + l = ω
and βf + ω are regular elements and D(β, 6f) = S. By the same way as above,
either θ e B or 6 is commutative with B. lίθ^B, B^S. If 6 is commutative
with Bf then ω is so also. Then we take 6' and ω, respectively, instead of
θt and k. If ω~ψ e 5 then 5 3 S , and if 0' is commutative with B, then £

In case BΏD. First, we suppose that the characteristic p of D is not 2.
Then, since θt +1 is a regular element, so 5 2 5 or both #*'s are commutative
with B. In the latter, we take an element d of D which is not contained in
the center of B, then θi + d is a regular element, so, for som element d of B,
adi = θia and α(ft + d) = (ft + d)alf where aτ^B and aφat. Hence ad — daτ

= Oi{a% — α). Since the left sided element belongs to B, θi^B and hence BΏ.S.
Finally, we shall consider the case DΦ P2 and p — 2. If n > 3, we can see
easily that B Ώ. S or both # and θr are commutative with B. Since P2(#, 0')
•Ξ>0i(i = 1,2), also i ? 2 S . If w = 2, we set 0 = e2>i + e1}2 + &e2,2, where ί ε D
and ^ 1, #' = e2)i + βi,2 and the same proof as above holds.

REMARK. If D — P2 and n = 2, generally this lemma is not true from the
Kasch's example [7]; that is, the subring of S which is generated by the
element eί}2 + e2>i + 62,2 is not contained in the center of S, but it is ^-invariant.

In the following theorems, we may suppose that A is finite dimensional
algebra over the center C and C is an infinite field. Indeed, if (A: C) = 00 then
from the result of Nagahara and Tominaga, these hold, even if T is arbitrary
ring. If (A:C)<oo and C is a finite field, then A is a finite ring. Hence
these hold, from the same reason such as corollary in §3 or from the result
of Kasch and Tominaga [8], even if A is neither a Galois extension of B nor
T is S-normal.

THEOREM 5. Let T be an ^normal simple subring of A containing B,
then T = B(bfd~1bd) with some elements b and d of T.

Proof. From lemma 419) either T c VA(VA(B)) = BC or TΏVA(B). If
T £ BC, the center Z' of T contains Z and is contained in ZC. Since ZC is
separable over Z, Zr is so over Z. Hence, from theorem 2, T = B(b) with some

17) Cf. proof of theorem in Brauer [2].
18) See "Satz 3 " in Kasch [7].
19) Lemma 4 is generalization of a theorem of Birula, but we can use Birula's result

for the proof of this theorem.
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regular element b of Γ. In the latter case, we represent T in the form
Σ?,,- i f t^ Let A'=VΛ({eitJ}) and we set Bf = B({eitJ}) = J£,J=1 Aeί(,, where
Z^ = VB>({eii3}) is a division ring and, clearly, D2 2 A We can see easily that
A' is a finite Galois extension of Di and Z)2 3 V^(A). Hence D2 = Dι(x, y) with
some conjugate regular element x, ym and therefore T = Bφ, d~1bd)1 where b is
a regular element.20

THEOREM 6. Let T be an ^-normal simple subring of A containing B. If
B is not a division ring then T = B(b).

Proof. We may suppose that T Ώ. VA(B). Clearly, the center Z' of T is
contained in VA(B)^BC = ZC. Let K = BC and B = J]lfJD

ffliJf We set Kr

= Vκ(ίft,j}) and T' = Vτ({ft,j})9 then both Kf and T' are simple rings and
T'^LK'Ώ Df. Clearly JS7 = D\x) and T' = JBΓ'd/), so T' = Z)'^, y), where a? and
2/ are regular elements. Let b = α?+/if22/, then b is a regular element and

R E M A R K . In case A is a division ring. If B is non-commutative and T is

3-normal division ring which contain B, T = Bφ); see Nagahara [10].
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