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BY MASAO NAGASAWA

1. Introduction.

Nelson [8] introduced the notion of the adjoint process and discussed the
adjoint process of a recurrent diffusion without boundary.

We shall construct the adjoint process, which is unique by the uniqueness
of its invariant measure, of a diffusion with reflecting barrier, a typical recur-
rent diffusion with boundary and prove that it is again a diffusion with reflecting
barrier and that the results proved by Nelson [8] for self-adjoint diffusion re-
main valid.

Then, we shall determine the adjoint process of "the Markov process on
the boundary" of the diffusion with reflecting barrier introduced by Ueno [11]
(cf. [3]) in connection with the construction of diffusions with WentzelPs
boundary conditions.

A comment will be given about processes with more general boundary
conditions.

The author wishes to express his thanks to Prof. H. Umegaki, Mr. T. Ueno,
Mr. K. Satδ, and Prof. N. Ikeda who took interests in the problem and gave
him many suggestions in preparing this paper.

2. Preliminaries.

Let a compact metric space S be a state space, W a, path space of all right
continuous path functions w's from T=[0, oo) to S, B(S) the topological Borel
field of subsets of S, B{W) be the Borel field of subsets of W generated by
cylinder sets, and let {Px, x^S} be a system of probability measures on B(W)
satisfying the Markovian property. And let M={W; B(W); Px, X<ΞS} be a
Markov process.15 Denote by &(S) the space of all bounded i?(S)-measurable
functions and by C(S) the space of all continuous functions on S. These are
both Banach spaces with sup-norm. We write:

X(ΞS, and E^B(S);( i )

(ϋ)

(iii)

P(t, x, E) = Px(xt(w) e
Ttf(x) = Ex(f(xt(w))

Gaf(x) = Ex(^\-«tf(

E)
for

xt(w))

for
/ e

* ) .

MS);

for f(Ξ$(S) and <2>0,

Received July 20, 1961.
1) Definitions and notations concerning Markov processes are mainly those of Ito [4].
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and call them transition probabilities, semi-groups, and resolvents (or Green
operators) of the process, respectively.

We assume in addition that the process M has a property:

(A.I) Ga carries C(S) into C(S) for each a>0.

Then, M is strongly Markovian by the theorem of Watanabe [12]. In the
following Ga will be restricted on C(S). The generator G of the process is
defined by

(2.1) Gf = (a- Ga1)/ for / e <2)(G),

where the domain £)(G) of G is the range of Ga. Then we have

(2.2) (a - G)Gaf = f for / e C(S).

If M satisfies an additional condition

(A.2) Px(xt(w) e V for some 0<t<oo) = l,

for any non-null open subset V of S and any x^S, it is said to be recurrent.
A necessary and sufficient condition of the recurrence of the process M={W;
B(W); Px, X<BS} is given by

THEOREM 2.1. The process M is recurrent if and only if Px{σv<oo)>Of

for any non-null open set V and x^S, where σv is the first passage time
to F.2 )

The necessity is obvious. In order to show the sufficiency, we prove the
next stronger

PROPOSITION 2.1. Ex(σv(w))<oo, for any x<=S and any non-null open
subset V of S.

Proofs Take a non-null open subset Vi (ViCiV) and let / be a non-nega-
tive continuous function on S which is positive on Vi and vanishes on F c . 4 )

Then u = Gaf satisfies, for any x <Ξ VC,

Gu(x) = oGaf(x) = aEx( [°°e-atf(xt(w))dt) > 0,
\Jo /

by the assumption. Noting that Vc is compact and Gu belongs to C(S), we
find that

Gu(x)^ε>0 on Vc.

Applying the Dynkin's formula to σvAn and letting %-*oo, we have

2) <tγ(w) = inf{t: φ ) G 7 } if such t exists, and = oo otherwise.
3) This was communicated from K. Sato. The author's original proof was available

only for A-diffusions.
4) We denote by Vc the complement of V.
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for any x e S by the conservativity of the process M. This concludes the proof.

Let m be a finite invariant measure of the process M, that is, a finite
measure on B(S) satisfying

(2.3) f P(ί, x, ) m(ete) = m( ) for each t > 0.
Js

As the equivalent condition of the invariance of m, we have

PROPOSITION 2.2. T/ie following conditions are equivalent to each other;
for a finite measure m on B(S),

( i ) m is a invariant measure of M,

(ii) f Ttf(x)m(dx)=[ f(x)m{dx) for any / ε C ( S ) ,
JS JS

(in) [ aGaf(x)m(dx)= [ f(x)m(dx) for any / e C ( S ) ,
JS JS

(iv) ί Gf(x)m(dx) = 0 for any /e.φ(G).
Js

Proof The equivalence of (i) and (ii) is obvious. We have (ii)—>(iii) by
Fubini's theorem. According to right continuity of the path, the left hand side
of (ii) is right continuous in t, so (iii)->(ii) is obtained by the uniqueness of
Laplace transform. The equivalence of (iii) and (iv) is implied by (2.2), that
is, by the equality

f GGaf(x)m(dx)= [ aGaf(x)m(dx)-[ f(x)m(dx)f
JS JS JS

for any / e C ( S ) , completing the proof.

We define now the adjointness of Markov processes. Let Mί = {W; B(W);
PI, x^S} (i = 1,2) be Markov processes with the common path space W and
a common finite invariant measure m.

Then, the processes M1 and M2 are said to be adjoint to one another, if
they satisfy, letting Tt

ι and Tt

2 be semi-groups of M1 and M2 respectively,

(2.4) ( Ttif(x)g{x)m(dx) = [ f(x)Tt

2g(x)m{dx),
JS JS

for any /, g e C(S), and we write (Mψ = M2 (or M1 = (Mψ). If M= M*, it
is said to be self-adjoint (Umkehrbarkeit in KolmogorofΓs terminology [6]).

REMARK 2.1. The adjointness can be defined with respect to a sub-invariant
(or excessive) measure. But, if the process is conservative, a sub-invariant
measure is an invariant measure. Therefore, we shall need not consult with
sub-invariant measure in what follows.

PROPOSITION 2.3. (2.4) is equivalent to the following conditions:
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(2.5) f GU(x) g(x) m(dx) = f /(*) Gi g(x) m(dx),
JS JS

for any fg^ C(S) and a > 0 and

(2.6) f Gxf(x) g{x) m(dx) = f fix) G2g{x) m(dx),
JS JS

for any f e £DiGx) and g e £)(G2), where Gι

a and Gι are the resolvents and the

generators of Mι {i = 1,2), respectively.

The proof is completed by the same way as proposition 2.2.

3. The adjoint process of ^4-diffusion with reflecting barrier.

Let D be a connected domain with compact closure D in an iV-dimensional

orientable manifold of class C°°, and the boundary dD consists of a finite num-

ber of N — 1-dimensional hypersurface of class C3. Let M={WC; B{WC)\ Px,

a ε ί } be an ^.-diffusion with reflcting barrier, where Wc is the path space of

all continuous path functions w's from T r =[0, oo) to D. To be precise, given

a diffusion equation with boundary condition

(3.1)

where

and

dt
Lu(x) = 0

Au{x) = Δ

vt .(w\ — 1 n^3(t

lu(fi, x)

1u(x) +1

dψ(x)
τ) dx*

ίor

for

\j a{x) ι

dψ{x)
dx3

x<=

ι(x)

ij(x)

\ -1/2

)

D, t>

dD,

8u(x)

θψ(x)

dx3

are differential operators satisfying Ito's regularity conditions,5) denote by

p(t,x,y) the fundamental solution of (3.1) (cf. Ito [5]), and define a system of

transition probabilities {P(t, x, E)} by

5) alJ'(x) and b^x) are contravariant tensors on D, aiJ'(x) is strictly positive definite on D,
d2alJ/dxkdxl, dbι/dxk are uniformly Holder continuous, and a(x) = det {atj(x)) where aZj(x) is
the conjugate covariant tensor of alJ'(x). The boundary dD is represented by ψ{x) = 0 for
x e dD and ψ(x) > 0 for x^D in a neighborhood of any xo^dD.

6) We denote, taking aiJ'{x) as fundamental tensor, the volume element of D by dx
and the element of surface area on dD by dx.
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(3.3) P(t,x,E)=[ p(t,x,y)dy»
JE

Then, M is Markov process with {P(t, x, E)} as its transition probabilities.
We shall state some known properties of the process M which we need.

(B.I) For any ε > 0 and any x^D,

lim sup(l - P(t, x, Uε{x)) = 0,
tiO xeD

where Uε(x) is β-neighborhood of x;

(B.2) P(t,x, U)>0, for any x ε ΰ , t>0 and non-null open subset U of S, and
P(f,x,D) = l;

(B.3) Mis strong Feller process, that is, the semi-group Tt maps &φ) into C(D);
(B.4) The semi-group Tt is strongly continuous in t ;> 0 as an operator on C(D),Ό

and the generator G of Tt is given by

(3.4) (? = iϊ(3),

where

(3.5) £F= {/: / e C2(5), L/(a) = 0 on 82>},

and A(£?) denotes the closure of the restriction of A on ff;

(B.5) M is recurrent.

For (B.1)~(B.4), see Ikeda, Sato, Tanaka and Ueno [3]. The recurrence of
M is implied by (B.2) and theorem 2.1. The process M has, therefore, the uni-
que^ finite invariant measure m by the theorem of Ueno [10], Maruyama and
Tanaka [7] and Hasminsky [2].

Denote by A° and L° the formal adjoint of A and L, respectively, that is,

A°u(x) = An{x) - j = - ^ φ{x)4W)vfa)) for x e D,

L°u{x) = ̂ ^- - bn(x) u(x) for x <= dD,
on

where bn(x)z=bι(x)ni{x), bx(x) and Ui(x) are those of (3.2), and define a family
£F° of functions by

(3.7) ^° = {/: / G C 2 ( 5 ) , L°f(x) = 0 on δZ)}.

Then, we have

PROPOSITION 3.1. The invariant measure m of the process M has a posi-
tive density function ψ with respect to dx such that (i) ψ^3° and (ii) A°ψ(x)
=0 on D. Conversely, if there exists such <ρ, then it is the density function
of the invariant measure of M.

7) See for example Yosida [13].
8) The uniqueness means "up to constant multiples".
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Proof. It readily follows from (B.2) and (B.3) that the measure m has a
density function ψι with respect to dx, and hence we have

_Gu(x)<pι(x)dx = 0,

for any u^£){G) by proposition 2.2. Noting that G=A(3), we have

f Af(x)φ1(x)dx = 0,
JD

for any /εff. Therefore, there exists φ>0 such that φ<^3°, A°φ(x) = 0 on
D and ^i(x) = φ(x) almost everywhere by theorem 5 of Ito [5] and by (B.2).
Conversely, let (i) and (ii) be satisfied by φ, then we have

0=f f(x)A°φ(x)dx-[ Af(x)φ(x)dx,
J D J D

for any / e £? by Green's formula, φ is, therefore, a density function of the
invariant measure of M by proposition 2.2, completing the proof.

In the following we shall use φ as the density function of m.
We now construct the adjoint process of the -4-diffusion M with reflecting

barrier, which is unique by the uniqueness of the invariant measure of M. We
first define A* and L* by

du(x)
(3.8) AU{X) = AU^ ' b { x ) W + 2a {X)—ft?

= Lu(x),

Then, it will be shown that an A*-diffusion with reflecting barrier M* = {Wc

5(ΐfc); P i , CCGJD} can be constructed in the analogous way that Mis done.
Therefore M* has the same properties (B.1)~(B.5) of M, replacing PXi P(t,x,E)
and A by PΛ*, P*(t,x,E) and A*, respectively.

Define P*(t,x,E) by

(3.9) P*(ί, a?, # ) =

where p(t,y,x) is the fundamental solution of (3.1). Then {P*(t, x> E)} is a
transition probability.

THEOREM 3.1. There exists the A*-diffusion with reflecting barrier M*
= {WC; B(Wc)\ P*, x^D} with P*(t,x,E) as its transition probability whose
generator 6?* is given by

G* = A*(£F).

The A'diffusion M and the A*-diffusion M* are adjoint to one another.

We first state two lemmas.
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LEMMA 3.1. (i) ΞF=φ~1SF°, and (ii) A°(φu)(x) = φ(x)A*u(x), for any u
^C2Φ) and χ(ΞD.

Proof. (i) For any u e £F, we have

τ τ

and for any v G

c
d'

This implies £F =
(ii) Noting that

Ψ2

dφ
l~ dn

\dnψ

u 1 φ

dφ
dn

du
dn

υ)

dφ
dn

<f2

dφ du
Δ{ψa) = Λφu + 2ax^ ^

we have

A°(φu) = ̂ A° ̂ > + φA* u = φA* u,

since A°φ{x) = 0 o n D , completing the proof.

Next we reformulate the Green's formula as follows,

LEMMA 3.2. For any u,v^ C\D), we have

1 {u(x) Av(x) — v(x) A* u(x)} <p(x) dx
(3.10)

= — 1 {u(x) Lv(x) — v(x) L* u(x)} <p(x) dx,
JdD

where L* — h — d/dn.

Proof. By Green's formula and lemma 3.1, we have

{ψ(x) u(x) Av(x) — v(x) ψ(x) A* u(x)} dx
J

= — I \ φ(x) u(x) - — v(x) ψ- + bn(x) v{x) φ(x) u(x) \ dx
JdDK dn dn J

but

v(x) — bn(x) v(x) φ{x) u(x) =

for x<=dD, since φ^ΞF°. Thus (3.10) is obtained.

Proof of Theorem 3.1. It follows from lemma 3.1 (i) that ΞF° is dense in
Cφ). Using Ito's results [5] which state the existence, uniqueness and bounded-
ness of the solution /e£F° of (a — A°)f = g for any uniformly Holder continu-
ous function g on D, we may conclude that A°{3°) is the generator of a strongly
continuous semi-group Tt° on Cφ). Further, Tt° is given by
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Tt°f(x)=[ p(t,y,x)f(y)dy,
JD

which follows from the uniqueness of Laplace transform of Tt°f(x).

We now define a semi-group T? by

(3.H) Ttf φ

then T? is strongly continuous in t ^ 0 with the generator G* and with the
norm || Tt* || ̂  1.

Let /<Ξ2% then ^/e£F° by lemma 3.1, and hence φf^2){G°) implying

G°{φf){x) =A°(φf)(x) = φ(x)A*f{x) for x e= D.

Thus we have

G*f(x) = -4"vG°{ψf){x) = A*f(x) for X G A

which implies A*(£F) c G*, therefore G* = A*(£F). This permits us to construct
the A*-diffusion M* with reflecting barrier in the same way as M is done.

Next, we have by lemma 3.2 that

(3.12) ( f{x)Ag{x)ψ{x)dx~[ g(x)A*f(x)φ(x)dx=0,

for any f,ge&. Since G = A(0) and G* = A*(£F), (3.12) implies

I _ u(x) Gv(x) φ(x) dx= \G* U(X) V(X) φ(x) dx,

for any v G £)(G) and u e $(G*). Thus M and M* are adjoint to one another
by proposition 2.3. This completes the proof.

By a formal modification of Nelson's proof for our case ([8], [6]), we have

THEOREM 3.2. The A-diffusion M with reflecting barrier is self-adjoint
if and only if there exists g e C^D) such that

(3.13) W = α " ( « 0 - ^ .

In this case, the density function φ of the invariant measure m is given by

(3.14)

Proof If M is self-ad joint, Af(x) = A*f(x) for / e £ F . Thus we have
(3.13). Since an equality

\ Δu-vdx+\ aX3-7r-1^—dx——\ v^—dx
3D JD dx1 dx3 3dD dn

holds for ufv^ C2(D), we have
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(3.15)

for any / e £F. It follows from (3.15) and

dφ = dg
dx1 φdx1

that

\DAf(x) ψ(x) dx =

for any / e £F, therefore,

_

for any % e .$(<?), and hence ^ is a density function of the invariant measure
of M by proposition 2.2. Finally we have

by theorem 3.1, completing the proof.

REMARK 3.1. Above discussions remain valid when the boundary dD is
null, that is, D is a connected compact orientable manifold of class C°°, which
is just the case discussed by Nelson [8] when the coefficients of A are of class

4. The adjoint process of "the Markov process on the boundary".

In connection with the construction of diffusions with WentzelPs boundary
conditions, Ueno introduced the notion of "the Markov process on the boundary"
[11] (cf. [3]). We may conclude the existence of the process on the boundary
dD of the A-diffusion with reflecting barrier by Ueno [11]. According to

Sato's probabilistic construction, it is the Markov process MdD = {W; B(W);

Px, x^dD} whose path space W is the space of all right continuous path

functions w's from [0, oo) to ΘD, whose semi-group Tt is strongly continuous in

For any / e C(dD), the equation

(4.1) Au(x) = 0 for x e D and u(x) = f(x) for x e dD

has the unique solution MεC(ί) . We write u = Hf, and define (d/dri)H by

(4.2)

where
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(4.3) iZ> = {/: / e C(βD), Hf e

Then the generator G of T7, is the closure of (d/dn)H on W, that is,

(4.4) e = ±

(cf. Satδ [9] or [3]).

We also denote by (M*)dD the process on the boundary dD of the adjoint

process M* of M. The generator G* of the semi-group T? of (M*)θi) is given

by

(4.5) G* = -^H*(<D*),

where IT*/ is defined by φ-1H°(φf) with the solution H°{ψf) of A°w=0 in D
and u=φf on 92), and .0* is defined by (4.3), replacing H by H*.

PROPOSITION 4.1. The process MdD is recurrent and strong Feller. And
it has a finite unique invariant measure.

Proof. From the construction of MdD (cf. [9], [3]), we see that the transi-

tion probability P(t,x,E) of MdD is given by

(4.6) P(t,x,E)=\ p(t,x,y)dy,

for each x^dD and E^B(dD), where p(t,x,y) is the fundamental solution of

(3.1) which is a continuous function of (t,x,y) in (0, oo)χ DxD (see [3]). This

implies that MdD is strongly Feller process and that P(t, x,U)>0 for any non-

null open subset U of dD. Further, MdD is recurrent by theorem 2.1, and

hence has a finite unique invariant measure m.10) This completes the proof.

The above proposition is available for the process (M*)dD.

THEOREM 4.1. The processes MdD and (M*)dB have the common unique
invariant measure m which is represented by the density φ of the invariant
measure m of M {and M*) as

(4.7) m(E) = f <p(x) dx for E e= B(ΘD).
JE

The adjoint process (MdD)* of MdD is (M*)ΘI?, symbolically we write

(4.8) (MdD)* = (M*)dD.

Proof. It follows from lemma 3.2 that

9) The set 3) contains C\dΏ).
10) Cf. corollary A in appendix.



ADJOINT PROCESS OF A DIFFUSION 245

*9(x)-^ Hf(x) - Hf(x)^- H*g(x)} ψ(x) dx

= - f {H*g(x) AHf(x) - Hf(x) A*H*g(x)} ψ(x) dx = 0,
J D

for any / e 3) and g e .0*. Therefore, noting (4.4) and (4.5), we have

(4.9) ( Gf(x)g(x)ψ(x)dx=[ f(x)G*g(x)<p(x)dx,
JdD JdD

for any f<Ξ${G) and g(Ξ$(G*).
Setting g = 1 in (4.9), we have

(4.10) ί Gf{x) φ(x) dx = 0 for any / <= <3)(G),
JdD

and also we have

(4.11) f G*g(x) φ{x) dx = 0 for any g e &(G*).
JdD

(4.10) and (4.11) imply that ψ is the density founction of the invariant measure
of MdD and (M*)9Z) with respect to dx, and hence (4.9) implies that Mw and
(M*)dD are adjoint to one another, completing the proof.

5. A comment to process with more general boundary conditions.n)

In the proof of theorem 3.1, lemma 3.2 plays an essential role. We shall
note that lemma 3.2 can be extended to more general boundary conditions.

Let A and A° be given by (3.2) and (3.6), respectively. L and L° be de-
fined by

(5.1) Lfix) = ̂ ^- + Bf{x) for x e= ΘD,

and

(5.2) L°f(x) = ̂ ~ - bn(x) f(x) + B°fix) for x e ΘD,

where

Bfix) = Δfix) + 0ι(x)^~- d = l,2, ;N-l),

and

(t = l,2,---,.tf-l)f

11) This owes to a discussion with K. Satδ.
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respectively, and Δf(x) and a(x) is given by

(5.3) 2f(x) = Λ^A^(a{x)a-(x)^-) (i, j = l,2,.

and dx = a(x)dx1dx2 — dx*'1. {alJ(x)} is a sufficiently smooth (not necessarily
strictly) positive definite contravariant tensor on dD.

Further, we define ΞF and £F° by

(5.4) £F = = { / : / e C2(D), Lf(x) = 0 on 3D},

and

(5.5) £F° = {/: / e C2CD), L°jf (&) = 0on

If there exists such positive ψ e 3"° that A°ψ{x) = 0 for a e D, we can de-
fine A* by (3.8), L* by

(5.6) L*f(x) = ̂ ^~ + B*f(x) for α; e 92),

where

B-m - 2m -
and define £F* by

(5.7) £F* = {/: / G C 2 ( ΰ ) , L*/(αO=0 on

Then lemma 3.2 may be generalized as follows:

LEMMA 5.1. For any u,v^ C2(D), we have

{u(x) Av(x) — v(x) A*u(x)} ίp(x) dx

(5.8) U

= — \ {u(x)Lv(x) — v(x) L*u(x)} ψ(x) dx.
JdD

Proof. It follows from Green's formula and lemma 3.1 that

{u(x) Av{x) — v(x) A*u{x)} ψ{x) dx

f f dv du (dip . \ ) , ^
= — \φu-^ vφ-^—- — uv\^~ onφ )\dx

JdD I On r dn \dn \/J

- ί {uvB°ψ - (Bv) uψ + (B*u) vφ} dx
JdD

= I + II, say.

But, we have
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- II = I {uvB°φ - vB°(uφ) + (B*u)vφ}dx=0,
JdD

since B°(uφ) = φB*u + uB°φ, completing the proof.

We can state some results which follow directly from lemma 5.1, for example,

1. // A(3) and A*(£F*) are generators of strongly continuous semi-groups,
then the A-diffusion M and the A*-diffusion M* determined by A(β) and
A*(&*)f respectively, are adjoint to one another;

2. / / the boundary condition is given by

and if the A-diffusion M determined by (A, L) is self-adjoint, then it is the
diffusion with reflecting barrier.

APPENDIX. Notes on the invariant measure of Markov processes.

Maruyama and Tanaka [7], Ueno [10] and Hasiminsky [2] proved the ex-
istence of the unique ^-finite invariant measure of Markov processes under some
different conditions each other. But an observation of their proofs permits us
to state the theorem under slightly weaker conditions.

Let M={W; B(W); Px, x^S} be a Markov process, where S is locally
compact metric space and W is the right continuous path space. The conditions
are

(1°) M is recurrent

(2°) huf(-) = E.(f(xσu)) is continuous in S-U foτ any /eC(C7), where

U is non-null open subset of S and σu is the first passage time to U;

(3°) Ga maps C(S) into C(S).

Then we have

THEOREM A. The Markov process satisfying the conditions (1°), (2°) and
(3°) has the unique σ-finite invariant measure m of the form

(AM) m(A) =

where τ(w) = σu2(w) + <τui(wϊU2),12:> Ui and U2 are non-null open subsets of S

with compact closures Uι and U% such that Ui Π U2 = 0. &ui and &uz are the

first passage time to Ui and U2, respectively.

The proof of the existence of m had been obtained by Ueno [10]13) under
the conditions (1°), (2°) and (3°) (cf. Hasiminsky [2] for the proof of the in-
variance of m). The uniqueness follows from Maruyama and Tanaka [7].

12) ( 0

13) Ueno's expression of the invariant measure is different from (A°.l). Under his
"maximal principle", however, it may be reduced to this form.
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Hence we have

COROLLARY A. Let M={W; B(W); Px, x^S} be a recurrent Markov
process, where S is a compact metric space and W is the right continuous path
space. If M is strongly Feller, then it has the unique finite invariant
measure.

This follows from

LEMMA A. Let M be the Markov process in the above corollary. Then M

has the Property (2°).

The lemma was first proved by Girsanov (cf. lemma 4.3 in [1]) for the pro-

cess with continuous paths. But the proof is also applicable for the present

case with a little change. We need only to note that the process is conservative

and that the right continuity of paths is equivalent, if the state space S is

compact, to the validity of supzes(l — P(t, x, U£(x))) = O(t), where Ue(x) is ε-

neighborhood of x for any ε > 0.
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