A DISTORTION THEOREM OF UNIVALENT FUNCTIONS RELATED TO SYMMETRIC THREE POINTS

BY NOBUYUKI SUITA

1. Let Σ be a family of functions g(z) meromorphic and univalent for |z| > 1 with Laurent expansion for |z| > 1 given by

$$g(z)=z+c_0+\frac{c_1}{z}+\cdots.$$

The distortion inequality

$$\frac{(1-r^{-2})^2}{4r^2(1+r^{-2})^2} \leq \frac{\mid g'(z)g'(-z)\mid}{\mid g(z)-g(-z)\mid^2} \leq \frac{(1+r^{-2})^2}{4r^2(1-r^{-2})^2} \qquad (z=re^{i\theta})$$

for g(z) belonging to Σ is easily obtained by combining the classical results. It can be also shown that the left and right equalities are attained by the functions $z + e^{i2\theta}z^{-1}$ and $z - e^{i2\theta}z^{-1}$ respectively.

We are concerned in the present paper with an analogous problem relating to symmetric three points z, $ze^{i2\pi/3}$ and $ze^{i4\pi/3}$. Analogous bounds will be obtained and the extremal functions will be closely connected with the above two functions. We remark that a known coefficient inequality $|c_2| \leq 2/3$ can be proved from our theorem with respect to Σ ([2], [5], [6]) and that a distortion theorem of this type relating to four points cannot be obtained by using elementary functions as extremal functions. We use Jenkins' general coefficient theorem ([3], [4]) to prove our theorem and make a slight discussion to verify the extremal functions.

2. We now state the theorem.

THEOREM. For all functions g(z) belonging to Σ the inequalities

$$egin{aligned} rac{(1-r^{-3})}{3\sqrt{3}\,r^3(1+r^{-3})^3} &\leq rac{\mid g'(z)g'(z\omega)g'(z\omega)'\mid |g(z\omega)'\mid |g(z\omega)$$

hold where $z = re^{i\theta}$, r > 1 and $\omega = e^{i2\pi/3}$. The left equality occurs only for the function $g(z) = z(1 + e^{i3\theta}z^{-3})^{2/3} + k$ and the right only for the function $g(z) = z(1 - e^{i3\theta}z^{-3})^{2/3} + k$ with k as an arbitrary constant.

Proof. We first prove the left inequality. We set $R_j = r(1 + r^{-3})^{2/3}\omega^j$, j = 0, 1, 2, and consider a quadratic differential

Received October 29, 1961.

$$Q(w) dw^2 = \frac{w dw^2}{(w - R_0)^2 (w - R_1)^2 (w - R_2)^2}$$

on the w-plane. We denote by \varDelta the complementary domain of the union of three segments $[0, 2^{2/3}\omega^j]$, j = 0, 1, 2, which is evidently an admissible domain with respect to $Q(w)dw^2$ ([4]). The function $g_0(z) = z(1+z^{-3})^{2/3}$ maps the exterior of the unit circle onto \varDelta . Let $\varPhi(w)$ be the inverse of $g_0(z)$ and put

$$u(z) = g(\Phi(w))$$

for any g(z) belonging to Σ . We define v(w) by the equation

(1)
$$\frac{v-R_{j}}{v-R_{j+1}}\frac{R_{j+2}-R_{j+1}}{R_{j+2}-R_{j}} = \frac{u-u_{j}}{u-u_{j+1}}\frac{u_{j+2}-u_{j+1}}{u_{j+2}-u_{j}} \pmod{3}$$

where $u_j = u(R_j)$. Then v(w) becomes an admissible function associated with \varDelta ([4]). The quadratic differential $Q(w)dw^2$ has only three double poles at the points R_j for j = 0, 1, 2 and its local expansion in a neighborhood of each R_j with a local parameter $W = (w - R_j)^{-1}$ is of the form

 $Q(W) = \alpha_i W + \text{decreasing powers of } W$

where $\alpha_j = 1/3R_0^3$. On the other hand v(w) has the expansion, with the same parameter,

$$v(W) = a_J W +$$
decreasing powers of W

where

$$a_{j} = \frac{(R_{j+1} - R_{j+2})(u_{j} - u_{j+1})(u_{j+2} - u_{j})}{(R_{j} - R_{j+1})(R_{j+2} - R_{j})(u_{j+1} - u_{j+2})} \frac{g_{0}'(r\omega^{j})}{g'(r\omega^{j})} \pmod{3}.$$

Then the general coefficient theorem ([4]) is available and we get

(2)
$$\operatorname{Re}\sum_{j=0}^{2} \alpha_{j} \log \alpha_{j} \leq 0, \quad \text{i. e.} \quad \sum_{j=0}^{2} \log |\alpha_{j}| \leq 0$$

which implies that

$$\frac{|u_0 - u_1||u_1 - u_2||u_2 - u_0|}{|R_0 - R_1||R_1 - R_2||R_2 - R_0|} \left|\frac{g_0'(r)g_0'(r\omega)g_0'(r\omega^2)}{g'(r)g'(r\omega)g'(r\omega^2)}\right| \leq 1.$$

We have the desired inequality for real r. In fact, by inserting $|R_j - R_{j+1}| = \sqrt{3} r (1 + r^{-3})^{-1/3}$ and $g_0'(r\omega) = (1 + r^{-3})^{-1/3} (1 - r^{-3})$, we get

(3)
$$\frac{(1-r^{-3})^3}{3\sqrt{3}r^{3}(1+r^{-3})^3} \leq \prod_{j=0}^{2} \left| \frac{g'(r\omega^{j})}{g(r\omega^{j}) - g(r\omega^{j+1})} \right|.$$

For general $z, z = re^{i\theta}$, it is only necessary to insert $G(z) = e^{i\theta}g(e^{-i\theta}z)$ in (3) instead of g(z).

We can only conclude that $|a_j|=1$, j=0, 1, 2, from the equality assertion of the general coefficient theorem ([4]). Hence we make a slight discussion to show that equality occurs in (3) only for the function $g_0(z) = z(1+z^{-3})^{2/3} + k$

27

which implies the equality assertion in our theorem. We consider a function defined by

$$\zeta(w) = \int^w (Q(w))^{1/2} dw$$

in the complementary domain D of the union of the positive real axis and two segments $[0, R_1]$ and $[0, R_2]$. A suitable branch of $\zeta(w)$ maps the domain Donto a covering surface \mathfrak{D} of a horizontal strip $-2\pi(1/3R_0)^{1/2} \leq \mathrm{Im}\,\zeta \leq 0$. If the equality holds in (2), it is easily shown, in the same way as in the equality proof of the general coefficient theorem ([4]), that the induced mapping $\eta(\zeta)$ by the function v(w) maps any horizontal line in \mathfrak{D} onto a horizontal line in the η -plane and $\eta(\zeta)$ must be of the form $\pm \zeta + b$ with the projection ζ of \mathfrak{D} as a local parameter. Since v(w) fixes each R_j we deduce, by using its conformality in a neighborhood of the point at infinity, that $\eta(\zeta)$ must be the identity mapping, i. e. v(w) = w.

Thus we see from (1) that u(w) must be a linear function of w. Since $u(\infty) = \infty$ and $u'(\infty) = 1$, we have

$$u(w)=w+k,$$

k being a constant. This implies the equality assertion for real r.

In order to prove the right inequality, we consider a function $g_1(z) = z(1-z^{-3})^{2/3}$ and put $g_1(r\omega^j) = R_j^*$, j = 0, 1, 2. Taking a quadratic differential

$$Q^*(w) dw^2 = \frac{-w dw^2}{(w - R_0^*)^2 (w - R_1^*)^2 (w - R_2^*)^2},$$

we can prove the inequality in the same way as above. For the argument on the equality we consider

$$\zeta^*(w) = \int^w (Q^*(w))^{1/2} dw$$

in the w-plane slit along positive real axis and two segments $[0, R_1^*]$ and $[0, R_2^*]$ which are portions of the closure of orthogonal trajectories of $Q^*(w)dw^2$. The proof proceeds then on the same lines as before.

3. Let Σ_0 be a subfamily of Σ consisting of functions h(z) which do not take the value zero in |z| > 1. Then if h(z) belongs to Σ_0 , $f(z) = (h(z^{-1}))^{-1}$ is regular, univalent for |z| < 1 and normalized at the origin by f(0) = 0 and f'(0) = 1. It belongs to the so-called family S. We obtain the following corollary.

COROLLARY 1. If a function f(z) belongs to S we have

$$\frac{(1-r^3)^3}{3\sqrt{3}\,r^3(1+r^3)^3} \leq \frac{|f'(z)f'(z\omega)f'(z\omega^2)|}{\prod\limits_{j=0}^2 |f(z\omega^j) - f(z\omega^{j+1})|} \leq \frac{(1+r^3)^3}{3\sqrt{3}\,(1-r^3)^3} \qquad (z=re^{i\theta}).$$

The left equality occurs only for the function $f(z) = z\{(1 + e^{i\vartheta}z^3)^{2/3} + \omega^j tz\}^{-1}$ and the right only for the function $f(z) = z\{(1 - e^{i\vartheta}z^3)^{2/3} - \omega^j tz\}^{-1}$ where j = 0,

28

1, 2 and $0 \leq t \leq 2^{2/3}$.

Using our distortion theorem we can prove a known coefficient inequality $|c_2| \leq 2/3$ with respect to the family Σ ([2], [3], [4]).

COROLLARY 2. If g(z) belongs to Σ and has Laurent expansion about the point at infinity

$$g(z) = z + c_0 + \frac{c_1}{z} + \frac{c_2}{z^2} + \cdots,$$

then it holds that $|c_2| \leq 2/3$.

Proof. We use the left inequality in the theorem for real r. It is easily shown that

$$\left|\prod_{j=0}^2 g'(r\omega^j)\right| = \left|1 - \frac{6c_2}{r^3} + o\left(\frac{1}{r^3}\right)\right|$$

and

$$\prod_{j=0}^{2} |g(r\omega^{j}) - g(r\omega^{j+1})| = 3\sqrt{3} r \left| 1 + \frac{3c_2}{r^3} + o\left(\frac{1}{r^3}\right) \right|$$

Hence we have

$$\frac{1}{r^3}(-3\operatorname{Re} c_2+2+o(1))\geq 0.$$

By multiplying by r^3 and then letting r tending to infinity, we have $\operatorname{Re} c_2 \leq 2/3$. Since $e^{-i\theta}g(e^{i\theta}z)$ belongs to Σ for any real θ and we can choose θ such that $\operatorname{Re} c_2 e^{-i\theta} = |c_2|$, and we have

$$|c_2| \leq rac{2}{3}.$$

Finally we remark that the extremal functions for the distortion problem relating to symmetric four points are not given by the functions $z(1 \pm e^{i4\theta}z^{-4})^{1/2}$, i.e. the functions obtained by symmetrizing the functions $z \pm 2 + e^{i2\theta}/z$, contrary to the case of three points. Indeed, if it were valid, we would deduce an inequality $|c_3| \leq 1/2$. However it contradicts the result of Garabedian and Schiffer $|c_3| \leq 1/2 + e^{-6}$ ([1], [5]).

REFERENCES

- GARABEDIAN, P. R., AND M. SCHIFFER, A coefficient inequality for schlicht functions. Ann. Math. 61 (1955), 116-136.
- [2] GOLUSIN, G. M., Some evalutions of the coefficient of univalent functions. Mat. Sbor., N. s. 3 (1938), 321-330. (Russian)
- [3] JENKINS, J. A., A general coefficient theorem. Trans. Amer. Math. Soc. 77 (1954), 262-280.

NOBUYUKI SUITA

- [4] JENKINS, J. A., Univalent functions and conformal mappings. Ergebnisse, Springer-Verlag (1958).
- [5] JENKINS, J. A., Coefficients of univalent functions. Analytic functions. Princeton Univ. Press (1960), 161-197.
- [6] SCHIFFER, M., Sur un problème d'extrémum de la représentation conforme. Bull. Soc. Math. France 65 (1937), 48-55.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.