
ON FRACTIONAL ANGULAR DERIVATIVE

BY YUSAKU KOMATU

0. Introduction.

Let f(z) be an analytic function regular and with positive real part in the
half-plane $lz>0. It is well known by the main theorem of Julia [2] and
Wolff [4] on angular derivative that there exists a non-negative real constant
c such that

•^—>c and f'(z)->c
z

uniformly as z —• oo through any Stolz angle | arg z | ^ a < π/2. In a recent pa-
per [3] this theorem was supplemented by the corresponding behavior of the
derivative of higher order which states that f(z) satisfies further limit relations

and here the power n — 1 of z is best possible.
On the other hand, let F(z) be an analytic function regular and satisfying

I F(z) I < 1 in the unit circle | z \ < 1. The main theorem of Caratheodory [1]
on angular derivative states that there exists a positive real constant D, even-
tually equal to + oo, such that

1 — z

uniformly as z—>1 through any Stolz angle in \z\ < 1 with the vertex at 2 = 1,
where in the second relation D is supposed finite. In [3] this theorem was
supplemented by 'the statement that F(z) further satisfies

(1 - z)n-1Fw(z)~^0 (n = 2,3, •)

and here the power n — 1 of 1 — 2 is best possible.

A glance calls, however, our attention to a remarkable distinction between
the limit values of z^f^iz) or (l-z)ΐl-1dn(F(z)-l)/dzn with w = 0,l and n
= 2,3, . In the present paper we shall interpolate these limit relations by
introducing a notion of fractional calculus. By means of doing so, every set of
these results will be unified and further it will become naturally clear why
there is an apparent distinction mentioned above.

Now, we explain the fractional calculus which will be used below. Let, in
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general, g{z) be an analytic function regular in a domain G of the nature that
any point 2 e G can be connected with a fixed point z0 by a rectilinear segment
in G except possibly the end-point z0. We first consider the fractional integra-
tion. Let q be any positive real number. The integral of order q of g(z) is
then defined by

where the branch of (z — Qql = exp((# — 1) \g(z — 0) is determined by taking
the principal value of logarithm, i. e. — π < arg(z — 0 = 3 lg(z — 0 ^ π and the
integration is supposed to be taken along the rectilinear segment connecting z0

with z. Putting ζ = zo-\-t(z — z0), we get

pi
( 1 "Jo zo + t(z -

This may be also regarded as the derivative of (negative) order — q. For q = 0,
the operation 3)° = £)~° is understood, of course, to reduce the identy:

= lim 4)-qg(z) = g{z).
+0

We next consider the fractional differentiation. Let p be any positive real
number and put

p = n — s n = — [— p] and 0 ^ s < 1

we may write here n = [p] + 1 unless p is an integer while n = p for an integer
p. The derivative of order p of g(z) is then, by definition, given by

An

If p is an integer, this coincides, of course, with the ordinary derivative of pth
order. Otherwise, it is written in the form

and, putting Itgain ζ — z0 + t(z — ZQ), it becomes

— \ • α - ί) 8" 1 ̂ (^o + t{z -

For the sake of brevity, we shall take zo = l throughout the following dis-
cussions. The point zQ is then, an interior point for 8te > 0 while it is a boundary
point for | z | < 1.

1. Functions with positive real part in a half-plane.

We begin with proving the following theorem on f(z).
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THEOREM 1. Let f(z) be an analytic function regular and with positive
real part in the half-plane dtz > 0. Then there exists a non-negative real
constant c such that the derivative of f{z) of any real order p satisfies the
limit relation

limz^-^/Y
W Γ(2-p)

valid uniformly as z tends to oo through any angular region \ arg z \ ^ a
<π/2.

Proof. Suppose first p = — q < 0. Since f(z)/z —> c uniformly as z —> oo along
any Stolz path, we have the relation

valid uniformly in the wider sense for 0 < t ^ 1. Hence we obtain

Γ(2 + q)

i.e.

The last relation holds, of course, also for p = 0.
Suppose next p > 0. If p is an integer, 1/Γ(2 — p) is equal to 1 or 0 for

p = 1 or p Ξ> 2 respectively, and hence the result to be shown reduces simply to
the previous known one. Consequently, we may assume that p is not an integer.
Put, as before, p = n — s with n = [p] + 1 . Then the defining equation of the
pth derivative

z ~1))dt

becomes, by performing out the repeated differentiation,

W{1+t{z - 1))dt

Applying the known asymptotic behaviors of fίιl\z) with integral v, we have
the relations

valid uniformly in the wider sense for 0 < t ^ 1. Inserting them, it follows that
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1 ~ t r K c t + 0 { 1 ) ) z d t

—. ly-w+i
( 1 ~

Jo

Γ(s-n

i.e.

This proves the theorem.

2. Functions bounded in a circle.

A theorem similar to theorem 1 holds for F(z). It is remarked that, since
F(z) is supposed bounded, its fractional derivative is well defined when the
boundary point 1 is taken as the lower bound of the integral involved.

THEOREM 2. Let F{z) be an analytic function regular and satisfying
I F(z) | < 1 in the unit circle \ z | < 1. Then there exists a positive real constant
D, eventually equal to + oo, such that the derivative of F(z) of any real order
p satisfies the limit relation

lim (z - iy~l$*(F(z) -1) = lim ({z - l)*-l&>F{z) -
l l\; " i v y w r ( i - p ) 2 - 1

- Γ(2-p)

vαίid uniformly as z tends to 1 through any angular region | arg (1 — z) | ^ a?
<π/2 in \z\<l. Here it is supposed that D is finite when p is positive.

Proof. The proof of the present theorem proceeds quite similarly as that
of theorem t. Suppose first p = — q <0 and D Φ + oo. Since as 2—>1 along any
Stolz path, we have the relation

F(l + t(z -1)) - 1 = (Dt + o(l))(s -1)

valid uniformly in the wider sense for 0 < t g 1. Hence we get

<D~«(F(z) -1) = (* " y Γ (1 - Qβ-̂ IM + o(l))(2 -1) dt

i.e.
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Let D = + oo. We write

-1)) = - ^ f \l - tr^
*(tf) Jo

Since, as z-*l along any Stolz path, 3fc((jFχi + t(z — 1)) - l)/(t(z — 1))) approaches
+ 00 uniformly in the wider sense for 0 < £ ^ l , the right side of the last equa-
tion also tends to +00. Consequently, the required limit relation holds also in
this case.

The result for p = 0 holds trivially.
Suppose next p > 0 and D Φ + 00. Based on the same reason as in the proof

of theorem 1, we may suppose that p is not an integer. Put p = n — s with n
= M + 1 . Then, performing out the repeated differentiation, the defining equa-
tion of the pth derivative becomes

-1) = *;* *' (1 - t)-KF<X + t(z -1)) - 1 ) dt
1 (s — n + 1 ) J 0

(z — ΛY-n+v

/ iΓ(s —

In view of the known asymptotic behaviors of Fw(z) with integral v, we have

C1 + (Dί + o(l))(« -1) (υ = 0),

Fw(l + t(z-l))=iD + o(l) (w = l ) f

UαXβ-D1-" (v = 2, fn)

valid uniformly in the wider sense for 0 < t ^ 1, provided D =£ + oo. It follows
that

s(2^"" j] -1} dt

i.e.

Since we have ^ l = ( ^ - l ) " V Π l - p ) > this proves the theorem.

It now becomes evident why the principal part in the asymptotic formula
for $)pf(z) or £)p(F(z) — 1) with non-integral p and integral p ^ 1 is exactly of
order z~p+i or (z — ϊ)~p+1, respectively, while that with integral p ^ 2 is of lower
order. In fact, 1/Γ(2 — p) is an entire function of p whose zero points coincide
just with the integers not less than 2.
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