ON NORMAL GENERAL CONNECTIONS

By Tominosuke Ōtsuki

In a previous paper [7], the author showed that for a space \mathfrak{X} with a regular general connection Γ which is denoted as

$$
\Gamma=\partial u_{i} \otimes\left(P_{j}^{2} d^{2} u^{j}+\Gamma_{j h}^{i} d u^{j} \otimes d u^{h}\right)
$$

in terms of local coordinates u^{1}, \cdots, u^{n} of \mathfrak{X} and

$$
P=\lambda(\Gamma)=\partial u_{i} \otimes P_{j}^{i} d u^{j}
$$

is an isomorphism of the tangent bundle $T(\mathfrak{X})$ of \mathfrak{X}, its covariant differential operator D can be written as product of its basic covariant differential operator \bar{D} and the homomorphism φ of the tangent tensor bundle of \mathfrak{X} naturally derived from P. ${ }^{1)} \quad \bar{D}$ operates on contravariant tensors and covariant tensors as covariant differential operators defined by the contravariant part ' Γ and the covariant part " Γ of Γ respectively, which are both classical affine connections, that is

$$
\lambda\left({ }^{\prime} \Gamma\right)=\lambda\left({ }^{\prime \prime} \Gamma\right)=I .
$$

Therefore, the formulas with regard to \bar{D} are simple and analogous to the classical ones. These results were obtained chiefly by making use of the regularity of the tensor field P.

In the present paper, the author will show that these concepts can be generalized in a sense for normal general connections ${ }^{2)}$ which are not necessarily regular but include the regular ones.

§ 1. Normal tensor fields of type (1,1).

Let \mathfrak{X} be a differentiable manifold ${ }^{3)}$ of dimension n. A tensor field P of type (1,1) on \mathfrak{X} is called normal, if the homomorphism defined by P on the tangent bundle $T(\mathfrak{X})$ of \mathfrak{X} is an isomorphism on the image $P\left(T_{x}(\mathfrak{X})\right)$ at each point $x \in \mathfrak{X}$ and $\operatorname{dim} P\left(T_{x}(\mathfrak{X})\right)=m$ is constant.

Let a normal tensor field P of type $(1,1)$ on \mathfrak{X} be given. Then the union

$$
\begin{equation*}
P(\mathfrak{X})=\bigcup_{x \in \mathfrak{X}} P\left(T_{x}(\mathfrak{X})\right) \tag{1.1}
\end{equation*}
$$

is naturally regarded as a subbundle of $T(\mathfrak{X})$ whose fibre

$$
P_{x}(\mathfrak{X})=P\left(T_{x}(\mathfrak{X})\right)
$$

Received January 26, 1961.

1) See [7], $\S 3$.
2) See $[8], \S 3$.
3) In the present paper, we deal with only manifolds, mappings with suitable differentiabilities for our purpose.
is an m-dimensional vector space. Since P is an isomorphism of $P(\mathfrak{X})$,

$$
N_{x}(\mathfrak{X})=\text { kernel of } P \mid T_{x}(\mathfrak{X})
$$

is of dimension $n-m$ and

$$
T_{x}(\mathfrak{X})=P_{x}(\mathfrak{X}) \oplus N_{x}(\mathfrak{X}) .
$$

The union

$$
\begin{equation*}
N(\mathfrak{X})=\cup_{x \in \mathfrak{X}} N_{x}(\mathfrak{X}) \tag{1.2}
\end{equation*}
$$

is also regarded as a subbundle of $T(\mathfrak{X})$ and

$$
\begin{equation*}
T(\mathfrak{X})=P(\mathfrak{X}) \oplus N(\mathfrak{X}) \tag{1.3}
\end{equation*}
$$

as vector bundles over \mathfrak{X}.
Let us denote the projections of $T(\mathfrak{X})$ onto $P(\mathfrak{X})$ and $N(\mathfrak{X})$ according to the decomposition (1.3) of $T(\mathfrak{X}$) respectively by

$$
\begin{array}{rlrl}
A: & T(\mathfrak{X}) \rightarrow P(\mathfrak{X}), & A \mid P(\mathfrak{X}) & =1, \\
N: & T(\mathfrak{X}) \rightarrow N(\mathfrak{X}), & N \mid N(\mathfrak{X})=1 . \tag{1.5}
\end{array}
$$

A and N are also regarded as tensor fields of type (1.1) on \mathfrak{X}.
If we take a field of frame $\left\{V_{\lambda}\right\}$ of \mathfrak{X} defined on a neighborhood, such that

$$
\left\{V_{1}, \cdots, V_{m}\right\} \quad \text { is a field of frames of } P(\mathfrak{X})
$$

and

$$
\left\{V_{m+1}, \cdots, V_{n}\right\} \quad \text { is a field of frames of } N(\mathfrak{X})
$$

then we have easily

$$
\begin{cases}P\left(V_{\alpha}\right)=W_{\alpha}^{\beta} V_{\beta}, & P\left(V_{A}\right)=0, \quad\left|W_{\alpha}^{\beta}\right| \neq 0, \tag{1.6}\\ A\left(V_{\alpha}\right)=V_{\alpha}, & A\left(V_{A}\right)=0, \\ N\left(V_{\alpha}\right)=0, & N\left(V_{A}\right)=V_{A} \cdot\end{cases}
$$

Let us denote the homomorphisms of the cotangent bundle $T^{*}(\mathfrak{X})$ of \mathfrak{X}, which are the dual mappings of P, A, N at each point x of \mathfrak{X}, by the same notations P, A, N respectively. Then, for the field of the dual frames $\left\{U^{\lambda}\right\}$ of $\left\{V_{\lambda}\right\}$, we have

$$
\begin{cases}P\left(U^{\alpha}\right)=W_{\beta}^{\alpha} U^{\beta}, & P\left(U^{4}\right)=0 \tag{1.7}\\ A\left(U^{\alpha}\right)=U^{\alpha}, & A\left(U^{A}\right)=0 \\ N\left(U^{\alpha}\right)=0, & N\left(U^{A}\right)=U^{\Lambda}\end{cases}
$$

Lastly we define a tensor field Q of type (1.1) by

$$
Q= \begin{cases}P^{-1} & \text { on } \tag{1.8}\\ 0 & \text { on } \quad N_{x}(\mathfrak{X}) \\ 0 & (\mathfrak{X}),\end{cases}
$$

then we have

$$
\begin{equation*}
P Q=Q P=A \tag{1.9}
\end{equation*}
$$

4) The indices run as follows:

$$
\begin{array}{r}
\lambda, \mu, \nu, \cdots, i, j, h, \cdots=1,2, \cdots, n \\
\alpha, \beta, \gamma, \cdots=1,2, \cdots, m \\
A, B, C, \cdots=m+1, \cdots, n .
\end{array}
$$

$$
\left\{\begin{array}{l}
A P=P A=P, \quad A Q=Q A=Q \tag{1.10}\\
N P=P N=N Q=Q N=A N=N A=0 .
\end{array}\right.
$$

In the following, we denote the homomorphisms, which are extended onto any tensor product bundle

$$
\begin{equation*}
T(\mathfrak{X})^{\otimes(p, q)}=T(\mathfrak{X})^{\otimes p} \otimes T^{*}(\mathfrak{X})^{\otimes q}, \quad p, q=0,1,2, \cdots \tag{1.11}
\end{equation*}
$$

from P, Q, A, N, making use of tensor products of the homomorphisms respectively, by the same symbols. We say that any tensor field $V \in \Psi\left(T(\mathfrak{X})^{\otimes(p, q)}\right)$ of \mathfrak{X} invariant under A or N belongs to $P(\mathfrak{X})$ or $N(\mathfrak{X})$ respectively and it may be denoted as

$$
V \in \Psi\left(P(\mathfrak{X})^{\otimes(p, q)}\right) \quad \text { or } \quad \Psi\left(N(X)^{\otimes(p, q)}\right),
$$

because it can be written only in terms of V_{α}, U^{β} or V_{A}, U^{B}.

§ 2. General connections.

Let \mathfrak{M}_{n}^{2} be the semi-group whose any element is written as a set of real numbers ($\alpha_{j}^{2}, a_{j n}^{2}$) and its multiplication is given by the formulas: For any elements $\alpha, \beta \in \mathbb{M}_{n}^{2}$, the components of $\alpha \beta$ are

$$
\begin{align*}
a_{j}^{2}(\alpha \beta) & =a_{k}^{2}(\alpha) a_{j}^{k}(\beta), \tag{2.1}\\
a_{j h}^{2}(\alpha \beta) & =a_{k}^{2}(\alpha) a_{j h}^{k}(\beta)+a_{k l}^{2}(\alpha) a_{i}^{k}(\beta) a_{h}^{l}(\beta),
\end{align*}
$$

and \mathfrak{R}_{n}^{2} be the subgroup of \mathfrak{M}_{n}^{2} such that $\left|a_{j}^{2}(\alpha)\right| \neq 0$. Let $\sigma: \mathfrak{M}_{n}^{2} \rightarrow M_{n}^{1}=\operatorname{End}\left(R^{n}\right)$ be the natural homomorphism which maps ($a_{j}^{2}, a_{j n}^{2}$) to (a_{j}^{i}). M_{n}^{1} is regarded as a sub-semi-group of \mathfrak{M}_{n}^{2}, identifying (a_{j}^{i}) with ($a_{j}^{2}, 0$).

A general connection Γ of \mathfrak{X} is by definition a cross-section of the tensor product bundle $T(\mathfrak{X}) \otimes \mathfrak{D}^{2}(\mathfrak{X})^{5)}$ over \mathfrak{X} which is written as

$$
\begin{equation*}
\Gamma=\partial u_{\imath} \otimes\left(P_{j}^{i} d^{2} \cdot u^{j}+\Gamma_{j h}^{i} d u^{j} \otimes d u^{h}\right) \tag{2.2}
\end{equation*}
$$

in terms of local coordinates u^{2} of \mathfrak{X}. Let the coordinates u^{2} be defined on a neighborhood U, then we have a mapping $f_{U}: U \rightarrow \mathfrak{M}_{n}^{2}$ by

$$
\begin{equation*}
a_{i}^{2} \cdot f_{U}=P_{\jmath}^{i}, \quad a_{j h}^{2} \cdot f_{U}=\Gamma_{j h}^{i} \tag{2.3}
\end{equation*}
$$

For any two coordinate neighborhoods $\left(U, u^{i}\right),\left(V, v^{i}\right), U \cup V \neq \phi$, we have

$$
\begin{equation*}
\left(\sigma \cdot g_{V U}\right) f_{U}=f_{V} g_{V U} \tag{2.4}
\end{equation*}
$$

where $g_{V U}: U \cap V \rightarrow \mathbb{R}_{n}^{2}$ is the coordinate transformation of the vector bundles $\mathfrak{T}^{2}(\mathfrak{X})^{5)}$ and $\mathfrak{D}^{2}(\mathfrak{X})$ over \mathfrak{X} given by

$$
\begin{equation*}
a_{j}^{2} \cdot g_{V U}=\frac{\partial v^{2}}{\partial u^{i}}, \quad a_{j h}^{2} \cdot g_{V U}=\frac{\partial^{2} v^{2}}{\partial u^{k} \partial u^{j}} \tag{2.5}
\end{equation*}
$$

The system $\left\{f_{U}\right\}$ satisfying (2.4) characterizes Γ. Since we have from (2.4) the equation

$$
\begin{equation*}
\left(\sigma \cdot g_{V U}\right)\left(\sigma \cdot f_{U}\right)=\left(\sigma \cdot f_{V}\right)\left(\sigma \cdot g_{V U}\right) \tag{2.6}
\end{equation*}
$$

5) See $[6], \S 1$.
P_{\jmath}^{i} are the components of a tangent tensor field of type $(1,1)$ of \mathfrak{X} which we denote by

$$
\begin{equation*}
\lambda(\Gamma)=\partial u_{\imath} \otimes P_{j}^{i} d u^{j}=P . \tag{2.7}
\end{equation*}
$$

For Γ, we define a bundle homomorphism $\varphi=\varphi_{\Gamma}$ which maps any tensor product bundle composed of the tangent bundles and the cotangent bundles of order 1 or 2 of \mathfrak{X} into the one replaced $\mathscr{I}^{2}(\mathfrak{X})$ and $\mathfrak{D}^{2}(\mathfrak{X})$ by $T(\mathfrak{X})$ and $T^{*}(\mathfrak{X})$ $\otimes T^{*}(\mathfrak{X})$ respectively and is given by

$$
\begin{align*}
& \varphi\left(\partial u_{j}\right)=P_{j}^{i} \partial u_{\imath}, \quad \varphi\left(\partial^{2} u_{j h}\right)=\Gamma_{j h}^{i} \partial u_{\imath}, \\
& \varphi\left(d^{2} u^{i}\right)=-\Lambda_{j h}^{i} d u^{\jmath} \otimes d u^{h}, \tag{2.8}\\
& \varphi\left(d u^{i}\right)=d u^{2}, \\
& \varphi\left(d u^{i_{1}} \otimes \cdots \otimes d u^{2} Q \otimes d u^{h}\right)=P_{j_{1}}^{i_{1}} \cdots P_{j_{z}^{\prime}}^{i} d u^{j_{1}} \otimes \cdots \otimes d u^{\prime q} \otimes d u^{h}, \quad q \geqq 1,
\end{align*}
$$

where

$$
\begin{equation*}
\Lambda_{j h}^{i}=\Gamma_{j h}^{i}-\frac{\partial P_{j}^{2}}{\partial u^{h}} . \tag{2.9}
\end{equation*}
$$

Making use of φ, we define the covariant differential operator $D=D_{\Gamma}$ of the general connection Γ by

$$
\begin{equation*}
D=\varphi \cdot d . .^{6)} \tag{2.10}
\end{equation*}
$$

Now, let $\widetilde{\mathfrak{Z}}_{n}^{2}$ be the semi-group whose any element is written as a set of real numbers ($a_{j}^{2}, a_{j n}^{2}, p_{j}^{i}$) such that $\left|a_{j}^{2}\right| \neq 0$ and its multiplication is given by the formulas: For any elements $\alpha, \beta \in \widetilde{\mathfrak{R}_{n}^{2}}$, the components of $\alpha \beta$ are

$$
\left\{\begin{align*}
a_{j}^{2}(\alpha \beta) & =a_{k}^{2}(\alpha) a_{j}^{k}(\beta) \tag{2.11}\\
a_{j h}^{2}(\alpha \beta) & =a_{k}^{2}(\alpha) a_{h j}^{k}(\beta)+a_{k l}^{2}(\alpha) p_{j}^{k}(\beta) a_{h}^{l}(\beta), \\
p_{j}^{2}(\alpha \beta) & =p_{k}^{2}(\alpha) p_{j}^{k}(\beta) .
\end{align*}\right.
$$

Let us denote the natural homomorphism of $\widetilde{\mathfrak{L}}_{n}^{2}$ onto $L_{n}^{1}=\mathrm{GL}(n, R) \subset M_{n}^{1}$ which maps ($a_{j}^{2}, a_{j n}^{2}, p_{j}^{i}$) to (a_{j}^{2}) by the same symbol $\sigma . \mathbb{R}_{n}^{2}$ is regarded as a subgroup of $\widetilde{\mathfrak{I}}_{2}^{n}$, identifying ($a_{j}^{2}, a_{j n}^{2}$) with ($a_{j}^{2}, a_{j n}^{2}, a_{j}^{i}$).

For each coordinate neighborhood $\left(U, u^{i}\right)$, we define a mapping $\tilde{f}_{U}: U \rightarrow \widetilde{\mathbb{I}}_{n}^{2}$ by

$$
\begin{equation*}
a_{i}^{2} \cdot \tilde{f_{U}}=\tilde{\delta}_{j}^{i}, \quad a_{j h}^{2} \cdot \tilde{f_{U}}=\Lambda_{j h}^{2}, \quad p_{j}^{2} \cdot \tilde{f_{U}}=-P_{j}^{i} . \tag{2.12}
\end{equation*}
$$

Then, for any two coordinate neighborhoods $\left(U, u^{i}\right),\left(V, v^{i}\right), U \cap V \neq \phi$, we have

$$
\begin{equation*}
\left.g_{V U} \tilde{f_{U}}=\tilde{f_{V}}\left(\sigma \cdot g_{V U}\right), \eta\right) \tag{2.13}
\end{equation*}
$$

which is equivalent to (2.4).
Therefore, that a general connection Γ of \mathfrak{X} is given is equivalent to that for each coordinate neighborhood U of \mathfrak{X} a mapping $f_{U}: U \rightarrow \mathfrak{M}_{n}^{2}\left(\right.$ or $\left.\tilde{f}_{U}: U \rightarrow \widetilde{\mathfrak{Z}}_{n}^{2}\right)$ is given and the system $\left\{f_{U}\right\}$ (or $\left\{\tilde{f}_{U}\right\}$) satisfies (2.4) (or (2.13)).

Lastly, we show that Γ can be written as
6) $\mathrm{See}[7], \S 1$.
7) See (2.28) of [7].

$$
\begin{equation*}
\Gamma=\partial u_{\imath} \otimes\left\{d\left(P_{j}^{i} d u^{j}\right)+\Lambda_{j h}^{i} d u^{j} \otimes d u^{h}\right\} \tag{2.14}
\end{equation*}
$$

§3. Normal general connections and their contravariant parts and covariant parts.

A general connection Γ is called normal if $\lambda(\Gamma)=P$ is normal.
Let Γ be a normal general connection of \mathfrak{X} and let us make use of the consideration in $\S 1$ for $P=\lambda(\Gamma)$.

Let $q_{U}: U \rightarrow \mathfrak{M}_{n}^{2}$ be a mapping defined by

$$
\begin{equation*}
a_{j}^{2} \cdot q_{U}=Q_{j}^{i}, \quad a_{j \hbar}^{2} \cdot q_{U}=0 \tag{3.1}
\end{equation*}
$$

Since Q_{j}^{i} are the components of the tensor field Q, we have

$$
\left(\sigma \cdot g_{V U}\right) q_{U}=q_{V}\left(\sigma \cdot g_{V U}\right)
$$

for any coordinate neighborhoods $U, V, U \cap V \neq \phi$. By means of (2.4), we get easily

$$
\left(\sigma \cdot g_{V U}\right)\left(q_{U} f_{U}\right)=\left(q_{V} f_{V}\right) g_{V U}
$$

hence the system $\left\{f^{\prime}{ }_{U}=q_{U} f_{U}\right\}$ defines a general connection ${ }^{\prime} \Gamma$. Since we have

$$
\begin{equation*}
a_{j}^{2} \cdot f^{\prime}{ }_{U}=Q_{k}^{2} P_{\jmath}^{k}=A_{j}^{2}, \quad a_{j h}^{2} \cdot f_{U}^{\prime}=Q_{k}^{2} \Gamma_{j h}^{k}=\Gamma_{j h}^{i} \tag{3.2}
\end{equation*}
$$

Γ^{\prime} is locally written as

$$
\begin{align*}
' \boldsymbol{\Gamma} & =\partial u_{\imath} \otimes\left(A_{\jmath}^{i} d^{2} u^{j}+{ }^{\prime} \Gamma_{j h}^{i} d u^{\jmath} \otimes d u^{h}\right) \\
& =\partial u_{k} Q_{i}^{k} \otimes\left(P_{j}^{i} d^{2} u^{\jmath}+\Gamma_{j h}^{i} d u^{\jmath} \otimes d u^{h}\right) \tag{3.3}
\end{align*}
$$

We call ' Γ the contravariant part of Γ. ' Γ is clearly normal and $A=\lambda\left({ }^{\prime} \Gamma\right)$ is the projection of $T(\mathfrak{X})$ onto $P(\mathfrak{X})$.

Next, let $\tilde{q}_{U}: U \rightarrow \widetilde{\mathfrak{Z}}_{n}^{2}$ be a mapping defined by

$$
a_{j}^{2} \cdot \tilde{q}_{U}=\hat{o}_{j}^{i}, \quad a_{j h}^{2} \cdot \widetilde{q}_{U}=0, \quad p_{j}^{2} \cdot \tilde{q}_{U}=Q_{j}^{i}
$$

Then, we have

$$
\left(\sigma \cdot g_{V U}\right) \widetilde{q}_{U}=\tilde{q}_{V}\left(\sigma \cdot g_{V U}\right)
$$

here we consider as $L_{n}^{1} \subset \mathfrak{R}_{n}^{2} \subset \widetilde{\mathfrak{L}_{n}^{2}}$. By means of (2.13), we get easily

$$
g_{V U}\left(\tilde{f}_{U} \tilde{q}_{U}\right)=\left(\tilde{f}_{V} \tilde{q}_{V}\right)\left(\sigma \cdot g_{V U}\right)
$$

hence the system $\left\{\tilde{f}^{\prime \prime}{ }_{U}=\tilde{f}_{U} \tilde{q}_{U}\right\}$ defines a general connection ${ }^{\prime \prime} \Gamma$. Since we have

$$
\begin{equation*}
a_{j}^{2} \cdot \tilde{f}_{U}^{\prime \prime}=\delta_{j}^{i}, \quad a_{j h}^{2} \cdot \tilde{f}_{U}^{\prime \prime}=\Lambda_{k h}^{i} Q_{j}^{k}={ }^{\prime \prime} \Lambda_{j h}^{i}, \quad p_{j}^{2} \cdot f_{U}^{\prime \prime}=-A_{j}^{2} \tag{3.4}
\end{equation*}
$$

the connection " Γ can be locally written as

$$
\begin{align*}
{ }^{\prime \prime} \Gamma & =\partial u_{\imath} \otimes\left(A_{j}^{\imath} d^{2} u^{j}+{ }^{\prime \prime} \Gamma_{j h}^{i} d u^{j} \otimes d u^{h}\right) \tag{3.5}\\
& =\partial u_{\imath} \otimes\left\{d\left(A_{j}^{\imath} d u^{j}\right)+\Lambda_{k h}^{i} Q_{j}^{k} d u^{\jmath} \otimes d u^{h}\right\}
\end{align*}
$$

by means of (2.14), hence we have

$$
\begin{equation*}
{ }^{\prime \prime} \Gamma=\partial u_{\iota} \otimes\left\{P_{\jmath}^{i} d\left(Q_{k}^{\jmath} d u^{k}\right)+\Gamma_{j h}^{i}\left(Q_{k}^{\jmath} d u^{k}\right) \otimes d u^{h}\right\} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }^{\prime \prime} \Gamma_{j h}^{i}=\Gamma_{k k}^{i} Q_{j}^{k}+P_{k}^{\imath} \frac{\partial Q_{j}^{k}}{\partial u^{k}} \tag{3.7}
\end{equation*}
$$

We call " Γ the covariant part of Γ. " Γ is also a normal general connection and $A=\lambda\left({ }^{\prime \prime} \Gamma\right)$.

Here, for any tensor field M of type $(1,1)$ on \mathfrak{X}, we define a bundle homomorphism ι_{M} of tensor product bundles of order 1 of \mathfrak{X} as follows:

$$
\begin{align*}
& { }_{M}=(M \mid T(\mathfrak{X}))^{\otimes p} \quad \text { on } \quad T(\mathfrak{X})^{\otimes p}, \tag{3.8}\\
& { }_{c}=(M \mid T(\mathfrak{X}))^{\otimes p} \otimes\left(M \mid T^{*}(\mathfrak{X})\right)^{\otimes(q-1)} \otimes 1
\end{align*} \quad \text { on } \quad T(\mathfrak{X})^{\otimes(p, q)}, ~ l
$$

$$
p \geqq 0, q \geqq 1
$$

where $M \mid T(\mathfrak{X})$ and $M \mid T^{*}(\mathfrak{X})$ are the homorphisms induced from M on $T(\mathfrak{X})$ and $T^{*}(\mathfrak{X})$.

Now, we put

$$
\varphi^{\prime}=\varphi_{I \Gamma} \quad \text { and } \quad \varphi^{\prime \prime}=\varphi_{\prime \prime}^{\prime \prime},
$$

which are defined for ' Γ and " Γ analogously to (2.8), that is

Clearly, we have

$$
\begin{equation*}
\varphi^{\prime}=\varphi^{\prime \prime}=\iota_{A} \quad \text { on } \quad T(\mathfrak{X})^{\otimes\langle p, q\rangle} ; \quad p, q=0,1,2, \cdots . \tag{3.10}
\end{equation*}
$$

Theorem 3.1. ${ }^{8)}$ For a normal general connection Γ, we define a bundle homomorphism $\bar{\mu}$ by

$$
\bar{\mu}=\bar{\mu}_{\Gamma}=\left\{\begin{array}{l}
\varphi^{\prime} \text { on tangent bundles of order } 1 \text { or } 2, \tag{3.11}\\
\varphi^{\prime \prime} \text { on cotangent bundles of order } 1 \text { or } 2,
\end{array}\right.
$$

then it holds good

$$
\begin{equation*}
\epsilon_{A} \cdot \varphi=\bar{\varphi} \cdot \bar{\mu} \tag{3.12}
\end{equation*}
$$

where $\bar{\varphi}$ is the restriction of $\varphi=\varphi_{\Gamma}$ on tensor product bundles $T(\mathfrak{X})^{\otimes(p, q)}$ of order 1 and $\bar{\varphi}=\iota_{P}$.

Proof. By means of (2.8), (3.8), (3.2), (3.4), (1.9) and (1.10), we get
8) See Theorem 3.1 of [7].

$$
\begin{aligned}
& { }_{{ }_{A}} \varphi\left(\partial u_{j}\right)={ }_{c_{A}}\left(P_{j}^{i} \partial u_{\imath}\right)=P_{j}^{\imath} A_{i}^{h} \partial u_{h}=A_{j}^{i} P_{\imath}^{h} \partial u_{h}=\bar{\varphi} \overline{ } \quad\left(\partial u_{j}\right), \\
& { }_{c_{A}} \varphi\left(\partial^{2} u_{j h}\right)={ }_{\iota}\left(\Gamma_{j h}^{i} \partial u_{\imath}\right)=\Gamma_{j h}^{i} A_{\imath}^{k} \partial u_{k}={ }^{\prime} \Gamma_{j h}^{i} P_{\imath}^{k} \partial u_{k} \\
& =\bar{\varphi} \varphi^{\prime}\left(\partial^{2} u_{j n}\right)=\bar{\varphi} \bar{\mu}\left(\partial^{2} u_{j n}\right), \\
& \iota_{A} \varphi\left(d^{2} u^{i}\right)=\iota_{A}\left(-\Lambda_{j h}^{i} d u^{j} \otimes d u^{h}\right)=-\Lambda_{j h}^{i} A_{k}^{l} d u^{k} \otimes d u^{h} \\
& =-^{\prime \prime} \Lambda_{j h}^{i} P_{k}^{j} d u^{k} \otimes d u^{h}=\bar{\varphi} \varphi^{\prime \prime}\left(d^{2} u^{i}\right)=\bar{\varphi} \bar{\mu}\left(d^{2} u^{i}\right), \\
& { }_{{ }_{c}} \varphi\left(d u^{i}\right)=d u^{2}=\bar{\varphi} \bar{\mu}\left(d u^{i}\right),
\end{aligned}
$$

$$
\begin{aligned}
\iota_{A} \varphi\left(d u^{\imath_{1}}\right. & \left.\otimes \cdots \otimes d u^{\imath_{q}} \otimes d u^{h}\right)=\iota_{A}\left(P_{j_{1}}^{i_{1}} \cdots P_{j_{q}}^{i_{q}^{q}} d u^{\jmath_{1}} \otimes \cdots \otimes d u^{\jmath_{q}} \otimes d u^{h}\right) \\
& =P_{j_{1}}^{i_{1}} \cdots P_{j_{q}}^{i q} A_{k_{1}}^{j_{1}^{1}} \cdots A_{k_{q}}^{j_{q}^{q}} d u^{k_{1}} \otimes \cdots \otimes d u^{k_{q}} \otimes d u^{h} \\
& =A_{j_{1}}^{\imath_{1}} \cdots A_{i_{q}^{q}}^{q_{1}} P_{k_{1}^{\prime}}^{j_{1}} \cdots P_{k_{q}}^{j q} d u^{k_{1}} \otimes \cdots \otimes d u^{k_{q}} \otimes d u^{h} \\
& =\bar{\varphi} \bar{\mu}\left(d u^{\imath_{1}} \otimes \cdots \otimes d u^{\imath_{q}} \otimes d u^{h}\right)
\end{aligned}
$$

hence it must be

$$
\iota_{A} \cdot \varphi=\iota_{P} \cdot \bar{\mu}
$$

We call $\bar{\mu}=\bar{u}_{\Gamma}$ the basic homomorphism of the normal general connection Γ. Putting

$$
\begin{equation*}
\bar{D}=\bar{D}_{\Gamma^{\prime}}=\bar{\mu} \cdot d \tag{3.13}
\end{equation*}
$$

we call this the basic covariant differential operator of Γ. By means of (2.10) and (3.13), we get easily the following

THEOREM 3.2. For the covariant differentiation and the basic covariant differentiation of a normal general connection Γ, it holds good

$$
\begin{equation*}
\iota_{A} \cdot D=\iota_{P} \cdot \bar{D} \tag{3.14}
\end{equation*}
$$

§4. Basic covariant differentiations.

For any tensor field $V \in \Psi\left(T(\mathbb{X})^{\otimes(p, q)}\right)$ with local components $V_{\jmath_{1} \cdots j_{q}}^{\nu_{1} \cdots p_{p}}$, its basic covariant differential

$$
\bar{D} V=\partial u_{\imath_{1}} \otimes \cdots \otimes \partial u_{\imath p} \otimes d u^{\jmath_{1}} \otimes \cdots \otimes d u^{\jmath q} \otimes \bar{D} V_{j_{1} \cdots j_{q}}^{i_{1} \cdots \imath_{p}}
$$

is given by the formulas:

$$
\begin{align*}
& \bar{D} V_{j_{1} \cdots j_{q}}^{\imath_{1} \cdots{ }^{2}}=V_{j_{1} \cdots j_{q} \mid h}^{\imath_{1} \cdots{ }^{2}} d u^{h}, \\
& V_{j_{1} \cdots j_{q} \mid h}^{\imath_{1} \cdots v_{p}}=A_{k_{1}^{1}}^{\imath_{1}} \cdots A_{k_{q} p}^{2 p} \frac{\partial V_{h_{1} \cdots h_{q}}^{k_{1} \cdots k_{p}}}{\partial u^{h}} A_{j_{1}}^{h_{1}} \cdots A_{j_{q}}^{h_{q}} \tag{4.1}\\
& +\sum_{s=1}^{p} A_{k_{1}}^{2_{1}} \cdots A_{k s-1}^{\imath_{s-1}} \Gamma_{k_{s} h}^{i_{s}} A_{k_{s+1}}^{\imath_{s+1}} \cdots A_{k_{p}}^{2_{p}} V_{h_{1} \cdots h_{q}}^{k_{1} \cdots k_{p}} A_{1_{1}}^{h_{1}} \cdots A_{j_{q}}^{h_{q}} \\
& -\sum_{t=1}^{q} A_{k_{1}}^{2_{1}} \cdots A_{k_{p}}^{2 p} V_{h_{1} \cdots h_{p}}^{k_{1} \cdots k_{p}} A_{j_{1}}^{h_{1}} \cdots A_{j_{l-1}}^{h_{t-1} / \prime} \Lambda_{j_{l}}^{h t} A_{j_{t+1}}^{h_{t}+1} \cdots A_{j_{\eta}}^{h_{q}}, \tag{4.2}
\end{align*}
$$

which are obtained from (3.9), (3.11) and (3.13).9)
Now, from (1.10), (3.2) and (3.4), we get

$$
\begin{equation*}
A_{k}^{2} \Gamma_{j h}^{k}=' \Gamma_{j h}^{i}, \quad " \Lambda_{k h}^{i} A_{j}^{k}={ }^{\prime \prime} \Lambda_{j h}^{i}, \tag{4.3}
\end{equation*}
$$

hence we have from (3.9)

$$
\begin{equation*}
\iota_{A} \cdot \bar{\mu}=\bar{\mu} \tag{4.4}
\end{equation*}
$$

THEOREM 4.1. For the basic covariant differentiation of a normal general connection Γ, it holds good

$$
\begin{equation*}
\iota_{A} \cdot \bar{D}=\bar{D} \tag{4.5}
\end{equation*}
$$

and for any tensor field $V \in \Psi\left(T(\mathfrak{X})^{\otimes(p, q)}\right)$ we have
9) See (7.4) of [6] and (2.15) of [7].

$$
V_{1 h} A_{\imath}^{h} \otimes d u^{2} \in \Psi\left(P(\mathfrak{X})^{\otimes(p, q+1)}\right),
$$

where $\bar{D} V=V_{1 n} \otimes d u^{h}$.
Proof. (4.5) follows immediately from (4.4) and the definition of \bar{D}. With regard to the second part, we have

$$
\begin{aligned}
& V_{1 h} A_{2}^{h} \otimes d u^{2}=(1 \otimes A) \bar{D} V \\
= & (1 \otimes A) \iota_{A} \bar{D} V=(1 \otimes A)(A \otimes 1) \bar{D} V \\
= & (A \otimes A) \bar{D} V=A \bar{D} V \in \Psi\left(P(\mathfrak{X})^{\otimes(p, q+1)}\right),
\end{aligned}
$$

where we use the notation A according to the convention stated in $\S 1$.
Now, we say that a tensor field V of \mathfrak{X} is basic or normal if $A V=V$ or $N V=V$ respectively. We will show that if V is basic, the formula (4.2) becomes very simple as the classical one.

At first, (4.2) can be easily rewritten as

$$
\begin{aligned}
& V_{j_{1} \cdots j_{q} / h}^{i_{1} \cdots i_{p}}=\frac{\partial}{\partial u^{h}}\left(A_{k_{1}}^{2_{1}} \cdots A_{k_{p}}^{2_{1}} V_{h_{1} \cdots h_{q}}^{k_{1} \cdots k_{p}} A_{j_{1}}^{h_{1}} \cdots A_{j_{q}}^{h_{q}}\right)
\end{aligned}
$$

$$
\begin{align*}
& -\sum_{t=1}^{q} A_{k_{1}}^{2_{1}} \cdots A_{k_{p}^{2} p}^{q_{n} p} V_{h_{1} \cdots h_{q}}^{k_{1} \cdots k_{p}} A_{1_{1}}^{h_{1}} \cdots A_{j_{t-1}}^{h_{t-1} / \prime} \Gamma_{i^{h} h}^{h_{t}} A_{j_{t+1}}^{h_{t+1}} \cdots A_{j_{q}}^{h_{7}} .
\end{align*}
$$

Now, let $V \in \Psi\left(P(\mathcal{X})^{\otimes(p, q)}\right)$ with local components $V_{j_{1} \cdots j_{q} q}^{i_{1} \cdots i_{p}}$, then we have

$$
\begin{equation*}
A_{k_{1}}^{i_{1}} \cdots A_{k_{p}}^{2_{p}^{p}} V_{h_{1} \cdots k_{q}}^{k_{1} \cdots k_{p}} A_{j_{1}}^{h_{1}} \cdots A_{j_{4}}^{h_{q}}=V_{j_{1} \cdots j_{q}}^{i_{1} \cdots m_{p}} . \tag{4.6}
\end{equation*}
$$

Since A is a projection, it follows that

$$
\begin{align*}
& A_{k^{2}}^{2_{s}} V_{j_{1} \cdots \ldots \ldots j_{q}}^{i_{1} \cdots{ }_{2} \ldots i_{p}}=V_{j_{1} \cdots k \cdots j_{q}}^{i \cdots \ldots \ldots i_{q}} A_{j_{t}}^{k_{g}}=V_{j_{1} \cdots j_{q}}^{i_{1} \cdots i_{p}}, \tag{4.7}\\
& s=1, \cdots, p ; \quad t=1, \cdots, q .
\end{align*}
$$

Clearly the conditions (4.6) and (4.7) are equivalent to each other. Putting these relations into (4.2'), we obtain the following

Theorem 4.2. Let Γ be a normal general connection. For any tensor field V of type (p, q) with local components $V_{j_{1} \ldots j_{q}}^{z_{1} \cdots i_{p}}$ invariant under A the components of its basic covariant differential $\bar{D} V$ are given by the formula:
where

$$
\left\{\begin{array}{l}
{ }^{\prime} \Lambda_{j h}^{i}=Q_{k}^{i} \Gamma_{j h}^{k}-\frac{\partial A_{j}^{2}}{\partial u^{h}}, \tag{4.9}\\
{ }^{\prime \prime} \Gamma_{j h}^{i}=\Gamma_{k h}^{j} Q_{j}^{k}+P_{k}^{i} \frac{\partial Q_{j}^{k}}{\partial u^{h}} .
\end{array}\right.
$$

The formula (4.8) is a natural extension of (3.7) of [7], since ' $\Lambda_{j h}^{i}={ }^{\prime} \Gamma_{j h}^{i}$, when Γ is regualar.

Analogously, a tensor field V of (p, q) with local components $V_{j_{1} \cdots j_{I}}^{i_{1}, \cdots i_{0}}$ is a tensor field of $N(\mathscr{X})$, if and only if

$$
\begin{equation*}
N_{k_{1}}^{i_{1}} \cdots N_{k_{p}}^{i_{p}} V_{h_{1} \cdots h_{q}}^{k_{1} \cdots k_{p}} N_{j_{1}}^{n_{1}} \cdots N_{j_{q}}^{n_{q}}=V_{j_{1} \cdots j_{q}}^{q_{1} \cdots z_{p}} \tag{4.10}
\end{equation*}
$$

or

$$
\begin{gather*}
N_{k}^{i_{s} s} V_{\partial_{1} \cdots \ldots \ldots j_{q}}^{i_{1} \cdots \ldots \ldots p_{p}}=V_{j_{1} \cdots k \ldots j_{q}}^{i_{1} \ldots \ldots p_{p}} N_{t_{t}}^{s_{t}}=V_{\partial_{1} \cdots \partial_{q},}^{i_{1} \cdots \imath_{p}}, \tag{4.11}\\
s=1, \cdots, p ; \quad t=1, \cdots, q .
\end{gather*}
$$

Hence, for such tensor field $V \in \Psi\left(N(\mathfrak{X})^{\otimes(p, q)}\right)$, we have

$$
\begin{equation*}
A_{k_{k}^{s}}^{2_{s}} V_{j_{1} \cdots \cdots \cdots j_{q} \cdots}^{2_{1} \cdots \cdots \cdots i_{p}}=V_{\partial_{1} \cdots c_{k} \cdots j_{q}}^{i_{1} \cdots \cdots i_{p}} A_{J_{t}}^{k}=0 \tag{4.12}
\end{equation*}
$$

and so we get from (4.2') the formulas:

$$
\begin{gather*}
V_{j_{1} \cdots j_{q} \mid h}^{2_{1} \cdots q_{p}}=0, \quad \text { when } \quad p+q \geqq 2, \tag{4.13}\\
\left\{\begin{array}{l}
V^{i}{ }_{\mid h}={ }_{j}^{\prime} \Lambda_{j h}^{i} V^{j}, \\
V_{j \mid h}=-{ }^{\prime} \Gamma_{j h}^{i} V_{2 \cdot} .
\end{array}\right. \tag{4.14}
\end{gather*}
$$

§ 5. Normal convariant differentiations.
Making use of the tensor N in place of Q, we shall define a covariant differentiation.

For each coordinate neighborhood $\left(U, u^{i}\right)$, let $n_{U}: U \rightarrow \mathfrak{M}_{n}^{2}$ and $\tilde{n}_{U} \rightarrow \tilde{\mathfrak{N}}_{n}^{2}$ be the mappings defined by

$$
\begin{equation*}
a_{j}^{2} \cdot n_{U}=N_{j,}^{i}, \quad a_{j n}^{2} \cdot n_{U}=0 \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{j}^{2} \cdot \tilde{n}_{U}=\delta_{j}^{i}, \quad a_{j h}^{2} \cdot \tilde{n}_{U}=0, \quad p_{j}^{2} \cdot \tilde{n}_{U}=N_{j}^{i}, \tag{5.2}
\end{equation*}
$$

then the systems $\left\{n_{U} f_{U}\right\}$ and $\left\{\tilde{f}_{U} \tilde{n}_{U}\right\}$ define two general connections ' I_{n} and " Γ_{n} of \mathfrak{X} respectively as the systems $\left\{f^{\prime}{ }_{U}=q_{U} f_{U}\right\}$ and $\left\{\tilde{f}^{\prime \prime}{ }_{U}=\tilde{f}_{U} \widetilde{q}_{U}\right\}$ in $\S 3$. Since we have

$$
\begin{aligned}
& \left(N_{j}^{i}, 0\right)\left(P_{J}^{i}, \Gamma_{j h}^{i}\right)=\left(0, N_{k}^{i} \Gamma_{j h}^{k}\right), \\
& \left(\delta_{j}^{i}, \Lambda_{j h}^{i},-P_{j}^{i}\right)\left(\delta_{j}^{i}, 0, N_{j}^{i}\right)=\left(\delta_{j}^{i}, \Lambda_{k h}^{i} N_{j}^{k}, 0\right),
\end{aligned}
$$

${ }^{\prime} \Gamma_{n}$ and " Γ_{n} are tensor fields of type $(1,2)$ on \mathfrak{X} with local components as

$$
\left\{\begin{array}{l}
{ }^{\prime} N_{j h}^{i}=N_{k}^{i} \Gamma_{j h}^{k}, \tag{5.3}\\
{ }^{\prime \prime} N_{j h}^{i}=\Lambda_{k h}^{i} N_{j}^{k}=\left(I_{k k h}^{i}-\frac{\partial P_{k}^{\imath}}{\partial u^{h}}\right) N_{j}^{k}
\end{array}\right.
$$

respectively.
Now, let $\varphi_{n}{ }^{\prime}$ and $\varphi_{n}{ }^{\prime \prime}$ be the bundle homomorphisms for the general connections ' Γ_{n} and " Γ_{n} defined as $\varphi=\varphi_{\Gamma}$ for Γ. Then we have clearly

$$
\left\{\begin{align*}
\iota_{N} \varphi\left(\partial u_{j}\right) & =P_{j}^{i} N_{\imath}^{k} \partial u_{k}=0=\varphi_{n}{ }^{\prime}\left(\partial u_{j}\right), \tag{5.4}\\
\iota_{N} \varphi\left(\partial^{2} u_{j h}\right) & =\Gamma_{j h}^{i} N_{\imath}^{k} \partial u_{k}=N_{j h}^{i} \partial u_{2}=\varphi_{n}{ }^{\prime}\left(\partial^{2} u_{j h}\right), \\
\iota_{N} \varphi\left(d^{2} u^{i}\right) & =-\Lambda_{i h}^{i} N_{k}^{i} d u^{k} \otimes d u^{h}=-{ }^{\prime \prime} N_{j_{h}}^{i} d u^{\prime} \otimes d u^{h}=\varphi_{n}^{\prime \prime}\left(d^{2} u^{i}\right), \\
c_{N} \varphi\left(d u^{i}\right) & =d u^{i}=\varphi_{n}^{\prime \prime}\left(d u^{i}\right), \\
\iota_{N} \varphi\left(d u^{2} \otimes \otimes\right. & \left.\cdots \otimes d u^{2} Q \otimes d u^{h}\right)=\varphi_{n}{ }^{\prime \prime}\left(d u^{\imath_{1}} \otimes \cdots \otimes d u^{{ }^{2} Q} \otimes d u^{h}\right)=0, \quad q \geqq 1 .
\end{align*}\right.
$$

Putting

$$
\begin{equation*}
\bar{D}_{n}=\iota_{N} \cdot D, \tag{5.5}
\end{equation*}
$$

we call this the normal covariant differential operator of Γ. From (5.4), we see that \bar{D}_{n} is identical with the covariant differential operators of ${ }^{\prime} \Gamma_{n}$ or " Γ_{n} for contravariant or covariant tensor fields respectively.

Theorem 5.1. For the normal covariant differentiation of Γ, it holds good

$$
\iota_{N} \cdot \bar{D}_{n}=\bar{D}_{n}
$$

and for any tensor field $V \in \Psi\left(T(\mathfrak{X})^{\otimes(p, q)}\right)$ with local components $V_{j_{1} \cdots j_{q}}^{\imath_{1} \cdots z_{p}}$ we have

$$
\left\{\begin{array}{l}
\bar{D}_{n} V_{j_{1} \ldots j_{q}}^{2_{1} \ldots i_{p}}=0, \quad \text { when } \quad p+q \geqq 2, \tag{5.7}\\
\bar{D}_{n} V^{i}=' N_{j_{h}}^{i} V^{j} d u^{h}, \\
\bar{D}_{n} V_{j}=-{ }^{\prime \prime} N_{j_{h}}^{i} V_{i} d u^{h} .
\end{array}\right.
$$

The proof is evident.
Lastly, since we have from (4.9)

$$
{ }^{\prime} \Lambda_{k h}^{i} N_{\jmath}^{k}=\left(Q_{i}^{i} \Gamma_{k h}^{l}-\frac{\partial A_{k}^{\imath}}{\partial u^{h}}\right) N_{\jmath}^{k}=Q_{l}^{i}\left(\Gamma_{k h}^{l}-\frac{\partial P_{k}^{l}}{\partial u^{h}}\right) N_{\jmath}^{k}=Q_{L A}^{i} \Lambda_{k h}^{l} N_{\jmath}^{k}=Q_{l}^{i \prime \prime} N_{j h}^{\iota}
$$

and

$$
N_{k}^{i \prime \prime} \Gamma_{J h}^{k}=N_{k}^{i}\left(\Gamma_{l h}^{k} Q_{j}^{l}+P_{l}^{k} \frac{\partial Q_{j}^{l}}{\partial u^{h}}\right)={ }^{\prime} N_{k h}^{i} Q_{j}^{k},
$$

the formula (4.14) can be rewritten as

$$
\left\{\begin{array}{l}
V_{{ }_{\mid h}=}^{i}=Q_{l}^{i \prime \prime} N_{k h}^{l} V^{k}, \tag{5.8}\\
V_{j \mid h}=-^{\prime} N_{l h}^{k} V_{k} Q_{j}^{\prime}
\end{array}\right.
$$

where $V^{k} \partial u_{k}$ and $V_{k} d u^{k}$ are vector fields of $N(\mathfrak{X})$.
§ 6. Some general connections derived from a normal general connection.
From a normal general connection Γ, we obtained the four normal general connections ${ }^{\prime} \Gamma$, " Γ, ' $\Gamma_{n},{ }^{\prime \prime} \Gamma_{n}$, which are given by (3.2), (3.3), (3.5), (3.7), (5.3), that is

$$
\begin{align*}
\Gamma: & \left(P_{j}^{i}, \Gamma_{j h}^{i}\right), \\
& \left\{\begin{aligned}
{ }^{\prime} \Gamma: & \left(A_{j}^{2}, Q_{k}^{\imath} \Gamma_{j h}^{k}\right),
\end{aligned}\right. \tag{6.1}\\
{ }^{\prime \prime} \Gamma: & \left(A_{j}^{2}, \Gamma_{k h}^{i} Q_{j}^{k}+P_{k}^{\imath} \frac{\partial Q_{j}^{k}}{\partial u^{h}}\right), \\
{ }^{\prime} \Gamma_{n}: & \left(0, N_{k}^{i} \Gamma_{j h}^{k}\right)=\left(0, N_{j h}^{i}\right), \\
{ }^{\prime \prime} \Gamma_{n}: & \left(0,\left(\Gamma_{k h}^{i}-\frac{\partial P_{k}^{2}}{\partial u^{h}}\right) N_{j}^{k}\right)=\left(0,{ }^{\prime \prime} N_{j h}^{i}\right)
\end{align*}
$$

with respect to local coordinates u^{2}.
Let us calculate the components of the normal general connections which are derived from the four general connections by the same manner.

Since $\lambda\left({ }^{\prime} \Gamma^{\prime}\right)=A$, with regard to ${ }^{\prime} \Gamma$, we have

$$
{ }^{\prime}\left({ }^{\prime} \Gamma\right): \quad\left(A_{j}^{2}, A_{k}^{i \prime} \Gamma_{j h k}^{k j}\right)=\left(A_{j}^{2}, Q_{k}^{i} \Gamma_{j h}^{k}\right),
$$

hence

$$
\begin{equation*}
{ }^{\prime}\left({ }^{\prime} \Gamma\right)={ }^{\prime} \Gamma . \tag{6.2}
\end{equation*}
$$

(6.3) $\quad \Gamma^{\cdot} \equiv{ }^{\prime \prime}\left(\Gamma^{\prime} \Gamma^{\prime}\right): \quad\left(A_{j}^{2}, \Gamma_{k h}^{i} A_{j}^{k}+A_{k}^{v} \frac{\partial A_{j}^{k}}{\partial u^{h}}\right)=\left(A_{j}^{v}, Q_{l}^{i} \Gamma_{k h}^{k} A_{j}^{k}+A_{k}^{v} \frac{\partial A_{j}^{k}}{\partial u^{h}}\right)$,

$$
\begin{align*}
{ }^{\prime}(\Gamma)_{n}: & \left(0, N_{k}^{i \prime} \Gamma_{j h}^{k}\right)=(0,0), \tag{6.4}\\
{ }^{\prime}\left({ }^{\prime} \Gamma\right)_{n}: & \left(0,\left({ }^{\prime} \Gamma_{k h}^{i}-\frac{\partial A_{k}^{2}}{\partial u^{k}}\right) N_{j}^{k}\right),
\end{align*}
$$

and

$$
\left(I_{k h}^{i}-\frac{\partial A_{k}^{l}}{\partial u^{h}}\right) N_{j}^{k}=Q_{l}^{i} I_{k h}^{l} N_{j}^{k}-\frac{\partial\left(Q_{l}^{2} P_{k}^{l}\right)}{\partial u^{h}} N_{j}^{k}=Q_{i}^{i}\left(I_{k k h}^{l}-\frac{\partial P_{k}^{l}}{\partial u^{h}}\right) N_{j}^{k}=Q_{l}^{i \prime \prime} N_{j h}^{l},
$$

that is

$$
\begin{equation*}
\Gamma_{n}^{\cdot} \equiv \equiv^{\prime \prime}\left({ }^{\prime} \Gamma\right)_{n}: \quad\left(0, Q_{k}^{2}{ }^{\prime \prime} N_{y_{n}}^{k}\right) . \tag{6.5}
\end{equation*}
$$

Next, since $\lambda\left({ }^{\prime \prime} \Gamma\right)=A$, with regard to " Γ, we have

$$
\begin{align*}
\Gamma^{\cdot \cdot} \equiv \equiv^{\prime}(\prime \prime \Gamma): & \left(A_{j}^{2}, A_{k}^{2 \prime \prime} \Gamma_{j h}^{k}\right)=\left(A_{j}^{2}, A_{l}^{2} \Gamma_{k h}^{l} Q_{j}^{k}+P_{k}^{2} \frac{\partial Q_{j}^{k}}{\partial u^{h}}\right) . \tag{6.6}\\
{ }^{\prime \prime}\left({ }^{\prime \prime} \Gamma\right): & \left(A_{j}^{2}, \quad{ }^{\prime \prime} \Gamma_{k h}^{i} A_{j}^{k}+A_{k}^{2} \frac{\partial A_{j}^{k}}{\partial u^{k}}\right),
\end{align*}
$$

and

$$
\begin{aligned}
& \prime \prime \Gamma_{k h}^{i} A_{\jmath}^{k}+A_{k}^{e} \frac{\partial A_{j}^{k}}{\partial u^{h}}=\left(\Gamma_{l h}^{i} Q_{k}^{l}+P_{i}^{i} \frac{\partial Q_{k}^{l}}{\partial u^{h}}\right) A_{\jmath}^{k}+A_{k}^{2} \frac{\partial A_{j}^{k}}{\partial u^{h}} \\
= & \Gamma_{k h}^{i} Q_{j}^{k}+P_{l}^{i} \frac{\partial Q_{k}^{l}}{\partial u^{h}} A_{\jmath}^{k}+P_{\imath}^{2} Q_{k}^{l} \frac{\partial A_{j}^{k}}{\partial u^{h}}=\Gamma_{k h}^{i} Q_{\jmath}^{k}+P_{k}^{i} \frac{\partial Q_{j}^{k}}{\partial u^{k}}
\end{aligned}
$$

hence

$$
\begin{align*}
I_{\because \cdot} \cdot \equiv^{\prime}\left({ }^{\prime \prime} \Gamma\right)_{n}: & \left(0, N_{k}^{2}{ }^{\prime \prime} \Gamma_{j h}^{k}\right)=\left(0,{ }^{\prime} N_{k h}^{\imath} Q_{j}^{k}\right) . \tag{6.8}\\
{ }^{\prime \prime}\left({ }^{\prime \prime} \Gamma\right)_{n}: & \left(0,\left({ }^{\prime \prime} \Gamma_{k h}^{i}-\frac{\partial A_{k}^{2}}{\partial u^{h}}\right) N_{j}^{k}\right),
\end{align*}
$$

and

$$
\left({ }^{\prime \prime} \Gamma_{k h}^{i}-\frac{\partial A_{k}^{e}}{\partial u^{h}}\right) N_{\jmath}^{k}=\left(I_{l h}^{l_{i l}} Q_{k}^{l}+P_{l}^{\imath} \frac{\partial Q_{k}^{l}}{\partial u^{h}}-\frac{\partial A_{k}^{\imath}}{\partial u^{h}}\right) N_{j}^{k}=-\frac{\partial P_{l}^{i}}{\partial u^{h}} Q_{k}^{l} N_{j}^{k}=0,
$$

that is

$$
\begin{equation*}
{ }^{\prime \prime}(\prime \Gamma)_{n}: \quad(0,0) . \tag{6.9}
\end{equation*}
$$

Since $\lambda\left(\Gamma_{n}\right)=\lambda\left({ }^{\prime \prime} \Gamma_{n}\right)=0$, we have easily

$$
\begin{cases}\prime\left({ }^{\prime} \Gamma_{n}\right): & (0,0), \tag{6.10}\\ { }^{\prime \prime}\left(\Gamma_{n}\right): & (0,0), \\ \prime\left(\Gamma_{n}\right)_{n}={ }^{\prime \prime}\left(\Gamma_{n}\right)_{n}={ }^{\prime} \Gamma_{n}\end{cases}
$$

and

$$
\left\{\begin{array}{l}
{ }^{\prime}\left({ }^{\prime \prime} \Gamma_{n}\right): \quad(0,0), \tag{6.11}\\
\prime^{\prime \prime}\left({ }^{\prime \prime} \Gamma_{n}\right):(0,0), \\
{ }^{\prime \prime}\left(\Gamma_{n}\right)_{n}={ }^{\prime \prime}\left({ }^{\prime \prime} \Gamma_{n}\right)_{n}={ }^{\prime \prime} \Gamma_{n} .
\end{array}\right.
$$

Furthermore, with regard to the normal general connections

$$
\Gamma^{\cdot}={ }^{\prime \prime}\left({ }^{\prime} \Gamma\right) \text { and } \quad \Gamma^{\prime} \cdot=^{\prime}\left({ }^{\prime \prime} \Gamma\right),
$$

we have from (6.1), (6.3), (6.6) the relations:

$$
{ }^{\prime}\left(\Gamma^{\cdot}\right)==^{\prime}\left({ }^{\prime \prime}\left({ }^{\prime} \Gamma\right)\right): \quad\left(A_{\jmath}^{2}, A_{\imath}^{2} \Gamma_{k h}^{\iota} A_{\jmath}^{k}+A_{k}^{\imath} \frac{\partial A_{\jmath}^{k}}{\partial u^{h}}\right)
$$

and

$$
\begin{aligned}
& A_{l}^{2} \Gamma_{k h}^{l} A_{j}^{k}+A_{k}^{2} \frac{\partial A_{j}^{k}}{\partial u^{h}}=A_{i}^{2}\left(Q_{t}^{l} \Gamma_{k h}^{t}\right) A_{j}^{k}+A_{k}^{2} \frac{\partial A_{j}^{k}}{\partial u^{h}} \\
& =Q_{i}^{i} \Gamma_{k h}^{l} A_{j}^{k}+A_{k}^{2} \frac{\partial A_{j}^{k}}{\partial u^{k}}=\Gamma_{{ }_{j}}^{\bullet} ; \\
& { }^{\prime \prime}\left(\Gamma^{\cdot \cdot}\right)={ }^{\prime \prime}\left({ }^{\prime}\left({ }^{\prime \prime} \Gamma^{\prime}\right)\right): \quad\left(A_{\imath}^{2}, A_{\iota}^{2}{ }^{\prime \prime} \Gamma_{k h}^{l} A_{j}^{k}+A_{k}^{2} \frac{\partial A_{j}^{k}}{\partial u^{h}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
A_{l}^{2} \prime \Gamma_{k h}^{l} A_{\jmath}^{k}+A_{k}^{\imath} \frac{\partial A_{j}^{k}}{\partial u^{h}} & =A_{\iota}^{2}\left(\Gamma_{t h}^{l} Q_{k}^{t}+P_{t}^{l} \frac{\partial Q_{b}^{t}}{\partial u^{h}}\right) A_{\jmath}^{k}+A_{k}^{2} \frac{\partial A_{i}^{k}}{\partial u^{h}} \\
& =A_{l}^{2} \Gamma_{k h}^{l} Q_{j}^{k}+P_{l}^{i} \frac{\partial Q_{k}^{l}}{\partial u^{h}} A_{\jmath}^{k}+A_{k}^{\imath} \frac{\partial A_{\jmath}^{k}}{\partial u^{h}} \\
& =A_{l}^{i} \Gamma_{k h}^{l} Q_{\jmath}^{k}+P_{k}^{i} \frac{\partial Q_{j}^{k}}{\partial u^{h}}=\Gamma^{\cdot \cdot \imath} .
\end{aligned}
$$

Theorem 6.1. For a normal general connection Γ, the normal general connections $\Gamma^{\cdot}={ }^{\prime \prime}(\Gamma)$ and $\Gamma^{\cdot \cdot}={ }^{\prime}\left({ }^{\prime \prime} \Gamma\right)$ satisfy the following conditions:

$$
\left\{\begin{array}{c}
\prime\left(\Gamma^{\cdot}\right)={ }^{\prime \prime}\left(\Gamma^{\bullet}\right)=\Gamma^{\cdot} \tag{6.12}\\
\prime\left(\Gamma^{\bullet \cdot}\right)={ }^{\prime \prime}\left(\Gamma^{\bullet \cdot}\right)=\Gamma^{\cdot}
\end{array}\right.
$$

and

$$
\begin{equation*}
{ }^{\prime}\left(\Gamma^{\cdot}\right)_{n}={ }^{\prime \prime}\left(\Gamma^{\cdot}\right)_{n}={ }^{\prime}\left(\Gamma^{\bullet \cdot}\right)_{n}={ }^{\prime \prime}\left(\Gamma^{\cdot} \cdot\right)_{n}=0.0^{10)} \tag{6.13}
\end{equation*}
$$

Proof. (6.12) is evident from (6.2), (6.7) and the above relations for Γ. and $\Gamma^{\cdot \cdot}$. Regarding to (6.13), we have

$$
\begin{aligned}
{ }^{\prime}\left(\Gamma^{\cdot}\right)_{n}: & \left(0, N_{k}^{i} \Gamma_{\jmath}^{\cdot{ }^{k} h}\right)=(0,0), \\
{ }^{\prime}\left(\Gamma^{\cdot}\right)_{n}: & \left(0,\left(\Gamma_{k h}^{\cdot i}-\frac{\partial A_{k}^{2}}{\partial u^{h}}\right) N_{\jmath}^{k}\right)
\end{aligned}
$$

and

$$
\begin{gathered}
\left(\Gamma_{k h}^{\cdot{ }_{k h}}-\frac{\partial A_{k}^{2}}{\partial u^{h}}\right) N_{\jmath}^{k}=\left(A_{l}^{\imath} \frac{\partial A_{k}^{l}}{\partial u^{h}}-\frac{\partial A_{k}^{2}}{\partial u^{h}}\right) N_{\jmath}^{k}=-A_{l}^{2} A_{k}^{2} \frac{\partial N_{l}^{k}}{\partial u^{h}}+A_{k}^{2} \frac{\partial N_{\jmath}^{k}}{\partial u^{h}}=0 ; \\
{ }^{\prime}\left(\Gamma^{\cdot \cdot}\right)_{n}: \quad\left(0, N_{k}^{i} \Gamma^{\cdot \cdot} \cdot{ }_{j h}^{k}\right)=(0,0),
\end{gathered}
$$

10) 0 denotes the trivial general connection whose components all vanish.

$$
{ }^{\prime \prime}(\Gamma \cdot \cdot)_{n}: \quad\left(0,\left(\Gamma^{\cdot \bullet_{k h}^{2}}-\frac{\partial A_{k}^{2}}{\partial u^{h}}\right) N_{\jmath}^{k}\right)
$$

and

$$
\left(I^{\Gamma \cdot \cdot_{k h}^{l}}-\frac{\partial A_{k}^{2}}{\partial u^{h}}\right) N_{\jmath}^{k}=\left(P_{l}^{i} \frac{\partial Q_{k}^{l}}{\partial u^{h}}-\frac{\partial A_{k}^{\imath}}{\partial u^{h}}\right) N_{\jmath}^{k}=-P_{l}^{i} Q_{k}^{l} \frac{\partial N_{j}^{k}}{\partial u^{h}}+A_{k}^{2} \frac{\partial N_{j}^{k}}{\partial u^{h}}=0
$$

Corollary 6.2. For the normal general connections Γ^{\cdot} and $\Gamma \cdot \cdot$, their covariant differentiations and their basic covariant differentiations are identical with each other respectively.

THEOREM 6.3. For a normal general connection Γ, we have the formulas:

$$
\begin{align*}
\left({ }^{\prime} \Gamma\right)^{\cdot} & =\left({ }^{\prime} \Gamma\right)^{\cdot \bullet}=\Gamma \cdot \\
\left({ }^{\prime \prime} \Gamma\right)^{\cdot} & =\left({ }^{(\prime} \Gamma\right)^{\cdot}=\Gamma \cdot \tag{6.14}
\end{align*}
$$

Proof. By means of (6.2), (6.7) and (6.12), we get

$$
\begin{gathered}
\left({ }^{\prime} \Gamma\right) \cdot={ }^{\prime \prime}\left(\left(^{\prime} \Gamma\right)\right)={ }^{\prime \prime}(\Gamma)=\Gamma \cdot \\
\left({ }^{\prime} \Gamma\right) \cdot \cdot={ }^{\prime}\left(\left(^{\prime \prime}\left({ }^{\prime} \Gamma\right)\right)==^{\prime}(\Gamma \cdot)=\Gamma \cdot\right. \\
\left({ }^{\prime \prime} \Gamma\right) \cdot \\
\left(^ { \prime \prime } \left({ } ^ { \prime \prime } \left(\left(^{\prime \prime}(\Gamma)\right)==^{\prime \prime}(\Gamma \cdot \cdot)=\Gamma \cdot \cdot\right.\right.\right. \\
\left.\left.{ }^{\prime} \Gamma\right)^{\prime \prime}\left({ }^{\prime \prime} \Gamma\right)\right)==^{\prime}\left({ }^{\prime \prime} \Gamma\right)=\Gamma \cdot
\end{gathered}
$$

Theorem 6.1 shows that out of the normal general connections naturally derived from a normal general connection $\Gamma, \Gamma \cdot$ and $\Gamma^{\cdot \cdot}$ are the most convenient ones and we may consider them as belonging to $P(\mathfrak{X})$.

Furthermore, we get easily from (6.5) and (6.8) the relations:

$$
\begin{gather*}
\prime\left(\Gamma_{n}^{\bullet}\right)={ }^{\prime \prime}\left(\Gamma_{n}^{\bullet}\right)=0, \tag{6.15}\\
{ }^{\prime}\left(\Gamma_{n}^{\bullet}\right)_{n}={ }^{\prime \prime}\left(\Gamma_{n}^{\bullet}\right)_{n}=\Gamma_{n}^{\bullet}
\end{gather*}
$$

and

$$
\begin{align*}
& \prime\left(\Gamma_{\ddot{n}}^{\cdot}\right)={ }^{\prime \prime}\left(\Gamma_{n} \cdot{ }^{*}\right)=0 \\
& { }^{\prime}\left(\Gamma_{\ddot{n}}\right)={ }^{\prime \prime}\left(\Gamma_{n}^{\bullet \bullet}\right)_{n}=\Gamma_{n} \cdot \tag{6.16}
\end{align*}
$$

Lastly, we show the results with respect to the general connections derived from a normal general connection Γ in a diagram. If we regard this diagram as the genealogical tree of the descendants of a normal general connection Γ, it shows that
(i) all the descendants are normal general connections,
(ii) their normal parts and Γ^{\cdot} and $\Gamma^{\cdot \cdot}$ out of their basic parts are generically fixed,
(iii) ' Γ and " Γ are not exterminable, and
(iv) the genealogical tree is composed of at most the ten general connections: $\Gamma,{ }^{\prime} \Gamma,{ }^{\prime \prime} \Gamma, \Gamma \cdot \Gamma \cdot{ }^{\prime}{ }^{\prime} \Gamma_{n},{ }^{\prime \prime} \Gamma_{n}, \Gamma_{n}, \Gamma_{n}, 0$.

References

[1] Chern, S. S., Lecture note on differential geometry. Chicago Univ. (1950).
[2] Ehresmann, G., Les connexions infinitésimales dans un espace fibré différentiable. Colloque de Topologie (Espaces fibrés) (1950), 29-55.
[3] Ehresmann, G., Les prolongements d'une variété différentiable, I. Calcul des jets, prolongement principal. C. R. Paris 233 (1951), 598-600.
[4] ŌTsuki, T., Geometries of connections. Kyōritsu Shuppan Co. (1957). (in Japanese)
[5] ŌTsuki, T., On tangent bundles of order 2 and affine connections. Proc. Japan Acad. 34 (1958), 325-330.
[6] Ötsuki, T., Tangent bundles of order 2 and general connections. Math. J. Okayama Univ. 8 (1958), 143-179.
[7] Ōtsuki, T., On general connections, I. Math. J. Okayama Univ. 9 (1960), 99-164.
[8] ŌTSUKI, T., On general connections, II. Math. J. Okayma Univ. 10 (1961), 113-124.

Department of Mathematics,
Tokyo Institute of Technology.

