A DISTORTION THEOREM OF UNIVALENT FUNCTIONS RELATED TO SYMMETRIC THREE POINTS

By Nobuyuki Suita

1. Let Σ be a family of functions $g(z)$ meromorphic and univalent for $|z|$ >1 with Laurent expansion for $|z|>1$ given by

$$
g(z)=z+c_{0}+\frac{c_{1}}{z}+\cdots .
$$

The distortion inequality

$$
\frac{\left(1-r^{-2}\right)^{2}}{4 r^{2}\left(1+r^{-2}\right)^{2}} \leqq \frac{\left|g^{\prime}(z) g^{\prime}(-z)\right|}{|g(z)-g(-z)|^{2}} \leqq \frac{\left(1+r^{-2}\right)^{2}}{4 r^{2}\left(1-r^{-2}\right)^{2}} \quad\left(z=r e^{i \theta}\right)
$$

for $g(z)$ belonging to Σ is easily obtained by combining the classical results. It can be also shown that the left and right equalities are attained by the functions $z+e^{i 2 \theta} z^{-1}$ and $z-e^{i 2 \theta} z^{-1}$ respectively.

We are concerned in the present paper with an analogous problem relating to symmetric three points $z, z e^{i 2 \pi / 3}$ and $z e^{24 \pi / 3}$. Analogous bounds will be obtained and the extremal functions will be closely connected with the above two functions. We remark that a known coefficient inequality $\left|c_{2}\right| \leqq 2 / 3$ can be proved from our theorem with respect to $\Sigma([2],[5],[6])$ and that a distortion theorem of this type relating to four points cannot be obtained by using elementary functions as extremal functions. We use Jenkins' general coefficient theorem ([3], [4]) to prove our theorem and make a slight discussion to verify the extremal functions.
2. We now state the theorem.

Theorem. For all functions $g(z)$ belonging to Σ the inequalities

$$
\begin{aligned}
\frac{\left(1-r^{-3}\right)}{3 \sqrt{3} r^{3}\left(1+r^{-3}\right)^{3}} & \leqq \frac{\left|g^{\prime}(z) g^{\prime}(z \omega) g^{\prime}\left(z \omega^{2}\right)\right|}{|g(z)-g(z \omega)|\left|g(z \omega)-g\left(z \omega^{2}\right)\right|\left|g\left(z \omega^{2}\right)-g(z)\right|} \\
& \leqq \frac{\left(1+r^{-3}\right)^{3}}{3 \sqrt{3} r^{3}\left(1-r^{-3}\right)^{3}}
\end{aligned}
$$

hold where $z=r e^{i \theta}, r>1$ and $\omega=e^{i 2 \pi / 3}$. The left equality occurs only for the function $g(z)=z\left(1+e^{i 3 \theta} z^{-3}\right)^{2 / 3}+k$ and the right only for the function $g(z)$ $=z\left(1-e^{i 3 \theta} z^{-3}\right)^{2 / 3}+k$ with k as an arbitrary constant.

Proof. We first prove the left inequality. We set $R_{\rho}=r\left(1+r^{-3}\right)^{2 / 3} \omega^{j}$, $j=0,1,2$, and consider a quadratic differential

Received October 29, 1961.

$$
Q(w) d w^{2}=\frac{w d w^{2}}{\left(w-R_{0}\right)^{2}\left(w-R_{1}\right)^{2}\left(w-R_{2}\right)^{2}}
$$

on the w-plane. We denote by Δ the complementary domain of the union of three segments $\left[0,2^{2 / 3} \omega^{j}\right], j=0,1,2$, which is evidently an admissible domain with respect to $Q(w) d w^{2}([4])$. The function $g_{0}(z)=z\left(1+z^{-3}\right)^{2 / 3}$ maps the exterior of the unit circle onto Δ. Let $\Phi(w)$ be the inverse of $g_{0}(z)$ and put

$$
u(z)=g(\Phi(w))
$$

for any $g(z)$ belonging to Σ. We define $v(w)$ by the equation

$$
\begin{equation*}
\frac{v-R_{J}}{v-R_{J+1}} \frac{R_{J+2}-R_{J+1}}{R_{J+2}-R_{J}}=\frac{u-u_{J}}{u-u_{J+1}} \frac{u_{\jmath+2}-u_{J+1}}{u_{J+2}-u_{J}} \quad(\bmod 3) \tag{1}
\end{equation*}
$$

where $u_{J}=u\left(R_{j}\right)$. Then $v(w)$ becomes an admissible function associated with Δ ([4]). The quadratic differential $Q(w) d w^{2}$ has only three double poles at the points R_{J} for $j=0,1,2$ and its local expansion in a neighborhood of each R_{J} with a local parameter $W=\left(w-R_{j}\right)^{-1}$ is of the form

$$
Q(W)=\alpha_{3} W+\text { decreasing powers of } W
$$

where $\alpha_{j}=1 / 3 R_{0}{ }^{3}$. On the other hand $v(w)$ has the expansion, with the same parameter,

$$
v(W)=a_{J} W+\text { decreasing powers of } W
$$

where

$$
a_{J}=\frac{\left(R_{\jmath+1}-R_{J+2}\right)\left(u_{J}-u_{j+1}\right)\left(u_{\jmath+2}-u_{j}\right)}{\left(R_{J}-R_{j+1}\right)\left(R_{\jmath+2}-R_{j}\right)\left(u_{\jmath+1}-u_{\jmath+2}\right)} \frac{g_{0}{ }^{\prime}\left(r \omega^{j}\right)}{g^{\prime}\left(r \omega^{j}\right)} \quad(\bmod 3) .
$$

Then the general coefficient theorem ([4]) is available and we get

$$
\begin{equation*}
\operatorname{Re} \sum_{j=0}^{2} \alpha_{\jmath} \log a_{\jmath} \leqq 0, \quad \text { i. e. } \sum_{\jmath=0}^{2} \log \left|a_{\jmath}\right| \leqq 0 \tag{2}
\end{equation*}
$$

which implies that

$$
\frac{\left|u_{0}-u_{1}\right|\left|u_{1}-u_{2}\right|\left|u_{2}-u_{0}\right|}{\left|R_{0}-R_{1}\right|\left|R_{1}-R_{2}\right|\left|R_{2}-R_{0}\right|}\left|\frac{g_{0}{ }^{\prime}(r) g_{0}{ }^{\prime}(r \omega) g_{0}{ }^{\prime}\left(r \omega^{2}\right)}{g^{\prime}(r) g^{\prime}(r \omega) g^{\prime}\left(r \omega^{2}\right)}\right| \leqq 1 .
$$

We have the desired inequality for real r. In fact, by inserting $\left|R_{\jmath}-R_{\jmath+1}\right|$ $=\sqrt{3} r\left(1+r^{-3}\right)^{-1 / 3}$ and $g_{0}{ }^{\prime}(r \omega)=\left(1+r^{-3}\right)^{-1 / 3}\left(1-r^{-3}\right)$, we get

$$
\begin{equation*}
\frac{\left(1-r^{-3}\right)^{3}}{3 \sqrt{3} r^{3}\left(1+r^{-3}\right)^{3}} \leqq \prod_{j=0}^{2}\left|\frac{g^{\prime}\left(r \omega^{j}\right)}{g\left(r \omega^{j}\right)-g\left(r \omega^{j+1}\right)}\right| \tag{3}
\end{equation*}
$$

For general $z, z=r e^{i \theta}$, it is only necessary to insert $G(z)=e^{\imath \theta} g\left(e^{-i \theta} z\right)$ in (3) instead of $g(z)$.

We can only conclude that $\left|a_{j}\right|=1, j=0,1,2$, from the equality assertion of the general coefficient theorem ([4]). Hence we make a slight discussion to show that equality occurs in (3) only for the function $g_{0}(z)=z\left(1+z^{-3}\right)^{2 / 3}+k$
which implies the equality assertion in our theorem. We consider a function defined by

$$
\zeta(w)=\int^{w}(Q(w))^{1 / 2} d w
$$

in the complementary domain D of the union of the positive real axis and two segments $\left[0, R_{1}\right]$ and $\left[0, R_{2}\right]$. A suitable branch of $\zeta(w)$ maps the domain D onto a covering surface \mathfrak{D} of a horizontal strip $-2 \pi\left(1 / 3 R_{0}\right)^{1 / 2} \leqq \operatorname{Im} \zeta \leqq 0$. If the equality holds in (2), it is easily shown, in the same way as in the equality proof of the general coefficient theorem ([4]), that the induced mapping $\eta(\zeta)$ by the function $v(w)$ maps any horizontal line in \mathfrak{D} onto a horizontal line in the η-plane and $\eta(\zeta)$ must be of the form $\pm \zeta+b$ with the projection ζ of \mathfrak{D} as a local parameter. Since $v(w)$ fixes each R, we deduce, by using its conformality in a neighborhood of the point at infinity, that $\eta(\zeta)$ must be the identity mapping, i. e. $v(w)=w$.

Thus we see from (1) that $u(w)$ must be a linear function of w. Since $u(\infty)=\infty$ and $u^{\prime}(\infty)=1$, we have

$$
u(w)=w+k
$$

k being a constant. This implies the equality assertion for real r.
In order to prove the right inequality, we consider a function $g_{1}(z)$ $=z\left(1-z^{-3}\right)^{2 / 3}$ and put $g_{1}\left(r^{j}\right)=R_{3}^{*}, j=0,1,2$. Taking a quadratic differential

$$
Q^{*}(w) d w^{2}=\frac{-w d w^{2}}{\left(w-R_{0}{ }^{*}\right)^{2}\left(w-R_{1}{ }^{*}\right)^{2}\left(w-R_{2}{ }^{*}\right)^{2}}
$$

we can prove the inequality in the same way as above. For the argument on the equality we consider

$$
\zeta^{*}(w)=\int^{w}\left(Q^{*}(w)\right)^{1 / 2} d w
$$

in the w-plane slit along positive real axis and two segments [$0, R_{1}{ }^{*}$] and $\left[0, R_{2}{ }^{*}\right]$ which are portions of the closure of orthogonal trajectories of $Q^{*}(w) d w^{2}$. The proof proceeds then on the same lines as before.
3. Let Σ_{0} be a subfamily of Σ consisting of functions $h(z)$ which do not take the value zero in $|z|>1$. Then if $h(z)$ belongs to $\Sigma_{0}, f(z)=\left(h\left(z^{-1}\right)\right)^{-1}$ is regular, univalent for $|z|<1$ and normalized at the origin by $f(0)=0$ and $f^{\prime}(0)$ $=1$. It belongs to the so-called family S. We obtain the following corollary.

Corollary 1. If a function $f(z)$ belongs to S we have

$$
\frac{\left(1-r^{3}\right)^{3}}{3 \sqrt{3} r^{3}\left(1+r^{3}\right)^{3}} \leqq \frac{\left|f^{\prime}(z) f^{\prime}(z \omega) f^{\prime}\left(z \omega^{2}\right)\right|}{\prod_{\jmath=0}^{2}\left|f\left(z \omega^{j}\right)-f\left(z \omega^{j+1}\right)\right|} \leqq \frac{\left(1+r^{3}\right)^{3}}{3 \sqrt{3\left(1-r^{3}\right)^{3}}} \quad\left(z=r e^{i \theta}\right) .
$$

The left equality occurs only for the function $f(z)=z\left\{\left(1+e^{i 3 \theta} z^{3}\right)^{2 / 3}+\omega^{\prime} t z\right\}^{-1}$ and the right only for the function $f(z)=z\left\{\left(1-e^{i 3 \theta} z^{3}\right)^{2 / 3}-\omega^{\top} t z\right\}^{-1}$ where $j=0$,

1,2 and $0 \leqq t \leqq 2^{2 / 3}$.
Using our distortion theorem we can prove a known coefficient inequality $\left|c_{2}\right| \leqq 2 / 3$ with respect to the family Σ ([2], [3], [4]).

Corollary 2. If $g(z)$ belongs to Σ and has Laurent expansion about the point at infinity

$$
g(z)=z+c_{0}+\frac{c_{1}}{z}+\frac{c_{2}}{z^{2}}+\cdots,
$$

then it holds that $\left|c_{2}\right| \leqq 2 / 3$.
Proof. We use the left inequality in the theorem for real r. It is easily shown that

$$
\left|\prod_{j=0}^{2} g^{\prime}\left(r \omega^{j}\right)\right|=\left|1-\frac{6 c_{2}}{r^{3}}+o\left(\frac{1}{r^{3}}\right)\right|
$$

and

$$
\prod_{j=0}^{2}\left|g\left(r \omega^{j}\right)-g\left(r \omega^{j+1}\right)\right|=3 \sqrt{3} r\left|1+\frac{3 c_{2}}{r^{3}}+o\left(\frac{1}{r^{3}}\right)\right|
$$

Hence we have

$$
\frac{1}{r^{3}}\left(-3 \operatorname{Re} c_{2}+2+o(1)\right) \geqq 0 .
$$

By multiplying by r^{3} and then letting r tending to infinity, we have $\operatorname{Re} c_{2} \leqq 2 / 3$. Since $e^{-i \theta} g\left(e^{i \theta} z\right)$ belongs to Σ for any real θ and we can choose θ such that $\operatorname{Re} c_{2} e^{-i \theta}=\left|c_{2}\right|$, and we have

$$
\left|c_{2}\right| \leqq \frac{2}{3}
$$

Finally we remark that the extremal functions for the distortion problem relating to symmetric four points are not given by the functions $z\left(1 \pm e^{i 4 \theta} z^{-4}\right)^{1 / 2}$, i. e. the functions obtained by symmetrizing the functions $z \pm 2+e^{i 2 \theta} / z$, contrary to the case of three points. Indeed, if it were valid, we would deduce an inequality $\left|c_{3}\right| \leqq 1 / 2$. However it contradicts the result of Garabedian and Schiffer $\left|c_{3}\right| \leqq 1 / 2+e^{-6}$ ([1], [5]).

References

[1] Garabedian, P. R., and M. Schiffer, A coefficient inequality for schlicht functions. Ann. Math. 61 (1955), 116-136.
[2] Golusin, G. M., Some evalutions of the coefficient of univalent functions. Mat. Sbor., N. s. 3 (1938), 321-330. (Russian)
[3] Jenkins, J. A., A general coefficient theorem. Trans. Amer. Math. Soc. 77 (1954), 262-280.
[4] Jenkins, J. A., Univalent functions and conformal mappings. Ergebnisse, Springer-Verlag (1958).
[5] Jenkins, J. A., Coefficients of univalent functions. Analytic functions. Princeton Univ. Press (1960), 161-197.
[6] Schiffer, M., Sur un problème d'extrémum de la représentation conforme. Bull. Soc. Math. France 65 (1937), 48-55.

Department of Mathematics, Tokyo Institute of Technology.

