
ON THE GROWTH ON MINIMAL POSITIVE HARMONIC
FUNCTIONS IN A PLANE REGION

BY MlTSURU OZAWA

Under the same title Kjellberg [1] offered an important and suggestive
result:

In any planar domain D, let vi, •••, vn be n (2^2) non-proportional
minimal positive harmonic functions, tending to zero in a vicinity of every
finite boundary point. Let pv be the order of vv defined by

pv = lim ̂ ^^2, Mv(r) = max ̂ (z).

T&ew it holds that
n "I

?-/τ-2

ί/ere τι mα?/ 6e oo.

In the present paper we shall give a perfect criterion for a point to be
regular for the Dirichlet problem in terms of the growth of a certain func-
tional. Our result may be considered so as to fill up the gap in case of n = 1
which is excluded in the above theorem. We need some preparations on posi-
tive harmonic functions.

Let D be a planar domain bounded by an infinite number of analytic
Jordan curves {C/} whose only one clustering point is the point at infinity.
Let P(D) be the class of positive harmonic functions in D with the vanishing
boundary value at any finite boundary point. Let G(D) and K(D) be two sub-
classes of P(D) such that u e G(D) is equivalent to

Γ 0
0< I -^—u(z)ds<oo

J ΣI Cv on

and u e K(D) is equivalent to

oo -^—
)Σ?cv On

All classes P(D), G(D) and K(D) are evidently positively linear spaces. Martin
[3] proved that any minimal positive harmonic function mj (z) can be obtained
as the limit function

along a suitable non-compact sequence (pin), where g(z, p) is the Green func-
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tion of D with singularity at p. And further, any element u e P(D) can be
written as a positively linear combination of these minimals:

u(z) = \ m(z) dμ,

where the integral is taken over the set Δ of Martin minimal point with a
suitable non-negative Radon measure μ. In our previous paper [4] we proved
that any minimal u in G(D) is obtained as the limit function

lim g(z, pn)
n-><χ>

along a suitable non-compact sequence (pn) and, if the above limit function
exists and does not reduce to the constant zero, then the function belongs to
the class G(D). Therefore we can say that the irregularity of the point at
infinity is equivalent to the fact P(D) = G(D) and the regularity of the point
oo to the fact P(D)=K(D). Let D0 be the domain r 0 <|z |<oo. We may
assume, with no loss of generality, that DQ^>D. Then P(D0)~G(Do) holds
and further there is a one-to-one positively linear mapping S from G(D) into
P(Z>o) which preserves the singularity and the minimality and, if G(D) is of
dimension one, S reduces then to an onto mapping and vice versa [2], [4].
The dimension of a linear space means here the maximal cardinal number of
linearly independent vectors.

By its construction Su^>u for any u <Ξ G(D0). Since Su has the expression
ΛΠog(| 2 |/r0) with a positive constant N, we can say that

— u(z) ^^- Su(z)
lim i — — r ^hm^j — , — -=N <oo.
*->oo log I 2 I z+oo log I z I

If u has the growth Iim2->oo u(z) / log | z \ = + 00 and belongs to the class G(D), then

Su has the growth liπίz^00Su(z)/log \z | = + oo, which is a contradiction. If
there holds ίίϊn^oo %(«) / log \z \<N< oo for a function UEΞP(D) and if u(z)
&K(D), then Su(z) = <χ>. On the other hand, Su(z) ^ (N+έ)Q.og \z |-logr0)
holds by its construction, which is absurd. Therefore u(z) must belong to the
class G(D).

Let ψ (r) be the functional defined by

f u(r, θ) dθ, u(r, ff) = u(z) e P(D).
J{lz\=r}^&

By Green's formula, we get a relation

Γ d C
- -τ^-u(r, θ) ds =

J { H ϊ = r W>9n jΣΐCjπ[\*
-

On
, θ) ds.

The left hand side is equal to rψ ̂ r), since u(r, θ) = 0 on each Cr. Therefore
we have

t(τ) is a non-decreasing continuous function of r positive for r > n. For any



182 MITSURU OZAWA

member u of P(D) we have

_ _ 2πM(r)
0 < c < lim T -̂ Γ ̂  lim — i — — , M(r) = max

~ + o o lOg R ~r->co ' V ' \z\=r

When t(r) is bounded, then we have

_
lim -

This is the case when the point at infinity is an irregular point, since t(r),
then, is bounded.

THEOREM 1. // the point at infinity is an irregular point of D for the
Dirichlet problem, then G(D) is of dimension one, K(D) is empty and u^G(D)
has the growth

0<c^I5ι5[^=JV<00

// there hold the above inequalities for a function u(z) e P(D), then u(z)
e G(D) and z = oo is an irregular point.

The above theorem gives a characterization of the regularity and the irre-
gularity of a point.

COROLLARY 1. // z = oo is a regular point, then there exists at least a
member u(z) of P(D) satisfying

!5kff^=+00'
and vice versa.

We shall give another perfect criterion for the regularity by making use
of the functional

COROLLARY 2. The point at infinity is a regular point for the Dirichlet
problem if and only if there exists at least one minimal positive harmonic
function satisfying the following condition

.
r->oo logr

Proof. Let z = oo be a regular point, then we have linwoo t(r) = + oo and
hence

satisfies

.
r^co logr

It there holds the above equality for a minimal positive harmonic function
u(z), then we have
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MM
lim -. -- = + oo, M(r) — max u(z),

since there holds

Hence we can say by theorem 1 that z = oo is a regular point.

Let γn be a sufficiently smooth curve lying in D and separating the origin
from the point at infinity, which tends to the point at infinity for n-*oo. Let
Gn be the finite domain which is the intersection of the finite domain bounded
by the curve γn and the domain D.

COROLLARY 3. // z = oo is a regular point, then there holds

lίm7ΓΓT = °'w>oo JL}n(ωn)

where ωn(z) is the harmonic measure ω(z, γn, Gn) and Dn(ωn) the Dirichlet
integral extended over the domain Gn.

Proof. Let Gn' be the domain bounded by γn and Ci, and Ωn be the har-
monic measure ω(z, γn, GV). Then there holds the inequality

This implies that there holds the inequality
Γ\ S\

—^ωm(z)>--^Ωm(z)

on γm, where d/dn is the inner normal derivative.
Thus there holds

Dm(ωm(z)) = - { ~^-ωm(z) ds^-( -j-Ωm(z) ds =[
J rm ®n J rm vn

This implies that

Ωm(z)

Dm(ωm) = DQm,(Ωm) '

On the other hand, it is well known that the right hand side tends to the
Green function gBί(z, °°) of an infinite domain BI bounded by a single curve
Ci. Therefore the left hand side, by taking a suitable subsequence if necessary,
tends to either a non-trivial function u^P(D) or a trival function zero. If
u eP(D), then u has the growth not greater than that of gBί(%, °°) On the
other hand, gBl(z, oo) satisfies

- ^oo log U I

Therefore by theorem 1 we can say that z = oo is an irregular point.

Finally, we state a remark. Let f(z) be such an integral function that
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the point at infinity is an irregular point for a domain D on which |/(z)l>l
holds. Then f(z) reduces to a polynomial. Indeed, log|/(z)| is a positive
harmonic function on D vanishing identically on every finite boundary point.
By theorem 1 log \f(z) \ /log | z \ ̂ N< oo for any \z \ > r. This shows that f(z)
is a polynomial.
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