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1. Introduction.

Let E be a perfect set and D a complementary domain of E. If any mero-
morphic function in D with its singularities at each point of E admits at most
n Picard's exceptional values at any neighborhood of each point of E, then E
is said to be an n-Picard's perfect set. A 2-Picard's perfect set is simply said
to be a Picard's perfect set.

Recently Matsumoto [5] proved the existence of n (^ 3)-Pieard's perfect set
E. Further he constructed a 3-Picard's perfect set E in any neighborhood of
any point of which there is a meromorphic function with just 3 Picard's ex-
ceptional values. In his construction E is of zero capacity. At the same time
Carleson [2] proved independently the existence of 3-Picard's perfect set E in
a class N% but cap E>0.

In the present paper we shall extend the notion of Picard's perfect set
and prove the existence of a Picard's perfect set in a new sense. We shall
make use of the standard notions of the Nevanlinna theory [6].

Hayman [3] developed the Nevanlinna theory in a great extent in a case
of the unit disc. Our main idea is due to the nice theorems I and II in [3].

2. Definition of an essential Picard's perfect set.

Let 2(X) be a class of meromorphic functions which are Lindelofian in a
domain X in Heins' sense [4]. This is the same as a class of meromorphic
functions of bounded type in X. Let E be a perfect set lying on a simple closed
curve γ and D a complementary domain of E. Let A and D2 be two domains
bounded by γ. Let N(p) be a generic neighborhood of any generic point p of
E. Let 9tt be a class of meromorphic functions in D with essential singularities
on E.

If any element of / in m-2(N(p)^D1)-2(N(p)^sD2) has w-Picard's ex-
ceptional values at most in any N(p) of each point p of E, then E is said to
be an essential w-Picard's perfect set. If n = 2, then E is simply said to be an
essential Picard's perfect set.

This modification of the definition of ^-Picard's perfect set E brings us an
advantage. In fact, if E <£ JV», then there exists a bounded analytic function
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in D and hence any such E is not w-Picard's perfect set in the former definition.
However such E may be an essential w-Picard's perfect set.

3. Hayman's theorems.

We shall say that a domain B properly cantains a set of arcs z = eίθ,
a < θ < β, if these arcs lie in B and we have uniformly on all the arcs

(1)

where CΊ, C2 are positive constants and d(θ) is the smallest distance from eiθ

to the boundary of B.

THEOREM 1. {A modification of Hay man9 s theorem II) Suppose that B is
a bounded domain containing \ z \ < 1 and properly containing a set of arcs
z = eίθ, av<θ<βvy where

(2)

(3) Σ(&-«*) log — ^ - < oo.

Suppose that f(z) is regular in B and f(z) Φ 0, 1 in B. Then f(z) is of
bounded type in \ z \ < 1.

LEMMA 1. (Haymanfs theorem I) Suppose that f(z) is meromorphic in a
bounded domain B containing \z\^R. Let dR(θ) denote the distance ofz = Reίθ

from the boundary of B, and nR(θ) the total number of roots of the equations
f{z) = 0,1, distant at least dR(θ)/2 from the boundary of B. Then we have

m( R, ̂ -τ- ) ̂  A(p)\ log+ m(R,f) + log+ m[Rf-7

where

Here m(R,F) is the so-called " Schmiegungsfunktion" of F and A(p) depends
only on p.

The following two lemmas are also due to Hayman.

LEMMA 2. Under the hypotheses of Theorem 1, let 0 ̂  r < 1 and let dr{θ)
denote the distance of z — reίθ from the nearest frontier point of B. Then we
have uniformly in v and r

LEMMA 3. Suppose that B satisfies the conditions of theorem 1, then I(r)
is uniformly bounded for 0 ̂  r < 1.
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We should here remark that, under the hypotheses of Theorem 1, I(r)
reduces to the following form

1 Γ27Γ 1
) l d d

since nr(ff) = 0 for any 0 ̂  r < 1. By Lemma 2 and the relations (2) and (3) we
have immediately Lemma 3. Thus we do not use the finiteness of the order of
f(z) in B in Hayman's sense, although Hayman's original one is based on that
property.

Proof of Theorem 1. We make use of the first and second fundamental
theorems of Nevanlinna. Let F(z) be a regular function in B defined by the
relation

Then F{z) Φ 0,1, oo in B. By Lemmas 1, 2 and 3 we have

f ff \ / F'

g+ m(R, F) + log+ m(ll, jr)) + 0(1)

^ C2 log+ T (B, j ^ j +0(1) = C2 log+ T(R, f) + 0(1).

Similarly we have

m( R, ±=- ) <: C3 log+ T(R,f) + 0(1).

Since log+ |b | ̂  log+ \a — b\ + log+ | a | + log2, we can say that

f f \ I fm\R> 7 z τ ) ^ m

Thus we have

m(R> γzι + γ) = m(R>J/) + m{R'{

By the second fundamental theorem of Nevanlinna we have

m(R, jj + m(R, J^J) + miR'f) < ZT(R>f) ~ Ni(R) + S(R,f),

S(R,f) < m(s, ̂ P) + m(R, ̂  +

For the last term S(R,f) we have the following estimation

S(R,f)<C,log+T(R,f) +
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If T(R,f) is unbounded as jβ—>1, then we have

This implies the famous defect relation

where

By our assumption f(z) Φ 0,1, oo the left hand side is equal to three, which is
a contradiction.

4. Proof of the existence of an essential Picard's perfect set E.

Let Ez be a Cantor set on | z \ = 1 satisfying two conditions (2) and (3) in
Theorem 1. This is easy to construct as Hayman said. By (2) the one-dimen-
sional measure of Ez is equal to zero and hence Ez belongs to the class N% see
Ahlfors-Beurling [1].

Let U(p) be a symmetric disc neighborhood of a point P<BEZ with respect
to 131 = 1. We may assume that any two intersection points M, N of the
circumference of U(p) and | z \ = 1 do not lie on Ez. The perfectness of Ez

implies that d(M,Ez) and d(N,Ez) is bounded away from zero, where d(A, B)
indicates the Euclidean distance of two sets A and B. We shall map
U(p)rs{\z\<l} conformally onto \w\<l in such a manner that M, N cor-
respond to two points i, — i, respectively. Then the remaining part of U(p) is
conformally mapped onto | w \ > 1 by reflection of | w | < 1 through the semi-circle
{| w I = 1} ^ {- π/2 < arg w < ττ/2}. The image of Ez is denoted by Ew. Then
the derivative of the Riemann mapping function w(z) has its maximum and
minimum moduli in a fixed arc γε which is defined by {\z\ =1}^U(p) — (U^+ Uχ)f

where C7M and U£ are two ^-neighborhoods of M and N and satisfy diUu, Ez)>d> 0,
^(t/jj, Ez)>3>0. We denote these maximum and minimum of | w'(z) | on γε by
Ω and ωy respectively. Further any arc z — eίθ, av < θ < $v lying on γε is dis-
torted into a comparable arc, that is,

-ω(βv - av) ^Bv-Av^ ^Ωφv - Av), Av = arg w(eιa»), Bv =

Therefore we can say that

Further we must add two points i, — i to the set Ew. The series is then still
convergent. We can easily construct a domain Gw which contains each arc
\w\=l, AV<Θ<BV and three arcs related to two points i, — i properly and
contains | w | < 1.
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Let f(z) be a meromorphic function in Dz which is the complement of Ez

and has its essential singularities at each point of Ez. We assume that f(z)
excludes three distinct values in U(p). We may assume that f(z) excludes
three values 0, 1 and oo. Then f°z(w) also excludes 0, 1 and oo in Gw. There-
fore we can apply Theorem 1 and conclude that f°z(w) is of bounded type in
\w\ < 1. Similarly we can say that f°z(w) is of bounded type in |w\ > 1.
Therefore we have the desired fact.

THEOREM 2. There is an essential Picard's perfect set.

REMARK. Matsumoto's original problem is still open. Further the following
problem is also still open.

Does there exist an essential w-Picard's perfect set E for any n which does
not belong to the class JV$B?

We can further impose a condition due to Mat sumo to to our Cantor set.
This condition guarantees the existence of at most 3 Picard's exceptional values
for any meromorphic functions. Thus we can say that there exists an essential
Picard's perfect set which belongs to a class of 3-Picard's perfect set.

5. The linear meaure m(E) and its effect to the value distribution.

We shall discuss the effect of the linear measure m(E) of E to the value
distribution of some meromorphic functions.

THEOREM 3. Suppose that B is a bounded domain containing \ z \ < 1 and
properly containing a set of arcs z = eίθ, av < θ < βv, where

<oo.
Oίv

Suppose that f(z) is regular and f(z) ΦO, 1 in B and f(z) is not of bounded
type in \ z \ < 1. Then

i g Ί S τ(r,f)
2π ' r"i , 1

log 1 - r

LEMMA 4. Under the assumptions of Theorem 3, we have

dθs i{E) l + h + 0 ( 1 )

Proof of Lemma 4. By Lemma 2, we have
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Proof of Theorem 3. By a quite similar method as in Theorem 1 and by
Lemma 4 instead of Lemma 3, we have

S(r,/) < m(r, ̂ j + m(r, ^ + -J^j + 0(1)

Then we have

θ(0) + θ(l) + θ(oo) ̂  2 + lim - | ^ | |

Sm(E)
2πλ '

By the assumption the left hand side sum is equal to 3. Thus we have the
desired result.

COROLLARY. Under the assumptions of Theorem 3, if λ > 3m(E)/2π, then
f{z) has the Picard property.

REMARK. It is very plausible to explain a conjecture that the best possible
numerical factor is 1 instead of 3 in the above theorem and its corollary.
Further we can obtain a formal extension of Hayman's original theorem in our
case. From this extension we can also say that there occurs an effect of m(E)
to the value distribution of a sort of meromorphic functions.
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