ON THE GROWTH ON MINIMAL POSITIVE HARMONIC FUNCTIONS IN A PLANE REGION

By Mitsuru Ozawa

Under the same title Kjellberg [1] offered an important and suggestive result:

In any planar domain D, let v_{1}, \cdots, v_{n} be $n(\geqq 2)$ non-proportional minimal positive harmonic functions, tending to zero in a vicinity of every finite boundary point. Let ρ_{ν} be the order of v_{ν} defined by

$$
\rho_{\nu}=\varlimsup_{r \rightarrow \infty} \frac{\log M_{\nu}(r)}{\log r}, \quad M_{\nu}(r)=\max _{|z|=r} v_{\nu}(z) .
$$

Then it holds that

$$
\sum_{1}^{n} \frac{1}{\rho_{\nu}} \leqq 2
$$

Here n may be ∞.
In the present paper we shall give a perfect criterion for a point to be regular for the Dirichlet problem in terms of the growth of a certain functional. Our result may be considered so as to fill up the gap in case of $n=1$ which is excluded in the above theorem. We need some preparations on positive harmonic functions.

Let D be a planar domain bounded by an infinite number of analytic Jordan curves $\left\{C_{j}\right\}$ whose only one clustering point is the point at infinity. Let $P(D)$ be the class of positive harmonic functions in D with the vanishing boundary value at any finite boundary point. Let $G(D)$ and $K(D)$ be two subclasses of $P(D)$ such that $u \in G(D)$ is equivalent to

$$
0<\int_{\Sigma_{1}^{\infty} C_{\nu}} \frac{\partial}{\partial n} u(z) d s<\infty
$$

and $u \in K(D)$ is equivalent to

$$
\int_{\Sigma_{1}^{\infty} C_{\nu}} \frac{\partial}{\partial n} u(z) d s=\infty .
$$

All classes $P(D), G(D)$ and $K(D)$ are evidently positively linear spaces. Martin [3] proved that any minimal positive harmonic function $m_{j}(z)$ can be obtained as the limit function

$$
m_{i}(z)=\lim _{n \rightarrow \infty} \frac{g\left(z, p_{i n}\right)}{g\left(z_{0}, p_{i n}\right)}
$$

along a suitable non-compact sequence ($p_{i n}$), where $g(z, p)$ is the Green func-
Received April 20, 1961.
tion of D with singularity at p. And further, any element $u \in P(D)$ can be written as a positively linear combination of these minimals:

$$
u(z)=\int_{\Delta} m(z) d \mu,
$$

where the integral is taken over the set Δ of Martin minimal point with a suitable non-negative Radon measure μ. In our previous paper [4] we proved that any minimal u in $G(D)$ is obtained as the limit function

$$
\lim _{n \rightarrow \infty} g\left(z, p_{n}\right)
$$

along a suitable non-compact sequence (p_{n}) and, if the above limit function exists and does not reduce to the constant zero, then the function belongs to the class $G(D)$. Therefore we can say that the irregularity of the point at infinity is equivalent to the fact $P(D) \equiv G(D)$ and the regularity of the point ∞ to the fact $P(D) \equiv K(D)$. Let D_{0} be the domain $r_{0}<|z|<\infty$. We may assume, with no loss of generality, that $D_{0} \supset D$. Then $P\left(D_{0}\right) \equiv G\left(D_{0}\right)$ holds and further there is a one-to-one positively linear mapping S from $G(D)$ into $P\left(D_{0}\right)$ which preserves the singularity and the minimality and, if $G(D)$ is of dimension one, S reduces then to an onto mapping and vice versa [2], [4]. The dimension of a linear space means here the maximal cardinal number of linearly independent vectors.

By its construction $S u \geqq u$ for any $u \in G\left(D_{0}\right)$. Since $S u$ has the expression $N \log \left(|z| / r_{0}\right)$ with a positive constant N, we can say that

$$
\varlimsup_{z \rightarrow \infty} \frac{u(z)}{\log |z|} \leqq \varlimsup_{z \rightarrow \infty} \frac{S u(z)}{\log |z|}=N<\infty .
$$

If u has the growth $\varlimsup_{z \rightarrow \infty} u(z) / \log |z|=+\infty$ and belongs to the class $G(D)$, then $S u$ has the growth $\lim _{z \rightarrow \infty} S u(z) / \log |z|=+\infty$, which is a contradiction. If there holds $\lim _{z \rightarrow \infty} u(z) / \log |z|<N<\infty$ for a function $u \in P(D)$ and if $u(z)$ $\in K(D)$, then $S u(z) \equiv \infty$. On the other hand, $S u(z) \leqq(N+\varepsilon)\left(\log |z|-\log r_{0}\right)$ holds by its construction, which is absurd. Therefore $u(z)$ must belong to the class $G(D)$.

Let $\psi(r)$ be the functional defined by

$$
\int_{[|z|=r\} \cap D} u(r, \theta) d \theta, \quad u(r, \theta) \equiv u(z) \in P(D) .
$$

By Green's formula, we get a relation

$$
-\int_{\{|z|=r\}_{\cap} D} \frac{\partial}{\partial n} u(r, \theta) d s=\int_{\sum_{1}^{\infty} C j_{\cap}\{|z|\langle r\}} \frac{\partial}{\partial n} u(r, \theta) d s .
$$

The left hand side is equal to $r \psi^{\prime}(r)$, since $u(r, \theta)=0$ on each C_{r}. Therefore we have

$$
r \psi^{\prime}(r)=t(r), \quad t(r)=\int_{\left.\sum_{1}^{\infty} C_{j} \cap|z|<r\right\}} \frac{\partial}{\partial n} u(r, \theta) d s
$$

$t(r)$ is a non-decreasing continuous function of r positive for $r>r_{1}$. For any
member u of $P(D)$ we have

$$
0<c \leqq \varlimsup_{R \rightarrow \infty} \frac{\psi(R)}{\log R} \leqq \varlimsup_{r \rightarrow \infty} \frac{2 \pi M(r)}{\log r}, \quad M(r)=\max _{|z|=r} u(z)
$$

When $t(r)$ is bounded, then we have

$$
\varlimsup_{R<\infty} \frac{\psi(R)}{\log R} \leqq N<\infty, \quad N=\lim _{R \rightarrow \infty} t(R)
$$

This is the case when the point at infinity is an irregular point, since $t(r)$, then, is bounded.

Theorem 1. If the point at infinity is an irregular point of D for the Dirichlet problem, then $G(D)$ is of dimension one, $K(D)$ is empty and $u \in G(D)$ has the growth

$$
0<c \leqq \varlimsup_{z \rightarrow \infty} \frac{u(z)}{\log |z|} \leqq N<\infty .
$$

If there hold the above inequalities for a function $u(z) \in P(D)$, then $u(z)$ $\in G(D)$ and $z=\infty$ is an irregular point.

The above theorem gives a characterization of the regularity and the irregularity of a point.

Corollary 1. If $z=\infty$ is a regular point, then there exists at least a member $u(z)$ of $P(D)$ satisfying

$$
\varlimsup_{z \rightarrow \infty} \frac{u(z)}{\log |z|}=+\infty,
$$

and vice versa.
We shall give another perfect criterion for the regularity by making use of the functional $\psi(r)$.

Corollary 2. The point at infinity is a regular point for the Dirichlet problem if and only if there exists at least one minimal positive harmonic function satisfying the following condition

$$
\lim _{r \rightarrow \infty} \frac{\psi(r)}{\log r}=+\infty
$$

Proof. Let $z=\infty$ be a regular point, then we have $\lim _{r \rightarrow \infty} t(r)=+\infty$ and hence

$$
\psi(r)-\psi\left(r_{1}\right)=\int_{r_{1}}^{r} \frac{t(x)}{x} d x
$$

satisfies

$$
\lim _{r \rightarrow \infty} \frac{\psi(r)}{\log r}=+\infty
$$

It there holds the above equality for a minimal positive harmonic function $u(z)$, then we have

$$
\lim _{r \rightarrow \infty} \frac{M(r)}{\log r}=+\infty, \quad M(r)=\max _{|z|=r} u(z)
$$

since there holds

$$
\psi(r) \leqq 2 \pi M(r)
$$

Hence we can say by theorem 1 that $z=\infty$ is a regular point.
Let γ_{n} be a sufficiently smooth curve lying in D and separating the origin from the point at infinity, which tends to the point at infinity for $n \rightarrow \infty$. Let G_{n} be the finite domain which is the intersection of the finite domain bounded by the curve γ_{n} and the domain D.

COROLLARy 3. If $z=\infty$ is a regular point, then there holds

$$
\lim _{n \rightarrow \infty} \frac{\omega_{n}(z)}{D_{n}\left(\omega_{n}\right)}=0
$$

where $\omega_{n}(z)$ is the harmonic measure $\omega\left(z, \gamma_{n}, G_{n}\right)$ and $D_{n}\left(\omega_{n}\right)$ the Dirichlet integral extended over the domain G_{n}.

Proof. Let G_{n}^{\prime} be the domain bounded by γ_{n} and C_{1}, and Ω_{n} be the harmonic measure $\omega\left(z, \gamma_{n}, G_{n}{ }^{\prime}\right)$. Then there holds the inequality

$$
\Omega_{m}(z) \geqq \omega_{m}(z), \quad z \in G_{m}^{\prime}
$$

This implies that there holds the inequality

$$
-\frac{\partial}{\partial n} \omega_{m}(z) \geqq-\frac{\partial}{\partial n} \Omega_{m}(z)
$$

on γ_{m}, where $\partial / \partial n$ is the inner normal derivative.
Thus there holds

$$
D_{m}\left(\omega_{m}(z)\right)=-\int_{r_{m}} \frac{\partial}{\partial n} \omega_{m}(z) d s \geqq-\int_{r_{m}} \frac{\partial}{\partial n} \Omega_{m}(z) d s=!D_{G_{m^{\prime}}}\left(\Omega_{m}\right)
$$

This implies that

$$
\frac{\omega_{m}(z)}{D_{m}\left(\omega_{m}\right)} \leqq \frac{\Omega_{m}(z)}{D_{G_{m^{\prime}}}\left(\Omega_{m}\right)}
$$

On the other hand, it is well known that the right hand side tends to the Green function $g_{B_{1}}(z, \infty)$ of an infinite domain B_{1} bounded by a single curve C_{1}. Therefore the left hand side, by taking a suitable subsequence if necessary, tends to either a non-trivial function $u \in P(D)$ or a trival function zero. If $u \in P(D)$, then u has the growth not greater than that of $g_{B_{1}}(z, \infty)$. On the other hand, $g_{B_{1}}(z, \infty)$ satisfies

$$
0<c \leqq \lim _{z \rightarrow \infty} \frac{g_{B_{1}}(z, \infty)}{\log |z|} \leqq N<\infty
$$

Therefore by theorem 1 we can say that $z=\infty$ is an irregular point.
Finally, we state a remark. Let $f(z)$ be such an integral function that
the point at infinity is an irregular point for a domain D on which $|f(z)|>1$ holds. Then $f(z)$ reduces to a polynomial. Indeed, $\log |f(z)|$ is a positive harmonic function on D vanishing identically on every finite boundary point. By theorem $1 \log |f(z)| / \log |z| \leqq N<\infty$ for any $|z|>r$. This shows that $f(z)$ is a polynomial.

References

[1] Kjellberg, B., On the growth of minimal positive harmonic functions in a plane region. Arkiv för Mat. 1 (1950), 347-351.
[2] Kuramochi, Z., Relations between harmonic dimensions. Proc. Jap. Acad. 30 (1954), 576-580.
[3] Martin, R. S., Minimal positive harmonic functions. Trans. Amer. Math. Soc. 49 (1941), 137-172.
[4] Ozawa, M., On a maximality of a class of positive harmonic functions. Kōdai Math. Sem. Rep. 6 (1954), 65-70.

Department of Mathematics, Tokyo Institute of Technology.

