ON CONFORMAL MAPPING OF A MULTIPLY-CONNECTED
DOMAIN ONTO A CIRCULAR SLIT COVERING SURFACE

By HisAo Mi1zuMoOTO

§1. Introduction.

In the present paper we will concern ourselves with conformal mapping of
a multiply-connected domain of finite connectivity onto a canonical covering
surface whose boundary consists of whole circumferences and circular slits centred
at the origin on the basic plane. We will discuss the existence of such a mapping
function and its extremality. The purpose of our present investigation is an
extension and an improvement of the results obtained in our previous papers [4]
and [5].

§2. Preliminaries.

Let B be a multiply-connected domain of finite connectivity on the z-plane.
We suppose that each component C, (5 =1,---, N) of its boundary C is a con-
tinuum. Let 2z, 20 (k=1,---,N% N°=0) and 2> ({=1,---,N°; N°=0) be
arbitrarily preassigned N°+ N>+1 points in B, and positive integers
and u7 (k=1,---,N%Il=1,---, N°) be given arbitrarily.® Let % be the class of
analytic functions w= f(z) on B with the following properties:

(a) f has the only zeros 2¢ (k=1,---, N° and the only poles 2> (I =1,---,
N<=) with their orders uf and w7, respectively;?

(b) w=0, o & FB) - F(B);
(¢) Uclglfidargf <4 oo,

where the line integral means lim,...fsz lg|f|darg f with an exhaustion {B.,}
of B;

(d) Sf(zo)=1.

Let B* be a subdomain of B whose boundary C* consists of components
Ci¥ (j=1,-++, N), each being a simple analytic closed curve homotopic to C, in
B -3 {20} — S5 {#r3.® We define the rotation number of the image of C;
about w=0 under f g by

(1) =5 |, dare s (=1, N).

Then, it is easily verified by the argument principle that v;(f) (5=1,---, N)
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1) Here the case N°=0 or N* =0 is permitted.

2) Of course, if N°=0 or N =0, f has no zeros or no poles in B, respectively.

3) Here, in the case N°=0 or N~ =0, the corresponding summations are taken
to be vacuous, and the similar notes should be taken throughout the paper.
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are integers not depending on a particular choice of B*, and satisfy
N No N
() =2 — S
=1 k=1 l=1
Conversely, let integers v, (j=1,--+, N) be given arbitrarily under the condition
N No N=
Dy, =3 — 3 pp
9=1 k=1 =1
Then, there exist functions feg satisfying v, (f)=v, (4=1,---, N). In fact,
it is readily shown that there exists a rational function on the z-plane with
the properties, by carrying out, if necessary, a mapping of B onto a domain
each boundary component of which separates exterior points of B.

Let t be a closed interval 0<¢t<1. Let the two functions foeF and
f1€F satisfy the following conditions:

(a) there exists a continuous mapping w = f(z,t) of the topological pro-
duct Bxt into the w-plane such that

f(z,00=/f2), [z 1)=fi(e);

(B) f(z,t)eF for each tt.
Then, we call that f; s homotopic to f, and denote it by fy ~fi. The homotopy
relation is obviously an equivalence relation in ¥, and thus & is divided into
classes which are called homotopy classes.

LEMMA. Let oG, fi€F. Then, fo~fi if and only if vi(fo)=v,(f1)
(j=1,"’, N)'

Proof.* Let fo~ fi. Then, f;, and f, satisfy the conditions («) and ().
We consider

pO= S ) =5y | daref ) (=10, N,

Noting to the property (b), we can easily see that each p,(t) is a continuous
function in the closed interval t. However p,(t) takes only integral values. Thus
p(t) = const and especially p,(0)=p;(1). Therefore v,(fo)=v,(f1) (j=1,---, N).
Conversely, let v;(fo)=v,(f1) (7=1,---, N). We construct a function
f(z, t) = exp{t(lg fi — g fo) + g fo}

from the both functions f; and f;. Then, it is immediately verified that f(z, t)
is a desired mapping which provides for fy ~ fi. q. e. d.

§3. Theorem.
Let © be an arbitrary homotopy class of &, and let

No© N
J(f)= ng |fldarg f — ZWIZ!IMB lg [72'(0) — 2ﬂl§‘.l,ui’° lg [77(0)”

4) Cf. [3].
5) This functional is an extension of one to the present case which Sario introduced
in [7].
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for f €9, where
190 = f(CVrk + 29) (k=1,---, N9,
@ =1/, +27) @¢=1,---,N").

THEOREM. There exists a unique element @ im each homotopy class 9
which minimizes J(f) on . Further @ is the unique element of O which
maps B onto one of the finitely-sheeted covering surface whose boundary
consists of whole circumferences and circular slits centred at the origin on
the basic w-plane.

Proof.® We select an arbitrary and fixed element f of . Then 2=I1g|f]|
is a potential function on B which is harmonic except for logarithmic singu-
larities with principal parts

Mmlglz—2|, —urlglz—zr|
at 20,z (k=1,---,N%1l=1,---, N*), respectively. By (c¢) and (d), it satisfies
08
(2) jg > dsb<+oo,
and
(3) 8(z0) =0,

respectively, where 0/0n denotes the differentiation along inner normal and ds
the line element. And further, by (1), we have

1 00 .

(4) 3 Jop 4= D) (G=1-, ).
Let %A be the class of potential functions w which are harmonic on B except

for the same logarithmic singularities as 2 at 2% 2> (k=1,---, N%1=1,---,N*),
take a constant boundary value on each boundary component of B, and satisfy
(5) u(20) =0.
Then, it is readily verified by (2) that

Dp(2 —u)< + o0 for u .

Let B be the class of non-constant harmonic functions 2 on B which have one-
valued conjugate harmonic functions and satisfy

Dy(h) < 4 oo
and
h(z) = 0.

(i) Let h* be a non-constant harmonic function on B which satisfies
the conditions

Dp(h*) < 4 oo, h*(z0) = 0.
If there exists a constant ¢ not depending on u WU such that

6) We shall prove the theorem except the case N°= N==0; the exceptional case
we can be more easily dealt with in a similar method (ef. [4]).
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(6) Dy(u, h*) = c,
then we have
c=0 and h* € B.

Let
(7) —SC; aa}: ds=a, (G=1,---, N).
Since A* is harmonic on B, we have
(8) St =0.
=1

Let g(z,2’) be the Green’s function of B with the pole 2. We can take a
sufficiently small positive number ¢ for any given positive number ¢ such that
each component of

Co={z| g(z,2")=0}

is a simple analytic closed curve homotopic to C, (j=1,---, N), respectively,
and

(9) I DB—Ba(g(zy z/)y h*)l < &,

where

Bi={z] g(z, 2’) > d}.
Using the Green’s formula, (7) and (8), and noting that

. oh*
1:—12 SIZ-Z'[:rg on ds = O,

we have
A0 Dalete, ), 1= | g
By (9) and (10), we have

| Dx(9(2, 2"), 1*) | < | D¥(9(2, 2'), B*)| + | Ds-5(9(2, 2'), B¥) | <e.
Since ¢ is an arbitrary positive number, it follows that
11) Dy(g(z, 2’), h*)=0.

Let w; (=1,---, N) be the harmonic measure of C, with respect to B,
respectively. We can take a sufficiently small positive number ¢ for any given
positive number & such that

o> [oont N
e ds=—d| S ds=331a,=0.

. o €
(12) Cf ={zlw,=1-0} with 0< Tal

is a simple analytic closed curve homotopic to C, and each component of
Cj’'={z| w; =0} is a one homotopic component of C— C,, respectively, and

(13) | Da-gifws, 1)1 < 5,
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where
Bi={z2]| 0<w;<1—0} (s=1,-
Using the Green’s formula, (7) and (8), we have
* *
Dgiw;, )= —(1 —B)S ﬂds - 35 ?h—ds
(14) oy On oy On (j=1,-
=(1—0a,+0>a,=1—20)a,
¥
By (12), (13) and (14), we have
| Ds(w;, B*) — a,;| = | Dgiwj, B*) — a;| + | Dp-p¥w;, B*)]
<23|C¥]|+‘%<8 (j=17"
Since ¢ is an arbitrary positive number, it follows that
(15) Dy(w;, k*) = a, (5=1,--
Now let
No N>
%o skg.lmz 9(z, 20) —g}l,ufg(z, )+,
where
Ne N*
r= —7;‘.1#2 9(20, 28) +l§1 HE9(20, 27).
Obviously u,=%. Thus, by the assumption (6), we have
DB(“O: h*) =c.
On the other hand, by (11), we have
(16) Dy(to, B*)=0.
Thus we obtain ¢=0.
Let
Uy = o + @,(2) — w,(20) (1=1,-
Obviously u, €% (j=1,--+, N). By (15) and (16), we have
Dg(u;, h*) = a, (7=1,-
Thus, by the assumption (6) and ¢=0, we obtain
a,=0 (7=1,--
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This fact means that a conjugate function of i* is one-valued and thus 2* =B.

(ii) If {u"}p-1 %S a sequence of elements of A and for any positive

number ¢ there exists an integer no such that

Dy(u™ —u™) < e Jfor m > ny, n> Ny,
then {u"}n-, converges uniformly in the wider semse to an element w of N on

B.

(iii) There exists an element U of N which minimizes Ds(2 — u) among

all wel.
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If the functions in question are free of singularity, (i) and (iii) will be
verified by a well known method. In spite of the existence of singularities, this
way of proof is valid to the present case; we omit the proof in detail.

@iv) 2-UeB or 2=1U.
Let
am d=Dy2—-U)= mig Dg(2 — u).
ue
For any u ¥,
U+ u
it2 ¥
holds for any real 4 with 0 < |[1]| <1. Then, by (17), we have
U+u \ _ A
DB<.Q— A >_D3<(.Q— V)~ um U))gd.

Using (17) again, we get

i A \2

For any 2 with the same sign as Dy(2 — U, u — U), we have
A
21Dy @~ U, u— U < | Datu— 1.

Since |A| can be chosen arbitrarily small for a fixed u, it follows that
D2 —U,u)=Dy2—U, U).
Since % is an arbitrary element of 2, we obtain (iv) by (i).
Let V be the potential function conjugate to U and its additive constant
be determined by the condition
(18) a branch of V(z,)=0.
We shall show that the analytic function
O=exp(U+1V)

is a desired mapping function.

It is obvious that @ has the zeros 2} (k=1,---, N° and the poles 2z
(l=1,---, N*) with their orders u? and i, respectively. Since 2 — U8 or
U=248, we have by (4)

o dargo= | Sas= [ Pas=uin (=10
J

2r 2r cy on 2r cr on
and see that @ is one-valued. By (5) for v = U and (18), we get
D(z0)=1.

Thus, noting the Lemma, we obtain that @€$. Further, since U takes a con-
stant boundary value on each boundary component of B, ® maps B onto a



CONFORMAL MAPPING ONTO CIRCULAR SLIT COVERING SURFACE 133

covering surface whose boundary consists of whole circumferences and circular
slits centred at the origin on the basic w-plane.

Next we shall show that @ is the unique extremal function of . Let f
be an arbitrary element of © and let

NoO N®
B.=B->{lz—2tl=r} - {lz—2r|=r},
= =1

where 7 should be chosen suitably sufficiently small. Then, the image curves
of {|[z—2Y =7} (k=1,---,N° and {|lz—2|=7} (I=1,---,N*) under f
surrounds about w=0 ul-times (k=1,---, N% and ui-times ({=1,---, N*),
respectively, and lies between circumferences

|w | =7 | 1(0)|(1+8(r)) and |w]| =7 | }(0)|(1 — &) (k=1,---, N,
and
——w—-l———(l—f—b‘(’r)) and |w|= m—l-
1 7(0)) 77 [17(0) |
respectively, where the positive number d(r) does not depend on f 9 and

lim 6(r) = 0.

7 -0

fwl|= 1=dar)y U=1,---,N%),

Therefore, using the Green’s formula, we have

No° N*
JN=DaGglfD+2 | lglfidarg s+ 3 |
f=1Jz—20=7 i=1

Z—Zk =

ml:rlg [fldarg f

B

No N*
- 27?}2#2 lg|72(0)| — 2= Lgl,u?’ lg | §7/(0)1
NO N> -
=Dp(g|f1)+ 27rk§1,u}3 lg | re§2(0) | +27 El,uf lg | r# §7(0)]
No N®
—2r E{u:‘? lg|1/(0)] — 2ﬂl=2} H21g [17(0) ] + O@(r))

NO N*®
=Dp, (gl f1)+ 27rk21u22 lgr+ 2”?—21 HElg T + O0(r)).

Thus, we have
J(f)—J(@)= Dz (g|f1)— Dz (g| @)+ O((r))
=Dy (2)— D3 (U)+ O(r))
=2Dp (U, 2~ U)+ Dp (2 —U)+ 0@0(r)),
which yields, by r—0,
J()—J@)=2DxU, 2—U)+ Dy —U).
Noting that U, 2 — U<B and using a similar reasoning as in the proof
of (i), we have
DyU,2—-U)=0
and thus
J(f)—J(@)=Dy2—-U)=0.
Here, in virtue of the normalizing condition at 2,, we see that the equality in
the last inequality holds if and only if 2=U or f=0.
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It remains only to show that @ is the unique element of $ which maps B onto
one of the covering surfaces whose boundary consists of whole circumferences
and circular slits centred at the origin on the basic w-plane. For this purpose,
let @* be another element of $ which gives such a canonical mapping. Then
we easily see that ©@* also must have the same extremality as @. Thus we
have

J(O*) = J(D)
and thus 0* =0. q.e.d.

§4. Remarks.

We shall enumerate here the types of the extremal functions @ for some
special homotopy classes 9.

1. The case N°=N==0, v;#0 for some j. @ maps B onto a covering
surface of annular type cut along circular slits centred at the origin (cf.
Theorem 2 in [4]).

2. The case N°=1, N°=0. @ maps B onto a covering surface of circular
type cut along circular slits centred at the origin (ef. Theorem in [5]).

3. The case W ud =S ur=P=1, ;=0 (j=1,---,N). © maps B on-
to an exactly P-sheeted covering surface over the entire w-plane cut along
circular slits centred at the origin (cf. [1], [6] for the case P=1).

4. The case N°=N==0, vy1=1, vo=—1, v;=0 (j=38,---,N). @ maps
B onto a schlicht circular slit annulus (cf. [2], [6]).

5. The case N°=1, N*=0, v1=1, »;=0 (j=2,---,N). @ maps B onto
a schlicht circular slit disk (cf. [2], [6]).

6. Thecase N°=N==0,p;,=0(j=1,---, N). @ must degenerate to ¢ =1.

These are easily verified by the argument principle.
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