ON CONFORMAL MAPPING OF A MULTIPLY-CONNECTED DOMAIN ONTO A CIRCULAR SLIT COVERING SURFACE

By Hisao Mizumoto

§ 1. Introduction.

In the present paper we will concern ourselves with conformal mapping of a multiply-connected domain of finite connectivity onto a canonical covering surface whose boundary consists of whole circumferences and circular slits centred at the origin on the basic plane. We will discuss the existence of such a mapping function and its extremality. The purpose of our present investigation is an extension and an improvement of the results obtained in our previous papers [4] and [5].

§ 2. Preliminaries.

Let B be a multiply-connected domain of finite connectivity on the z-plane. We suppose that each component $C_{j}(j=1, \cdots, N)$ of its boundary C is a continuum. Let $z_{0}, z_{k}^{0}\left(k=1, \cdots, N^{0} ; N^{0} \geqq 0\right)$ and $z_{l}^{\infty}\left(l=1, \cdots, N^{\infty} ; N^{\infty} \geqq 0\right)$ be arbitrarily preassigned $N^{0}+N^{\infty}+1$ points in B, and positive integers μ_{k}^{0} and $\mu_{l}^{\infty}\left(k=1, \cdots, N^{0} ; l=1, \cdots, N^{\infty}\right)$ be given arbitrarily. ${ }^{1)}$ Let \mathfrak{F} be the class of analytic functions $w=f(z)$ on B with the following properties:
(a) f has the only zeros $z_{k}^{0}\left(k=1, \cdots, N^{0}\right)$ and the only poles $z_{l}^{\infty}(l=1, \cdots$, N^{∞}) with their orders μ_{k}^{0} and μ_{i}^{∞}, respectively; ${ }^{2)}$
(b)
(c)

$$
\begin{aligned}
& w=0, \infty \notin \overline{f(B)}-f(B) ; \\
& \left|\int_{C} \lg \right| f|d \arg f|<+\infty,
\end{aligned}
$$

where the line integral means $\lim _{n \rightarrow \infty} \int_{\partial B_{n}} \lg |f| d \arg f$ with an exhaustion $\left\{B_{n}\right\}$ of B;
(d)

$$
f\left(z_{0}\right)=1
$$

Let B^{*} be a subdomain of B whose boundary C^{*} consists of components $C_{j}^{*}(j=1, \cdots, N)$, each being a simple analytic closed curve homotopic to C_{j} in $B-\sum_{k=1}^{N_{0}^{0}}\left\{z_{k}^{0}\right\}-\sum_{l=1}^{N^{\infty}}\left\{z_{l}^{\infty}\right\} .^{3)}$ We define the rotation number of the image of C_{j} about $w=0$ under $f \in \mathfrak{F}$ by

$$
\begin{equation*}
\nu_{j}(f)=\frac{1}{2 \pi} \int_{C_{j}^{*}} d \arg f \quad(j=1, \cdots, N) . \tag{1}
\end{equation*}
$$

Then, it is easily verified by the argument principle that $\nu_{j}(f)(j=1, \cdots, N)$

[^0]are integers not depending on a particular choice of B^{*}, and satisfy
$$
\sum_{j=1}^{N} \nu_{l}(f)=\sum_{k=1}^{N^{0}} \mu_{k}^{n}-\sum_{l=1}^{N^{\infty}} \mu_{i}^{\infty} .
$$

Conversely, let integers $\nu_{j}(j=1, \cdots, N)$ be given arbitrarily under the condition

$$
\sum_{j=1}^{N} \nu_{j}=\sum_{k=1}^{N^{0}} \mu_{k}^{0}-\sum_{l=1}^{N^{\infty}} \mu_{l}^{\infty} .
$$

Then, there exist functions $f \in \mathfrak{F}$ satisfying $\nu_{j}(f)=\nu_{j}(j=1, \cdots, N)$. In fact, it is readily shown that there exists a rational function on the z-plane with the properties, by carrying out, if necessary, a mapping of B onto a domain each boundary component of which separates exterior points of B.

Let t be a closed interval $0 \leqq t \leqq 1$. Let the two functions $f_{0} \in \mathscr{F}$ and $f_{1} \in \mathfrak{F}$ satisfy the following conditions:
(α) there exists a continuous mapping $w=f(z, t)$ of the topological product $B \times t$ into the w-plane such that

$$
f(z, 0)=f_{0}(z), \quad f(z, 1)=f_{1}(z) ;
$$

(β) $f(z, t) \in \mathfrak{F}$ for each $t \in \mathrm{t}$.
Then, we call that f_{1} is homotopic to f_{0} and denote it by $f_{0} \sim f_{1}$. The homotopy relation is obviously an equivalence relation in \mathfrak{F}, and thus \mathfrak{F} is divided into classes which are called homotopy classes.

Lemma. Let $f_{0} \in \mathfrak{F}, f_{1} \in \mathfrak{F}$. Then, $f_{0} \sim f_{1}$ if and only if $\nu_{j}\left(f_{0}\right)=\nu_{j}\left(f_{1}\right)$ ($j=1, \cdots, N$).

Proof. ${ }^{4)}$ Let $f_{0} \sim f_{1}$. Then, f_{0} and f_{1} satisfy the conditions (α) and (β). We consider

$$
\rho_{j}(t) \equiv \nu_{j}(f(z, t))=\frac{1}{2 \pi i} \int_{C_{j}^{*}} d \arg f(z, t) \quad(j=1, \cdots, N)
$$

Noting to the property (b), we can easily see that each $\rho_{\rho}(t)$ is a continuous function in the closed interval t. However $\rho_{\jmath}(t)$ takes only integral values. Thus $\rho_{j}(t) \equiv$ const and especially $\rho_{j}(0)=\rho_{j}(1)$. Therefore $\nu_{j}\left(f_{0}\right)=\nu_{j}\left(f_{1}\right)(j=1, \cdots, N)$.

Conversely, lef $\nu_{j}\left(f_{0}\right)=\nu_{j}\left(f_{1}\right)(j=1, \cdots, N)$. We construct a function

$$
f(z, t) \equiv \exp \left\{t\left(\lg f_{1}-\lg f_{0}\right)+\lg f_{0}\right\}
$$

from the both functions f_{0} and f_{1}. Then, it is immediately verified that $f(z, t)$ is a desired mapping which provides for $f_{0} \sim f_{1}$. q. e. d.

§3. Theorem.

Let \mathfrak{J} be an arbitrary homotopy class of \mathfrak{F}, and let

$$
J(f)=\int_{C} \lg |f| d \arg f-2 \pi \sum_{k=1}^{N_{k}^{0}} \mu_{k}^{0} \lg \left|\dagger_{k}^{\oint_{k}^{\prime}}(0)\right|-2 \pi \sum_{l=1}^{N^{\infty}} \mu_{l}^{\infty} \lg \left|\mathfrak{f}_{l}^{\infty}(0)\right|^{5)}
$$

4) Cf. [3].
5) This functional is an extension of one to the present case which Sario introduced in [7].
for $f \in \mathfrak{J}$, where

$$
\begin{array}{ll}
f_{k}^{0}(\zeta) \equiv f\left(\zeta^{1 / \mu_{k}^{0}}+z_{k}^{0}\right) & \left(k=1, \cdots, N^{0}\right) \\
f_{i}^{\infty}(\zeta) \equiv 1 / f\left(\zeta^{1 / \mu_{l}^{\infty}}+z_{l}^{\infty}\right) & \left(l=1, \cdots, N^{\infty}\right) .
\end{array}
$$

Theorem. There exists a unique element Φ in each homotopy class $\$$ which minimizes $J(f)$ on $\mathfrak{5}$. Further Φ is the unique element of \mathfrak{J} which maps B onto one of the finitely-sheeted covering surface whose boundary consists of whole circumferences and circular slits centred at the origin on the basic w-plane.

Proof. ${ }^{6}$. We select an arbitrary and fixed element f of $\mathscr{\delta}$. Then $\Omega=\lg |f|$ is a potential function on B which is harmonic except for logarithmic singularities with principal parts

$$
\mu_{k}^{0} \lg \left|z-z_{k}^{0}\right|, \quad-\mu_{l}^{\infty} \lg \left|z-z_{l}^{\infty}\right|
$$

at $z_{k}^{0}, z_{l}^{\infty}\left(k=1, \cdots, N^{0} ; l=1, \cdots, N^{\infty}\right)$, respectively. By (c) and (d), it satisfies

$$
\begin{equation*}
\left|\int_{C} \Omega \frac{\partial \Omega}{\partial n} d s\right|<+\infty, \tag{2}
\end{equation*}
$$

and
(3)

$$
\Omega\left(z_{0}\right)=0,
$$

respectively, where $\partial / \partial n$ denotes the differentiation along inner normal and $d s$ the line element. And further, by (1), we have

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{C_{j}^{*}} \frac{\partial \Omega}{\partial n} d s=\nu_{j}(f) \quad(j=1, \cdots, N) \tag{4}
\end{equation*}
$$

Let \mathfrak{A} be the class of potential functions u which are harmonic on B except for the same logarithmic singularities as Ω at $z_{k}^{0}, z_{l}^{\infty}\left(k=1, \cdots, N^{0} ; l=1, \cdots, N^{\infty}\right)$, take a constant boundary value on each boundary component of B, and satisfy (5)

$$
u\left(z_{0}\right)=0 .
$$

Then, it is readily verified by (2) that

$$
D_{B}(\Omega-u)<+\infty \quad \text { for } u \in \mathfrak{N}
$$

Let \mathfrak{B} be the class of non-constant harmonic functions h on B which have onevalued conjugate harmonic functions and satisfy

$$
D_{B}(h)<+\infty
$$

and

$$
h\left(z_{0}\right)=0 .
$$

(i) Let h^{*} be a non-constant harmonic function on B which satisfies the conditions

$$
D_{B}\left(h^{*}\right)<+\infty, \quad h^{*}\left(z_{0}\right)=0 .
$$

If there exists a constant c not depending on $u \in \mathfrak{A}$ such that
6) We shall prove the theorem except the case $N^{0}=N^{\infty}=0$; the exceptional case we can be more easily dealt with in a similar method (cf. [4]).
(6)

$$
D_{B}\left(u, h^{*}\right)=c,
$$

then we have

$$
c=0 \quad \text { and } \quad h^{*} \in \mathfrak{B}
$$

Let

$$
\begin{equation*}
-\int_{C_{j}^{*}} \frac{\partial h^{*}}{\partial n} d s=\alpha_{j} \quad(j=1, \cdots, N) \tag{7}
\end{equation*}
$$

Since h^{*} is harmonic on B, we have

$$
\begin{equation*}
\sum_{\jmath=1}^{N} \alpha_{\jmath}=0 \tag{8}
\end{equation*}
$$

Let $g\left(z, z^{\prime}\right)$ be the Green's function of B with the pole z^{\prime}. We can take a sufficiently small positive number δ for any given positive number ε such that each component of

$$
C^{\delta}=\left\{z \mid g\left(z, z^{\prime}\right)=\delta\right\}
$$

is a simple analytic closed curve homotopic to $C_{3}(j=1, \cdots, N)$, respectively, and

$$
\begin{equation*}
\left|D_{B-B^{\delta}}\left(g\left(z, z^{\prime}\right), h^{*}\right)\right|<\varepsilon \tag{9}
\end{equation*}
$$

where

$$
B^{\delta}=\left\{z\left|g\left(z, z^{\prime}\right)>\delta\right\rangle\right.
$$

Using the Green's formula, (7) and (8), and noting that

$$
\lim _{r \rightarrow 0} \int_{\left|z-z^{\prime}\right|=r} g \frac{\partial h^{*}}{\partial n} d s=0
$$

we have

$$
\begin{equation*}
D_{B^{\delta}}\left(g\left(z, z^{\prime}\right), h^{*}\right)=-\int_{C^{\delta}} g \frac{\partial h^{*}}{\partial n} d s=-\delta \int_{C^{\delta}} \frac{\partial h^{*}}{\partial n} d s=\delta \sum_{\rho=1}^{N} \alpha_{\jmath}=0 \tag{10}
\end{equation*}
$$

By (9) and (10), we have

$$
\left|D_{B}\left(g\left(z, z^{\prime}\right), h^{*}\right)\right| \leqq\left|D_{B^{\delta}}\left(g\left(z, z^{\prime}\right), h^{*}\right)\right|+\left|D_{B-B^{\delta}}\left(g\left(z, z^{\prime}\right), h^{*}\right)\right|<\varepsilon
$$

Since ε is an arbitrary positive number, it follows that

$$
\begin{equation*}
D_{B}\left(g\left(z, z^{\prime}\right), h^{*}\right)=0 \tag{11}
\end{equation*}
$$

Let $\omega_{j}(j=1, \cdots, N)$ be the harmonic measure of C_{j} with respect to B, respectively. We can take a sufficiently small positive number δ for any given positive number ε such that

$$
\begin{equation*}
C_{\jmath}^{\delta}=\left\{z \mid \omega_{\jmath}=1-\delta\right\} \quad \text { with } \quad \delta<\frac{\varepsilon}{4\left|\alpha_{\jmath}\right|} \tag{12}
\end{equation*}
$$

is a simple analytic closed curve homotopic to C_{3} and each component of $C_{j}^{\delta \prime}=\left\{z \mid \omega_{j}=\delta\right\}$ is a one homotopic component of $C-C_{j}$, respectively, and

$$
\begin{equation*}
\left\lvert\, D_{B-B_{j}^{\delta}\left(\omega_{j}, h^{*}\right) \left\lvert\,<\frac{\varepsilon}{2}\right., ., ~}^{\text {, }}\right. \tag{13}
\end{equation*}
$$

where

$$
B_{j}^{\delta}=\left\{z \mid \delta<\omega_{j}<1-\delta\right\} \quad(j=1, \cdots, N)
$$

Using the Green's formula, (7) and (8), we have

$$
\begin{align*}
D_{B_{j}^{\delta}}\left(\omega_{j}, h^{*}\right) & =-(1-\delta) \int_{C_{j}^{\delta}} \frac{\partial h^{*}}{\partial n} d s-\delta \int_{C_{j}^{\delta}} \frac{\partial h^{*}}{\partial n} d s \quad(j=1, \cdots, N) . \\
& =(1-\delta) \alpha_{j}+\delta \sum_{i \neq j} \alpha_{t}=(1-2 \delta) \alpha_{j}
\end{align*}
$$

By (12), (13) and (14), we have

$$
\begin{aligned}
\left|D_{B}\left(\omega_{j}, h^{*}\right)-\alpha_{l}\right| \leqq & \left|D_{B_{j}^{\delta}}\left(\omega_{j}, h^{*}\right)-\alpha_{j}\right|+\left|D_{B-B_{j}^{\delta}}\left(\omega_{j}, h^{*}\right)\right| \\
& <2 \delta\left|\alpha_{j}\right|+\frac{\varepsilon}{2}<\varepsilon \quad(j=1, \cdots, N)
\end{aligned}
$$

Since ε is an arbitrary positive number, it follows that

$$
\begin{equation*}
D_{B}\left(\omega_{j}, h^{*}\right)=\alpha_{\jmath} \tag{15}
\end{equation*}
$$

$$
(j=1, \cdots, N)
$$

Now let

$$
u_{0} \equiv \sum_{k=1}^{N^{0}} \mu_{k}^{0} g\left(z, z_{k}^{0}\right)-\sum_{l=1}^{N^{\infty}} \mu_{l}^{\infty} g\left(z, z_{l}^{\infty}\right)+\gamma
$$

where

$$
\gamma=-\sum_{k=1}^{N^{0}} \mu_{k}^{0} g\left(z_{0}, z_{k}^{0}\right)+\sum_{l=1}^{N^{\infty}} \mu_{l}^{\infty} g\left(z_{0}, z_{l}^{\infty}\right)
$$

Obviously $u_{0} \in \mathfrak{Z}$. Thus, by the assumption (6), we have

$$
D_{B}\left(u_{0}, h^{*}\right)=c
$$

On the other hand, by (11), we have

$$
\begin{equation*}
D_{B}\left(u_{0}, h^{*}\right)=0 \tag{16}
\end{equation*}
$$

Thus we obtain $c=0$.
Let

$$
u_{j} \equiv u_{0}+\omega_{j}(z)-\omega_{j}\left(z_{0}\right) \quad(j=1, \cdots, N)
$$

Obviously $u_{j} \in \mathfrak{A}(j=1, \cdots, N)$. By (15) and (16), we have

$$
D_{B}\left(u_{j}, h^{*}\right)=\alpha_{J} \quad(j=1, \cdots, N)
$$

Thus, by the assumption (6) and $c=0$, we obtain

$$
\alpha_{J}=0 \quad(j=1, \cdots, N)
$$

This fact means that a conjugate function of h^{*} is one-valued and thus $h^{*} \in \mathfrak{B}$.
(ii) If $\left\{u^{n}\right\}_{n=1}^{\infty}$ is a sequence of elements of \mathfrak{A} and for any positive number ε there exists an integer n_{0} such that

$$
D_{B}\left(u^{m}-u^{n}\right)<\varepsilon \quad \text { for } m>n_{0}, n>n_{0}
$$

then $\left\{u^{n}\right\}_{n=1}^{\infty}$ converges uniformly in the wider sense to an element u of \mathfrak{A} on B.
(iii) There exists an element U of \mathfrak{A} which minimizes $D_{B}(\Omega-u)$ among all $u \in \mathfrak{N}$.

If the functions in question are free of singularity, (ii) and (iii) will be verified by a well known method. In spite of the existence of singularities, this way of proof is valid to the present case; we omit the proof in detail.
(iv)

$$
\Omega-U \in \mathfrak{B} \quad \text { or } \quad \Omega \equiv U
$$

Let

$$
\begin{equation*}
d=D_{B}(\Omega-U)=\min _{u \in \mathscr{U}} D_{B}(\Omega-u) . \tag{17}
\end{equation*}
$$

For any $u \in \mathfrak{A}$,

$$
\frac{U+\lambda u}{1+\lambda} \in \mathfrak{A}
$$

holds for any real λ with $0<|\lambda|<1$. Then, by (17), we have

$$
D_{B}\left(\Omega-\frac{U+\lambda u}{1+\lambda}\right)=D_{B}\left((\Omega-U)-\frac{\lambda}{1+\lambda}(u-U)\right) \geqq d .
$$

Using (17) again, we get

$$
2 \frac{\lambda}{1+\lambda} D_{B}(\Omega-U, u-U) \leqq\left(\frac{\lambda}{1+\lambda}\right)^{2} D_{B}(u-U)
$$

For any λ with the same sign as $D_{B}(\Omega-U, u-U)$, we have

$$
2\left|D_{B}(\Omega-U, u-U)\right|<\left|\frac{\lambda}{1+\lambda}\right| D_{B}(u-U) .
$$

Since $|\lambda|$ can be chosen arbitrarily small for a fixed u, it follows that

$$
D_{B}(\Omega-U, u)=D_{B}(\Omega-U, U)
$$

Since u is an arbitrary element of \mathfrak{N}, we obtain (iv) by (i).
Let V be the potential function conjugate to U and its additive constant be determined by the condition

$$
\begin{equation*}
\text { a branch of } V\left(z_{0}\right)=0 \tag{18}
\end{equation*}
$$

We shall show that the analytic function

$$
\Phi=\exp (U+i V)
$$

is a desired mapping function.
It is obvious that Φ has the zeros $z_{k}^{0}\left(k=1, \cdots, N^{0}\right)$ and the poles z_{l}^{∞} $\left(l=1, \cdots, N^{\infty}\right)$ with their orders μ_{k}^{0} and μ_{l}^{∞}, respectively. Since $\Omega-U \in \mathfrak{B}$ or $U \equiv \Omega$, we have by (4)

$$
\frac{1}{2 \pi} \int_{C_{j}^{*}} d \arg \Phi=\frac{1}{2 \pi} \int_{C_{j}^{*}} \frac{\partial U}{\partial n} d s=\frac{1}{2 \pi} \int_{C_{j}^{*}} \frac{\partial \Omega}{\partial n} d s=\nu_{j}(f) \quad(j=1, \cdots, N)
$$

and see that Φ is one-valued. By (5) for $u=U$ and (18), we get

$$
\Phi\left(z_{0}\right)=1
$$

Thus, noting the Lemma, we obtain that $\Phi \in \mathfrak{g}$. Further, since U takes a constant boundary value on each boundary component of B, Φ maps B onto a
covering surface whose boundary consists of whole circumferences and circular slits centred at the origin on the basic w-plane.

Next we shall show that Φ is the unique extremal function of \mathfrak{g}. Let f be an arbitrary element of $\mathfrak{5}$ and let

$$
B_{r}=B-\sum_{k=1}^{N^{0}}\left\{\left|z-z_{k}^{0}\right| \leqq r\right\}-\sum_{l=1}^{N^{\infty}}\left\{\left|z-z_{l}^{\infty}\right| \leqq r\right\},
$$

where r should be chosen suitably sufficiently small. Then, the image curves of $\left\{\left|z-z_{k}^{0}\right|=r\right\} \quad\left(k=1, \cdots, N^{0}\right)$ and $\left\{\left|z-z_{l}^{\infty}\right|=r\right\} \quad\left(l=1, \cdots, N^{\infty}\right)$ under f surrounds about $w=0 \mu_{k}^{0}$-times ($k=1, \cdots, N^{0}$) and μ_{l}°-times $\left(l=1, \cdots, N^{\infty}\right)$, respectively, and lies between circumferences

$$
|w|=r^{\mu^{0}}\left|\varphi_{k}^{0}(0)\right|(1+\delta(r)) \text { and }|w|=r^{\mu_{k}^{0}}\left|f_{k}^{0 \prime}(0)\right|(1-\delta(r)) \quad\left(k=1, \cdots, N^{0}\right),
$$

and

$$
|w|=\frac{1}{r^{\mu_{l}^{\infty}}\left|\dagger_{\imath}^{\infty}(0)\right|}(1+\delta(r)) \text { and }|w|=\frac{1}{r^{\mu_{l}^{\infty}}\left|\dagger_{\imath}^{\infty}(0)\right|}(1-\delta(r)) \quad\left(l=1, \cdots, N^{\infty}\right),
$$ respectively, where the positive number $\delta(r)$ does not depend on $f \in \mathfrak{g}$ and

$$
\lim _{r \rightarrow 0} \delta(r)=0 .
$$

Therefore, using the Green's formula, we have

$$
\begin{aligned}
& J(f)=D_{B_{r}}(\lg |f|)+\sum_{k=1}^{N^{0}} \int_{\left|z-z_{k}^{0}\right|=r} \lg |f| d \arg f+\sum_{l=1}^{N^{\infty}} \int_{\left|z-z_{l}^{\infty}\right|=r} \lg |f| d \arg f \\
& -2 \pi \sum_{k=1}^{N^{0}} \mu_{k}^{0} \lg \left|千_{k}^{0 \prime}(0)\right|-2 \pi \sum_{i=1}^{N_{i}^{\infty}} \mu_{l}^{\infty} \lg \left|\ddagger_{i}^{\infty}(0)\right| \\
& =D_{B_{r}}(\lg |f|)+2 \pi \sum_{k=1}^{N^{0}} \mu_{k}^{0} \lg \left|\boldsymbol{r}_{k}^{\mu_{k}^{0} \hat{F}_{k}^{0} 0^{\prime}}(0)\right|+2 \pi \sum_{l=1}^{N^{\infty}} \mu_{l}^{\infty} \lg \left|\boldsymbol{r}^{\mu_{l}^{\infty}} \dot{F}_{l}^{\infty}(0)\right| \\
& \left.-2 \pi \sum_{k=1}^{N_{k}^{0}} \mu_{k}^{0} \lg \left|\dagger_{k}^{\rho_{k}^{\prime \prime}}(0)\right|-2 \pi \sum_{l=1}^{N^{\infty}} \mu_{l}^{\infty} \lg \mid\right\rceil_{l}^{\rho_{l}^{\prime \prime}}(0) \mid+O(\delta(r)) \\
& =D_{B_{r}}(\lg |f|)+2 \pi \sum_{k=1}^{N^{0}} \mu_{k}^{02} \lg r+2 \pi \sum_{l=1}^{N^{\infty}} \mu_{l}^{\infty}{ }^{\infty} \lg r+O(\delta(r)) .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
J(f)-J(\Phi) & =D_{B_{r}}(\lg |f|)-D_{B_{r}}(\lg |\Phi|)+O(\delta(r)) \\
& =D_{B_{r}}(\Omega)-D_{B_{r}}(U)+O(\delta(r)) \\
& =2 D_{B_{r}}(U, \Omega-U)+D_{B_{r}}(\Omega-U)+O(\delta(r)),
\end{aligned}
$$

which yields, by $r \rightarrow 0$,

$$
J(f)-J(\Phi)=2 D_{B}(U, \Omega-U)+D_{B}(\Omega-U)
$$

Noting that $U \in \mathfrak{A}, \Omega-U \in \mathfrak{B}$ and using a similar reasoning as in the proof of (i), we have

$$
D_{B}(U, \Omega-U)=0
$$

and thus

$$
J(f)-J(\Phi)=D_{B}(\Omega-U) \geqq 0
$$

Here, in virtue of the normalizing condition at z_{0}, we see that the equality in the last inequality holds if and only if $\Omega \equiv U$ or $f \equiv \Phi$.

It remains only to show that Φ is the unique element of \mathfrak{g} which maps B onto one of the covering surfaces whose boundary consists of whole circumferences and circular slits centred at the origin on the basic w-plane. For this purpose, let Φ^{*} be another element of $\mathfrak{5}$ which gives such a canonical mapping. Then we easily see that Φ^{*} also must have the same extremality as Φ. Thus we have

$$
J\left(\Phi^{*}\right)=J(\Phi)
$$

and thus $\Phi^{*} \equiv \Phi$.
q. e.d.

§4. Remarks.

We shall enumerate here the types of the extremal functions Φ for some special homotopy classes \wp.

1. The case $N^{0}=N^{\infty}=0, \nu_{j} \neq 0$ for some j. Φ maps B onto a covering surface of annular type cut along circular slits centred at the origin (cf. Theorem 2 in [4]).
2. The case $N^{0} \geqq 1, N^{\infty}=0$. Φ maps B onto a covering surface of circular type cut along circular slits centred at the origin (cf. Theorem in [5]).
3. The case $\sum_{k=1}^{N_{k}^{0}} \mu_{k}^{0}=\sum_{l=1}^{N_{l}^{\infty}} \mu_{\imath}^{\infty}=P \geqq 1, \nu_{j}=0(j=1, \cdots, N)$. Φ maps B onto an exactly P-sheeted covering surface over the entire w-plane cut along circular slits centred at the origin (cf. [1], [6] for the case $P=1$).
4. The case $N^{0}=N^{\infty}=0, \nu_{1}=1, \nu_{2}=-1, \nu_{j}=0(j=3, \cdots, N)$. Φ maps B onto a schlicht circular slit annulus (cf. [2], [6]).
5. The case $N^{0}=1, N^{\infty}=0, \nu_{1}=1, \nu_{j}=0(j=2, \cdots, N) . \Phi$ maps B onto a schlicht circular slit disk (cf. [2], [6]).
6. The case $N^{0}=N^{\infty}=0, \nu_{j}=0(j=1, \cdots, N)$. Φ must degenerate to $\Phi \equiv 1$.

These are easily verified by the argument principle.

References

[1] GröTZSCH, H., Zur konformen Abbildung mehrfach zusammenhängender schlichter Bereiche. (Iterationsverfahren.) Leipziger Ber. 83 (1931) 67-76.
[2] -, Das Kreisbogenschlitztheorem der konformen Abbildung schlichter Bereiche. Leipziger Ber. 83 (1931) 238-253.
[3] Huber, H., Über analytische Abbildungen von Ringgebieten in Ringgebiete. Comp. Math. 9 (1951) 161-168.
[4] Mizumoto, H., On conformal mapping of a multiply-connected domain onto a canonical covering surface. Kōdai Math. Sem. Rep. 10 (1958) 177-188.
[5] - On conformal mapping of a multiply-connected domain onto a canonical covering surface, II. Kōdai Math. Sem. Rep. 12 (1960), 11-14.
[6] RENGEL, E., Existenzbeweise für schlichte Abbildungen mehrfach zusammenhängender Bereiche auf gewisse Normalbereiche. Deutsch. Math.-Vereinig. 44 (1934), 51-55.
[7] Sario, L., Capacity of the boundary and of a boundary component. Ann. Math. 59 (1954), 135-144.

[^0]: Received January 29, 1961.

 1) Here the case $N^{0}=0$ or $N^{\infty}=0$ is permitted.
 2) Of course, if $N^{0}=0$ or $N^{\infty}=0, f$ has no zeros or no poles in B, respectively.
 3) Here, in the case $N^{0}=0$ or $N^{\infty}=0$, the corresponding summations are taken to be vacuous, and the similar notes should be taken throughout the paper.
