
ON RECURRENT MARKOV PROCESSES

BY TADASHI UENO

Introduction.

There are intimate relations between the behavior of Brownian motions
and classical theory of potentials. Such relations can be naturally generalized
to a wider class of Markov processes, as Hunt [5] studied systematically.
Here, we try to study a generalization of classical Green potentials for a class
of recurrent Markov processes. The recurrence assumption much simplifies the
situation, where the system of hitting measures for subsets of the state space
and a system of measures determined by mean sojourn time on subsets play
the essential role. They determine the system of Green capacities, equilibrium
distributions, Green kernels and the invariant measure of the process, uniquely
up to a constant factor. It seems to be important that some of these quanti-
ties depend only on the system of hitting measures. By making use of these
quantities we have a representation of the generator of the process. Follow-
ing is the outline of this paper, where rigorous definitions, assumptions, and
justifications of some quantities are referred to §1.

Let {X(t, w), t^O, w e W} be a Markov process taking values of a topo-
logical space R, where the path functions are right continuous and have left
limits and W is the probability space. Px( ) is the probability of the event
under the condition that the path starts at x. The hitting time σκ(w) for an
open or closed subset K of R is given by

<rκ(w) = inf {t^ 0 1 X(t, w) e K}, if such t exists,

= oo, otherwise.

The hitting measure hκ(x, •) on K is defined by

The Green measure GR~κ(x, •) for the set R — K is given by

σ ϋ-(«0 \

XE(X(t, w))dt\
0 /

where %X ) is the characteristic function of E and Ex(F(w}) is the expecta-
tion of F(x) with respect to Px( ). The fundamental assumption is that of

Recurrence. The process hits any set A having an inner point with
probability one, starting at any point x^R, i.e.

Px(X(t, w)^A for some 0 ̂  t < oo) = l, χ<=R.
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Let % be the family of all {K, L}, where K and L are mutually disjoint
closed sets in R with inner points and satisfy the conditions in §2. There is
a unique pair of measures μL

κ and μκ

L on K and L respectively with total
mass 1, satisfying

= μκ

L(dx)hκ(x,
JL

=( μL

κ(dx)hL(x,

called equilibrium distributions on K and L with respect to R— L and R—K
respectively. When X(t, w) is the 2-dim. Brownian motion and K is contained
in one component of R—L, μL

κ coincides with the equilibrium distribution on
K with respect to the classical Green function of the component.

Define a measure mK}L on R by

mz,L( ) = f μL

κ(dx)G*-L(x, •)+ f μ*L(dx)G*-*(x, •)•
J*: Jz

This is the invariant measure for the process J£(ί, w), as Maruyama and
Tanaka [2] proved. It is also proved that mκ,L depends on the choice of
{K, L} only up to a constant factor. The proof of the latter assertionD leads
naturally to the definition of Green capacities.

To study a relation between two pairs of measures &LK, μκL} and {μ^κ\
μκ'L'}, consider a special case K'aK and L=Lf. Then, we have

"L(x, E),

Ec.K',

', L') = f μι?\
J K

^(x, Kf)

is the normalizing constant. C^^CK"7, Lf) in this
special case can be extended uniquely to a positive

valued function defined on gxg satisfying

C (Klt Li)(K2> L*2)'C(K2, L2)C^3» LZ) — C (Ki,

We note that this function depends only on the system of hitting measures
and that it is characterized by

Fix any {KQ, L0}eg and put C(K, L) = C<κo,Lffi(K, L) and call C(K, L) the
Green capacity of K with respect to R — L, since the function C(K, L) depends
on the choice of {KQ, L0} only up to a constant factor. When X(t, w) is the

1) A different proof is obtained in Maruyama and Tanaka [7], independently of the
present author, by making use of an ergodic theorem.



RECURRENT MARKOV PROCESSES 111

2-dim. Brownian motion and K is contained in one component of R—L, C(K, L)
is the classical Green capacity of K with respect to the component, and m
=mKo,L0 is the Lebesgue measure, where KQ = {z\ \z\^l} and LQ = {z\ \z\^e}
with e = 2.718- ••. Note that C(K, L)"1 increases when K and L shrink, or get
far apart, and decreases when K and L expand, or get near, a little like a
distance. In the case of 2-dim. Brownian motion this coincides with the ex-
tremal distance2) of K and L with respect to the domain between K and L.

We can prove that m — mKQ, z,0 takes a positive value for a non-empty open
set and a finite value for a compact set, and that every GR~κ(x, •) is absolu-
tely continuous relative to m. Fix a version of the densities {gR~κ(x, y)} of
GR~κ(x, •) relative to m, and call it the system of Green kernels induced
by {X(t, w)}. In the case of 2-dim. Brownian motion we can take the classical
Green kernel gR~κ(x, y) for gR~κ(x, y). But in general case gR~κ(x, y) is not
necessarily symmetric in x and y.

W. Feller [3] obtained a representation

Γ f d d+

^J = ~j Ί~Jdm as

of the generator of linear diffusion processes, which has an intrinsic meaning
for the behavior of the process. This was generalized by Ito and McKean [6]
in the case of multidimensional diffusion processes with Brownian hitting mea-
sures, by making use of the classical Green kernels. We note that the formal
use of the kernels defined above leads to a representation of the generator
G of X(ty w}, that is, for each / in the domain ®(6r) of G, there is a unique
sigma-finite measure m/ on R satisfying

Gf= — (in the sense of Radon-Nikodym),
am

R~κ(x, y)mf(dy).

But we note that it is necessary to check, in which case this formal represen-
tation keeps the intrinsic meaning of the original definition cited above.

The author wishes to express his hearty thanks to Prof. H. P. McKean for
his kind and useful opinions to the manuscript and to Mr. Keniti Sato for his
kind help and encouragement.

§1. Notations and Assumptions.3)

Let R be a separable locally compact space containing at least two points
and satisfying

(R. 1) For each point x<=R, we can take a base of neighborhoods ttx of x
consisting of arcwise connected open sets,

2) Defined by Ahlfors and Beurling [1],
3) The general set up in this section, excepting the special assumptions (X. 1), (X. 2),

(X. 3), (X. 5) are due to the Lectures given by Ito and McKean in 1957~8, and to
Watanabe [10]. The propositions stated without proofs in this section are to be con-
tained with proofs in K. Ito and McKean [6] and Watanabe [10].
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(R. 2) R is connected.
We denote by B the topological Borel field of the subsets of R. For a formal
convenience, we add an extra point ω to R as an isolated one and get a topo-

logical space R=R^{ω} and the corresponding Borel field ϊ?.4)

For a measurable function w(t) from [0, +00] to R, we define

tfω(w) — inf {t ^ 0 w(t) = ω}, if such t exists,

= oo, otherwise.

Let W be the space of all functions w(t)'& satisfying

(W. 1) W(t) = ω for t^<rω(w)v

(W. 2) w(t) is right continuous and has left limits at each

0 ̂  t < σω(w).

We call W the space of path functions. X(t, w) (or simply X(t)) is a func-
tion on W defined by X(t, w) = w(t), t ̂  0. The hitting time σA for a set
A e 1? is defined by

<TA(W) — inf {ί ̂  0 1 w(£) e A}, if such ί exists,

= oo, otherwise.

We denote by 93, the smallest Borel field of subsets of W containing

{w X(t, w) e A} for all A^B and t ̂  0. In order to use hitting times for
closed sets freely, we use another Borel field 93 generated by all elements of
& and the sets {w\<rA(w)>t} for all closed sets A and 0^£^oo. 6 ) For a 93-
measurable function (random time) σ taking values in [0, oo], we define the
stopped path wσ

+ and the shifted path wσ~ by

wσ~(t) = X(min (t, σ(w)), w), 0 ̂  t < oo,

= fl>, ί = 007),

w/(ί) = X(t + σ(w), w), Q^t^oo.

Let 23σ be the smallest Borel field containing {w wσ~ e B} for all #e23. It
can be proved that the mapping w^wσ~ and w—>wσ

+ are 93-measurable, and
hence that %5σ is a subfield of 93.

A random time σ is called a Markov time, if

CwX^eSί, for O^ί^co.

It can be proved that a hitting time σA for a closed or open A is a Markov

4) Since the process in this paper is recurrent, we can make the following discus-
sions without adding ω. The main reason to use this formulation is the reference to
[10].

5) This condition means that the path does not come from ω into R once it arrives
at ω.

6) This artificial set up owes to the fact that σA for open A is S-measurable and
satisfies necessary regularities, bnt for closed A this is not known.

7) This is to guarantee Wσ~ e W.



RECURRENT MARKOV PROCESSES US

time,8) and that X(a) is S3tf+-measurable for a Markov time σ, where 93,+
— Π n=l-<Jσ + l/n

Let {Px( ), x^R} be a system of probability measures on 33 satisfying

(P. 1) PX(E) is a Immeasurable function of x for each #(=33,

(P. 2) P^({w I JΓ(0, w) = a?}) = 1 for each a? e 5,

(P. 3) if {<rw} is a sequence of Markov times increasing monotonely with
P^-probability 1, then we have

Px({w \ lim X(crn(w), w) = X(<?oo(w), w), σ«>(w) < 0ω(w)})

= Pχ({w I o co(w) < σω(w)}),
where &co(w) = limw.>oo σn(w),

(P. 4) Markov property: for any bounded 23-measurable function F(w)
and x^R, we have

Ex(F(wt

+) I ft) - £U, W,(F) with PΛ,-probability 1,

where Ex( ) is the expectation of with respect to Px, and Ex( |53ff) is the
conditional expectation with respect to the Borel field 33σ.

We call the system {W, 55, Px( )} a Markov process on R and sometimes
denote it by {X(t)}. We use the abbreviation PX(Λ) instead of PX(L) for L
= {w\w satisfies the condition A}.

B(K] is the space of all bounded functions defined on K<^B, measurable
with respect to the topological Borel field of K, and taking the value 0 at ω
when ω&K. C(K) is the space of all bounded functions on K, continuous with
respect to the relative topology and taking the value 0 at ω when ω &K. The
norm on both these spaces is given by ||/|| =supXξ=κ\f(%)\ We write

P(ί, xt A) =Pa(X(t, w) e A), for A e B,

Ttf(x) =Ex(f(X(t, w))), /eB(R),

Gaf(x) =EJΓe-"'f(X(t, w))dt
\Jo /

= Γe-atTtf(x)dt,
Jo

Now, we introduce assumptions on {X(t)}.
(X. 1) Recurrence. The process hits any set A^B containing an inner

point with probability 1, i.e.

Px(X(t, w) e A, for some 0 ^ £ < o o ) = l, for any x<=R.

Since crA is 53-measurable when A is closed or open, we define the hitting mea-
sure hA(x, •) for such AdR by

hA(x, S) =Px(X(σA(w}, w) e S, σA(w) < oo), a?

We sometimes use the restriction

hA,
A(x, S) = hA(x, S^A'), A'aA, A' <

8) The conclusion for closed A depends upon the artificial definitions of 58 and 23ί etc.
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We write

hAf(x) = ( hA(x, dy)f(y), /e=B(Λ) or
A

(X. 2) For any f^C(K), hκf(x) is continuous in R—K, where K is a
closed set in R containing an inner point.

(X. 3) Maximum principle. For any non-negative f^B(K), hκf(x) is
either strictly positive, or 0 for all points x of any one componet of R—K,
that is, hκ(x, •) are equivalent for all x of any one component of R—K,
where K is a closed set in R containing an inner point.9-

(X. 4) Ga maps C(R) into C(R) for each a>0, that is, Gaf(x) is conti-
nuous on R and 0 at ω, if f is in C(R).

(X 5.) There is no point of positive holding time, that is, there is no such
x^R that

Pχ(<r > 0) > 0, σ = inf {t ̂  0 | X(t) e# - {x}}.

The assumptions (X. 1H-X". 4) are assumed in §§2, 3 and 4, and (X. 5) is
assumed in §4.

We prepare the following implications of (X. 4):

1. The process {X(t)} has the strong Markov property, that is,

(1.1) Ex(F(wσ

+)\^σ+)=Exw(F) with Probability 1,

for any 23-measurable function F and a Markov time β.

2. The generator G of {X(t}} is defined as follows: By (X. 4) we can
consider Ga as an operator on C(R). Since the resolvent equation

holds, the range and the null space of Ga do not depend on the choice of a.
We denote these spaces by 9ΐ and 91 respectively. Since we can prove that
•ft = {0} from the right continuity of path functions, Ga is a one to one map-
ping from C(R) onto 9ΐ. Hence, the generator G of {X(t}} is defined by

independently of the choice of a. We have

(1.2) (a-G)Gaf=f, for /eC(JR).

We write ®(C) for ft.

3. For a Markov time <τ, we have Dynkin's formula

(1.3) Ex(e~aσf(X(σ))) —f(x) = — Ex\ \ e~at(a
I J o

for/e ©(£) and <#> 0. When <τ has the finite expectation Ex(σ) < oo, we have

9) We say that measures μ and μ are equivalent, if they are absolutely continuous
relative to each other.
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(1.4) Ex(f(X(σ))) -f(x) =EJ^Gf(X(t))dt}, /e ffi(C).

It can be proved from (X. 1) and (X. 4) that

Pk(<r<o(w) = oo) = 1 for any x<=R,

using Watanabe [10, Th. 4. 1], Hence, we mean Ac.R when we say a set A,
unless specifically mentioned.

Now, we introduce

for x<=R, A<=B,

for any closed set K containing an inner point, where %A is the characteristic
function of the set A. We call this, considered as a measure in A, the Green
measure of R— K with starting point x<=R. This is actually a sigma-finite
measure on R according to

LEMMA 1.1. (X. 1) and (X. 4) imply

(1.5) G*-*(x, A)^M(A, K)<oo, xGR

for any closed set K containing an inner point and any A^B with compact
closure.

Proof.10) Take a closed set K0 c K, which contains an inner point and
consists of inner points of K. Let g <Ξ C(R) satisfy g(x) ^ 1 on R, g(x) = 1 on
Kc and g(x)>l on JfΓ0.

1D Write f=Gag^^)(G) for some fixed <*>0. Then,
we have

Gf(x) = (a — Ga"
ί)Gag(x) = aGag(x) - g(x) = Ex\a\ e~atg(X(t)) dt - g(x)\

L Jo J

0, for x e^c,

where the last inequality follows from (X. 1). Since AdK implies GE~κ(x, A)

=0, we assume A—K=£φ. A— K being compact, we can define f0(x) =

*A=BGf(x)}-l f(x) which satisfies /<,(«) >0 on R, Gf0(x)>0 on Kc and GfQ(x)
έ 1 on A-ΛΓ. Noting that Px(GfQ(X(t)) >0f0^t^σκ) = l for any a? e c, we
have (1.4) for σ = σκ and /=/0e2χί?) by letting αr|0 in (1.3). Hence, we
have

GΛ-^, A) ̂  GΛ-'(a?, A) =

(1.6) ^ ̂ /(
\Jo

^ ll/o I I -ΛW^ 2||/o

10) The proofs of Lemma 1.1-2 are slight modifications of the techniques in I to and
McKean [6].

11) We sometimes write AC=R— A.
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for each x^R, completing the proof.

LEMMA 1.2.12) (X. 1), (X. 4) and the continuity of path functions imply
(X. 5).

Proof. It is sufficient to prove that there is no point of positive holding
time when the above conditions are satisfied. Take any point XQ e R and
/e®(G) satisfying G/(cco)>0. Putting σ = σ[Xo}C and x — x0 in (1.3) and re-
peating the same procedure in the proof of Lemma 1.1, we have EXQ(σ) < oo.
Continuity of path functions implies PX()(X(σ') — XQ) — 1 and hence

0 =/(a?o) -f(xo) =Exo(f(X(σ») -f(x0) =

that is, EXQ(σ) = 0, completing the proof.

REMARK. (X. l)~(X. 4) do not imply (X. 5). In fact, take #-[0, 1]
and put

Ttf(x) = e-έf(x) + (1 - e-') Γ/(») dx, t ̂  0.
J o

{Tt, t^O} is a semigroup on C(R), strongly continuous at t = 0. It can be
proved that this is realized by a Markov process, where a particle at any
point x at time t = 0 stays there for an exponential holding time σ with Ex(σ)
= 1, and then jumps into R — {x} with uniform distribution, or Lebesgue
measure on [0, 1]. It is easy to prove (X. l)-(X. 4), but (X. 5) is not satisfied.

§2. Fundamental lemmas.

Let I? be the family of all {K, L} satisfying the following conditions:
(g. 1) K and L are closed subsets of R and contain inner points,
(§. 2) At least one of K and L is compact,
(g. 3) At least one of following a) or b) holds, a) K is contained in

one component of R— L. b) L is contained in one component of R—K.
For a pair {K, L}eg, define Tκ(x, •) for x^K by

Tκ(x, E)= \ hL(x, dy)hκ(y, E), x^K, E^B, EdK.

{Tκ(x, •), x ^K} is a system of transition probabilities on K, since Tκ(x, K) = l
by (X. 1). Tκ(x, •) defines an operator Tκ on both B(K) and the space B*(K}
of sigma-finite measures with supports contained in K, by

T*f(x) = \ T*(x, dy)f(y),

(2.1) r
ψTκ(A)=\ φ(dx)T*(x, A), AdK, A

jjί

12) The result of Ito and McKean [6] is sharper: the holding time at any point x
eβ is 0 or oo with P^O-probability 1 under the assumption (X. 4) and the continuity

of path functions. This implies the conclusion trivially.
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Tκ maps C(K) into C(K), since by (X. 2) hκf(x) is continuous in R — K for
f&C(K) and hence Tκf(x) is continuous in R~L. We note that Tκ(x, •) is
equivalent for all x^K, since hL(x, •) are equivalent for all x^K by (X. 3)
if a) in (g. 3) holds and hκ(x, •) are equivalent for all #eL otherwise. TL is
defined similarly. Applying an ergodic theorem to Tκ or TL we have

LEMMA 2.1.13) J^or βαc/& {./£, Z/}eg there is a unique pair of measures
μL

κ and μκL with total mass 1 on K and L respectivily, satisfying

μL

κ( ) = μκLhκ( ) = μκ

L(dx)hκ(x, ),
(2.2) ^ ^ Ji

Proof. To fix the notation, let K be compact. We say that φ is an in-
variant measure on K, if it is a measure on K with total mass 1 and is in-
variant by Tκ. Yosida [11, pp. 100-101] proved that a necessary and sufficient
condition for the existence of an invariant measure on K is

(2.3) lim sup — Σ (Tκ)mf(x) > 0, for some x (ΞK, /e C(K).

The left hand side of (2.3) is identically 1 for f=leC(K) by (X. 1), and
there is an invariant measure.

To prove the uniqueness we use the decomposition of K in [11, p. 102]:
there is a Borel subset Kfc.K and a system of invariant measures {ψx( ),
x^K'} on ^satisfying <f>x(K') = l. Every invariant measure φ on K is re-
presented by

(2.4) φ( ) .

The system of measures {ψx} determines a classification {E^ λ <Ξ A} of Kr by
the relation φx( ) = <f>y( ), and we have

For each Eλ there is a Borel subset Eλ satisfying

(2.5) Tκ(x, Eλ) = 1 for

In our case there is only one class Eλ=K'. In fact, if there are two classes
•Eλl and Eλv Tκ(x, Eλl) = 1 on Eλl and 0 on E^ by (2.5), which is impossible by
the equivalence of Tκ(x, •)> x^K. Hence, there is only one T^-invariant
measure μL

κ on K by (2.4). Since any Tκ-invariant measure μ induces a TL-
invariant measure μhL and conversely, we have a unique ΓMnvariant mea-
sure μκ

L = μL

κhL satisfying (2.2).

13) H. P. McKean advised the author to check the connection between Nelson [7]
and this proposition in a private communication. The result of the check is contained
in Appendix I.
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LEMMA 2.2 // {K, L}, and {Kr, L} belong to f? with K'aK, then

(2.6) *( ) = μL

κhκ^
L( - ) = [ μL

κ(dx) hκ,*'~L(x, )
J^

is α non-trivial measure on Kr satisfying

(2.7) KO = *(tf') /^*'( ).

The counterpart »' on L of v is given by

(2.8) ,/(•) = vA£( ) - j^( ) - μL

κhL*~L( ).

Proof. To see the in variance of v under the transformation (hκ'hL)(x, •)
we note, for EdL,

=Px(X(<τL) SΞE,σL< σκ,) + Px(X(σL) £ΞE, σL>

=Px(X(σL^κ,) tΞE,<,L < σκ,) +Px(X(oL)

= hL-*'(x, E) +Ex(Px(X(σL)

=hL

L~κ'(x, E) + Ex(Px,σL^κ

=hL

L~*'(x, E) + ( hκ,
L"*'(x, dy)hL(y, E)

JK'

=hL

L^'(x, E} + (hκ,L^'hL)(x, E).

Hence, by (2.6), we have

μκ\E} = μL

κhL(E) =
(2'9)

 =μικhLL^(E) +

which implies

(2.10) μκ

Lhκ'( - ) - μL

κhL

L^hκ'( - ) + vhLhκ'( - ).

Similar calculations for hκ'( ) shows

This implies

(2 11) μκLkK'( '
= μLKhL^

Comparing (2.10) and (2.11) we have the in variance of v. (2.9) shows that
the counterpart of v on L is given by (2.8). By the uniquess of the hLhκ'(x, •)-
invariant measure up to a constant factor we have (2.7).

To prove that v is non-trivial, assume the contrary, or v(Kr) = 0. Apply-
ing (X. 3) for L and

hκ(x, dy)hκ'^L(y, K')= hK(x,dy)Py(<?K'<<Ji)

in the case a) in (gf. 3), we know
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^L(x, K'} = [ Tκ(x, dy)h*^L(y, K'} = ( hL(x, dy) { hκ(y, dz)hκ^'L(z, K')
J K J L J K

is positive for all x<=K or =0 on K. Since, in the case of b),

hκ(x, dy}hκ'^L(y, K')

is positive for all x eL or Ξθ on L by the application of (X. 3) to K and
h*'"L(y, Kf) on K, we have the same conclusion for T*hκ'~L(x, K'} on K. But

(2<12) = f μL

κ(dx}(Tκhκ'~L)(x, Kf)
JK

implies the latter case, i.e. Tκhκ'^L(x, K) = 0 on K. (2.12) also shows that

for a set of x^L with /^-measure one. Fix such a point

Define the following sequence of hitting times.

τn — inf {t >σn\X(t)^L}, when such t < oo exists,

— oo, otherwise,

<τn+1 = inf {t > τn \X(t) e K}, when such t < oo exists,

— oo, otherwise.

By the assumptions on the path functions the definition is possible, and using
(X. 1), we find that

01 < TI < <?2 < 2"2 < ' ,

Px(lim σn-oo) = Px(lim Tn = <*>) = 1.
n^ oo n^ co

Then, for x
0
 above, we have

1 =P*o("*' < °°) = Σ3 ̂ o(tf» ̂  ̂ ' < τw < oo)
w=l

00

Px^^Ti <(J2< <*K> < Γ2), rfn

, <rn-ι

^ 0 + Σ Ex$_Ex«nτiEx«L<>)Px« >(σκ, < σL))}9 σn < oκf~\

hκ(y, dz)Pz(σκ, < σL), σn < σκ>}
r J

contradicting (X. 1). This completes the proof.
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For a pair {K, L} <Ξ £?, define

mK} L( - ) = (μL*G*-L)( ) + (AO,LG*-*)( )
(2'18) - f μL*(dx)G*-L(x, •) + [ /VWG*-*fe •).

J-E J£

This is a sigma-finite measure on (R, B) by Lemma 1.1. We note for a
later use that there is a compact set K0 for which 0<m^ ,ι,(J^o)<00, because
GR~L(x, R)=Ex(σL)>Q for each x^K by the right continuity of paths and so
0 < μL

κGR~L(R) ^ mχ}L(R) ^ °°, which, together with the existence of a sequence
of compact sets Kn"tR, implies the existence of such K0=KnQ.

LEMMA 2.3. // K, L, K f , v and v' are the same as in Lemma 2.2, then

(2.14) mκ,L(') = v(K')mκ'tL( ).

Proof. For x<=K and E<=B, we have

U
σL \ / Γ°K'

// , <*L ^<yκ, +EX( ",
0 / \ J θ

=E,( I'**, ,)+E,(Γ „,<*><
VJ° ' VJ'X'(2.15)

U
σ£wπ'

,
o

= GR-^κ'\x, E) + f hL~κ'(x, dy)GR~L(y, E).
JX'

Similarly we have

(2.150 Ex((σκ\E(X(t))dt] = GR-<L^n(x, E) + f hL~π'(x, dy}GR~κ'(y, E).
VJo / j£

(2.6) and (2.15) imply

f μL*(dx)G*-L(x,E)={ μL

κ(dx}GR-<L^(x,E)
JK JK

(2.16) + ( μL*(dx)( hL^'(x, dy)GR~L(y, E)
JK JK'

= ( μL

κ(dx)GR-^πf)(x, £) + [ v(dy}GR~L(y, E).
JK JK'

14) We use the abbreviation Eχ(Γ" > ̂ ) «r E*( Γ" /^+) etc for Ex(Γ%A(X(t))dt, A

or Ex( I %X-X"(ί))dί/S3σ+ j etc. when no confusion is expected, where σ and r are

Markov times and /ί is a S3-measuaable condition.
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On the other hand we have

G*-*'(x, E)=

(2.17) =
\Jo

= GR~κ(x, E)+( hκ(x,
JK

(2.8), (2.150 and (2.17) imply

»'(dx)Gs-κ'(x, E)
Ώ

= { μκ

L(dx)GR-κ'(x,E)-{ μL

κ(dx){ hL^'(x, dy)GR-κ'(y, E)
J L J K J L

(2.18) ={μκL(dx)G*-*(x, E)+(μκ

L(dx)[h*(x, dy}^GR-^Kf\y, E)

\ ~ \^LK(dx)( hL^'(x, dy)GR-κ'(y, E)

= ( μκ

L(dx)GR-κ(x, E)+ ( μL

κ(dx)GR-(~L^κn(x1 E}.

Hence, by (2.16) and (2.18), we have

v(dx)G*-L(x, E) + { vf(dx}GR-κ'(x, E) = mK}L(E),

where the left hand side is clearly v(Kr)mK',L(E) by (2.7).

Now, we introduce, without proof, an important property of MK,L thus
constructed:

THEOREM. (G. Maruyama and H. Tanaka) mK}L is an invariant measure
for the process X(t\ that is,

^K,L('} = 1 mκ,L(dx)P(t, x, •)> for each £>0.
J Λ

The proof is the same as that given in [7] which is based on a slightly
stronger condition than (X. 2). An intuitive explanation of the in variance is
found in the proof of the corresponding result for temporally discrete case.
The reader, if interested, can consult Appendix II.

For an application in §5, we consider now the convergence of μ(Tκ)n, n
=1, 2, ••• to μL

κ for an arbitrarily given measure μ on K with total mass 1.
In the place of (X. 2) in §1, we use here a stronger condition

(X. 20- // {ft, λ^iA} is a uniformly bounded class of functions of
B(K), {hκfχ,λ^Λ} is equicontinuous on each fixed compact subset of R— K,
where K is a closed set (ΦR) with an inner point.

Note that this is satisfied in the case of the Brownian motion.
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PROPOSITION 2.1. In order that the measure hκ(x, •) varies continuously
in x&R—K with respect to the norm of total variation, it is necessary and
sufficient that (X. 20 holds.

Proof. Since the necessity is clear, we prove the sufficiency. Assume the
contrary, i.e. assume the existence of a sequence xn^R—K, n = Q, 1, 2, •••
and an £ 0>0 with lim«.»ooα?w = #o and \\hκ(xn, ') — hκ(xo, -)\\^eQ for n^l. Fix
a compact neighborhood LdR— K of XQ and assume without the loss of
generality that all xn are in L. Let Kn

+ and Kn~ be the sets of positive part
and the negative part of K with respect to the Hahn-decomposition of hκ(xo, •)
— hκ(xn, •), n^l respectively. Define Xw on ίΓ by XTO(ίu) = l for x^Kn

+ and
*n(aO = - 1 for x €=Kn~, and fn on L by /n(a?) = hκtn(x).

Since | |XW | |^1, {fn(x), w = 1, 2, •} is a class of equicontinuous functions
in C(L) by (X. 2'), and hence there is a subsequence {/n/} and a continuous
function /0 on L with

lim IL/V-Λ | |=0,
7Z'->00

according to the Ascoli-Arzelέ, theorem. This, with the continuity of /0, implies

0 < <?0 ̂  Mm (I λ^αv, •) - h*(xo, Oil - Hm f {hκ(xn^ dy) - λ'ί&o,
9i'-»oo W->ooJ_g^

= lim (fn>(Xn') -/o(&o)) ̂  Hm {|/n/(a?nO
7ϊ'->00 «'-> 00

g lim {||/^-/o || + 1/oGv) -/o(*β) 1} = 0,
W'-^OO

which is a contradiction.

PROPOSITION 2.2. Assume ίAαί (X 2r) AoZds. For α^τ/ measure μ on K
and v on L with total mass 1, μ(Tκ)n, v(TL)n, n = l,2, , converge to the
unique limit μL

π and μκ

L respectively, with respect to the norm of total
variation, and exponentially fast.

Proof. Since hκ(x, •) and hL(x, •) vary continuously in x by Proposition
2.1, so do Tκ(x, •) and TL(x, •). In fact,

\\T*(x, )-Γ'(y, 011= sup f
/e^icίoj

(2.19) = sup f {hL(x,dz)-hL(y,dz)}hκf(z)
/ e-BjCJO J £

^ II A^(a?, 0 - *%, 0 I I sup {sup | hκf(z) \ } £ \ \ hL(x, 0 - hL(y, 0 I
/E^CJ?) ^e£

where Bι(JSΓ)= {/e S(JSΓ)| ||/||< 1}. To fix the notation, let K be compact.
We now prove

(2.20) Q(Γ*)= - sup || T*(tf, 0 - T*(y, -) ||< 1,
2 as,ϋGκ

which, by [9, pp. 454-5], implies the conclusion for {μ(Tκ)n}. If we as-
sume the contrary, there are two sequences {xn<=K} and {yn^K} with
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linwoo \\TK(xn, •) — Tκ(yn, ) l l = 2. Since K is compact, there are subsequences
{xn'} and {ynr} with limits XQ and y0 in K. By the continuity of Tκ(x, •) in x
we have

|| T*(xQ, •) - T*(y0, •) II = lim I Γ*(av, •) - Γ*(yn,, •) II = 2.

By the Hahn decomposition of Tκ(xQ, ) — Tκ(y0, •) we have two mutually dis-
joint subsets K+ and K~^B with K+nK~=R, for which we have

(2.21) T*(xQ, K+) = Tκ(yQ, K~) = 1, T*(x0, K~) = Tκ(y,, K+) = 0,

contradicting the equivalence of Tκ(x0, •) and Tκ(yQ, •)• For the convergence
of {KΓL)n}, we can prove that Q(TL)2)^Q(TK) by a computation similar to
(2.19), and then infer the proposition from [9, pp. 454-5].

§3. The system of Green capacities and the measure m.15)

For later use we say that {K, L} e f? belongs to f?0 if {K, L} satisfies both
a) and b) in (§f. 3) of §2. Given {K, L} and {K, L'} in g, we write

(3.1) {#, L} ̂  {K, L'} when {#, L ̂  L7} e= g.

If, for {K, L} and {JSΓ7, L'} in §, there is a sequence αr = ({ίΓι, LJ, { 2̂, L2},
• - - , {JfΓn, LB}) of 8f satisfying {K, L}^{Klf !,,}<*•••++{&, Ln}^{Kf, L'}, we
write

(3.2) {K,L}*?{K',L'}.

LEMMA 3.1 For any two elements {K, L} and {Kf, L'} of $ there is a
sequence a = ({Klf LI}, {K2, L2}, •••, {Kn, Ln}) consisting of elements of g 0

satisfying (3.2).

Proof. Since a) or b) holds for {K, L}, let a) hold to fix the notation and
take one component V of R—K which contains an inner point of L and put
Lί=L^V. Then, {K, LJ clearly belongs to f?0 and satisfies {K, L}^{K, LI}.
By the same consideration applied to {K' ', L'}, we know that it is sufficient to
prove the lemma only for {K, L} and {Kf, L'} in f?0. Hence, we assume this
condition in the following.

Let K be a closed set in R and let {Vα} be the family of all connected
components of R—K, we note that for each Vα, there exist two points x^Vα

and y^K and an arc, contained in K^Vα, joining x and y. To show this let
U'Fα be the union of all Vα, for which two points and the arc cited above
exist. Since Rr=K^(\JrVα) is a non-empty closed set and R is connected, it
is sufficient to prove that R' is open, or R=Rf. If x^R' is in U'Fα, it is an

15) The author owes main part of this section to Keniti Sato; more precisely, the
topological set up and the idea of using m to establish the system of capacities are his.
His help ameliorates the condition on the topology of R and simplifies the author's ori-
ginal proof, which was tedious and restricted to processes on the union of a domain in
Rn (n^2) and measurable subset of its boundary.
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inner point of (J'Va and hence of Rf. When x^Rf is in an arc wise connected
neighborhood F of x. Then, F is contained in R' ' . In fact, if a point XQ

(ΞV^KC exists, then there is an arc w= {/(£), 0 ̂  t ̂  1} in F with /(0) = α?0

and f ( ΐ ) = x. For fc = inf {t \f(t) e#}, x^f^^K and {/(*), Ogί<ίι} lie
in one component Va> implying XQ^R'. Hence Rr is open.

First, assume K—K' and that L and I/ are in the same component of
R—K. Taking a connected open set GcJΓand a compact subset X"0 thereof
with an inner point, we have {K0, L^L'} ego, and hence {K, L}*-*{KQ, L}<-»
{K0,L'}~{K,L'}.

Secondly, assume K—K' and that L and Lf are in different components of
R—K. For a compact subset L0 of L with an inner point, we have clearly

{Lo, L'} e ££. Moreover, we see that iΓ and Lo are in the same component of
R — Lf. In fact, for the connected component F of R — K containing L0, there
is an arc in K^V joining a point of F and a point of K as we have shown
above. This means that L0 and K are in the same connected component of
R—Lf, and hence there is a sequence ai consisting of elements of go with
{Lo, Lf}<^*{K, L'} as we have discussed above. Similarly, K and L' are in
the same component of R—L0, and we can find a sequence a2 consisting of go
with {K, Lo}~{L0, L'}. Hence, we have {K, L}^{K, L0}^{L0, L'}~{#, L'}.

Now, consider the general case. Take inner points Xi and x2 (xi Φ Xz) of K
and K respectively, and let Vίr V2 be connected open neighborhoods of Xi
and x2 respectively with Fι/^F2 = 0, and then fix two compact neighborhoods
HΓicFi and K2 c F2 of α?ι and #2 respectively. Clearly {Kίt L}, {XΊ, JζJ
and {̂ 2, L'} are in § 0 Hence, by combining above two special cases, we can

find two sequences a± and az consisting of elements of f?0 with

{K, L}^{Xi, L}~{K19 K2}~{K2, L'}~{K', L'},

which completes the proof.
To describe the relations among {μL

κ} and {mκ, L} for {K, L} e g, we make
the following definitions for {K, L} and {K, L'} in g, using Lemma 2.2.

(33) ° < C* L>(K'> L) = (^κh^-L}(K} and
C<κ',L>(K, L) = CtκtL<>(K', L)-1, when

(3 30 < L>(K'> L) = C^L^K^K, L).C^κ',L>(K', L),
when {#, L}^{^, L}.

when, {ίΓ, L} <?{Kr, L'} with or = ({Kl9 Lj}, {K2, L2}, , {£„, Lw}). Note that

the order of sets, for instance, K and L in C &,&(•, •) or C(.,0( K> ^/) does not
make any difference.

LEMMA 3.2. Ca^κ,L^(K ', L') cfoes no£ depend on the choice of a. Hence,
we can define a positive valued function
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by any fixed choice of a with {K, L}<^{Kf, L'}. This function satisfies, by
definition^

and depends only on the system of hitting measures. Moreover, we have

(3.6) m*f L( ) - C,κ,L,(K', Lf)mκ,,L,( )

which characterizes this function.

Proof. First, we prove (3.6) for some special choice of a, i.e. mKiL

= Ca(κ,L)(K', L')mκ,}L,. By Lemma 2.3 we have mK)L = Catκ,Lϊ(K', L)mκ,)L in
the case (3.3). In the case (3.30 we also have the result, since

K,L>(K', L)mκ,)L

= C(κ,Lϊ(K', L)mκ,L.

Now, applying the result repeatedly for a in (3.3"), we have

(3.7)

Take a set Kϋ with 0 <mκ>L(K^< oo, which really exists by the note just
before Lemma 2.3. By applying (3.7) for two sequences oti with {K, L}<^
{K',L'} (i = l,2), we have "'

0 < mK} L(K0) = Cai,K) L,(K', LO mκ>t z/(#o) < oo (i = 1, 2),

which necessarily imply C^c^/oCK7, L'Ϊ^C^&.LW, Lr).

LEMMA 3.3. mκ,L takes a positive value for any set in B with an
inner point.

Proof. If V is such a set, we can take an open subset V0 of V and a
compact set Kf which is contained in one component of Fo and has an inner
point. Then, {K', L'} e 8? for L' = Vc. By the right continuity of paths, we
have Px((τLf = σv^>^} — \ for each x<=K', and hence

0 <EJ(σI/) = E( (σL'xvQ(X(t))dt} = GR~L'(x, Fo) ̂  GR~L'(x, F),
VJo /

for
which implies

μL,κ'(dx)GR~L'(x, F)>0.

Now, fix any {KQί L0} eg and call C(K, L) = C^K L >(K, L) the Green capa-
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city of K and of L with respect to R— L and R—K respectively. By (3.4)
and (3.5) such a function C(K, L) depends on the choice of {KQ, Z/0} only up to
a constant factor. Writing

we sum up the main results in §2 and §3 for later use.

THEOREM 3.1. For each {K, L} in g , there is a pair of measures VL

K

and vκ

L on K andL respectively, satisfying

(3.8)

(3.9) VLK'=VLKhK'L^κ', and vκ,
L — VK

L — vL

κhL

L^Kf,

when K'dK, {K, L}, {K, I/} eg.

Such a system is unique up to the constant factor, and depends only on the
system of hitting measures.

The right hand side of

(3.10) m( )= f vL*(dx)GR-L(x, •) + f »κL(dx)GR-κ(x, •)
JK JL

does not depend on the choice of {K, L} e f?. The measure m is sigma-βnite
on (R, B), takes positive value for each Borel set with inner points, and is
an invariant measure of the process {X(t)}.

§4. Green potentials.

THEOREM 4.1. Every Green measure GR~κ(x, •) is absolutely continuous
relative to m.

Proof. At first we prove that GR"κ(x0, A)>0 implies m(A)>0 for any
XQ e R — K and AdR— {XQ}. Choose a monotone sequence of connected open
neighborhoods Vnc:R— K of XQ converging to XQ. Since GR~κ(x0, A n Vn

c) con-
verges to GR-*(XO, A)>0, there is an n = n0 with GR-κ(x0, A n F/)>0. This
shows that it is sufficient to prove the statement for AaR — V, where F is a
connected open neighborhood of XQ. According to

//
σv

0 < G*-κ(x0, A) =Ej(°\A(X(t)dt)} = Ex(Γ n + \°κ ,
\ J θ / \ J O J σ γ c

= E,(\°K n} =EjEXler*, (["//)) = f hv\x«, dy)G«-κ(y, A),
\JσV

c / \ VJo / / JF C

(4.1)

we have hγc(x0, E) > 0, where E={x<=Vc\ GR~κ(x, A) > 0}. Then, by the equi-
valence of hγc(x, •) for x<=V, we have

hvc(x, E) > 0, for xtΞV.

Hence, by putting x — XQ in (4.1), we have

GR~κ(x, A) = { hvc(x, dy)GR~κ(y, A) > 0, for x e= F.
JFC
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Then, taking an I/ c V, such that {K, L'} e $, we have

0 < ί vκ

L'(dx)GR-κ(x, A) ̂  m(A).
JL'

To complete the proof, it is sufficient to prove m({x0}) > 0 from

fλ 2^ Cτ^~^(Ύn f/ϊtri\} ^> 0

Take the sequence {Vn} used above. Considering

(4.3) G*-κ(x, {tfo}) =EX((aVn\{XQ}(X(t))dt\ + ί hv»(x, dy}GR~κ(y, {x0})

we have two cases:

(4.4) l imE x lΓ n \ { x o ] (X(t))dt] - 0 (case 1),
0

(4.5) Ej[Vn\(XQ}(X(t))dt] ^ ε> 0 (case 2).
VJo /

Case 1. Putting X = XQ in (4 3), we have an n = nQ such that the second
summand of (4.3) is positive for x = x0. Since this implies

A V(α?o, E') > 0, E'= {y e VHQ

CI G^-χ(τ/, {tf0» > 0},

we have, by the equivalence of hv^c(x, •) for x^Vn,

0 < [ hv*»c(x, dy)GR~κ(y, {x0}) ^ GR~κ(x, {x,}) for x e Fwo,
jFC n

by (4.3). Taking L'dVno with {L7, ίΓ}ego, we have

0 < f vκ

L'(dx)GR-κ(x, {x0}) ^ m({x,}).

Case 2. Since σVnc converges monotonically to 0 = <rR-(Xo}, we have

EXQ(σ) = lim Ex(σVno) = lim Ex ''" °
n-><x> υ " ' --

^ lim Ex

implying that x0 is a point of positive holding time. Such a case is omitted
by (X. 5).

Now there is a density function of GR~κ(x, •) with respect to m. Fix a
version of this density function and denote it by

(4.9) g*-κ(χ, y),
To discribe a rough but general situation concerning the potentials with kernel
gR~κ, we give a rather rough

DEFINITION 1. We say that a real- valued function / defined on R is har-
monic in an open set Z), if it is Immeasurable, hvc(x, )-integrable for each

domain V having closure V(ΦR) contained in D and x <Ξ V, and satisfies
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(4.10) /(«)=[ hvc(x, dy)f(y),
JF*

In the case of processes with continuous paths, a function defined on D with
the above properties is called harmonic in D.

2. A ^-measurable function / defined on R, which takes extended real
values and is bounded from below, is called super-harmonicm in an open set
D, if it satisfies

(4.11) /(aO^f hvc(x, dy)f(y) x e V,

for V as in 1. In the case of processes with continuous paths, a function de-
fined on D with above properties is called super-harmonic in D.

LEMMA 4.1. Let f be a non-negative, Borel measurable function defined
on R, which takes extended real values. Then

(4.12) GR~κf(x)= { GR~κ(x, dy)f(y)

is superharmonic in R—K for each closed KΦR with an inner point. If
(4.12) is finite on R — {K^S(f)}, it is harmonic there, where S(f) is the
support of f.

Proof. When f(x) is the characteristic function of a Borel set A, the
lemma holds by the following inequality,

GB~κf(x) = GR-κ(x, A) =EX χA(X(t))dt =EX
\Jθ / \ θ

(4.13) =EX( (aVGn \+Ex\Ex«vo((°K n ) j - Gv(x, A) + ( hv\x, dy}GR~κ(x, A)
\Jo ) I VJo /J J v c

^ { hγc(x, dy)GR~κ(y, A) = ( hγc(x, dy)GR~κf(x), for a?e7,
JF C JF C

where F is a domain with VdR-K. If Vc:R-{K^A}, then
= 1 holds and hence Gv(x, A) = Q for x e V. This and (4.11) imply the equality
sign in (4.13).

For a general /, non-negative on R, we can choose a monotone sequence of
functions {fn}, where each fn is a linear combination of characteristic func-
tions of Borel sets with non-negative coefficients, satisfying limw>
for each x^R. Then, by monotone convergence, we have

= GR-κ(x, dy)f(y) = li
JK «->

and hence

hvC(x,dy)GR-κf(y) = lim hv\x, dy}GR-κfH(y).
JγC

16) This definition is a little more restricted than the classical one.
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These equations and (4.13) for fn(x) imply the lemma. The statement for /
defined on D in the case of processes with continuous paths follows trivially.

THEOREM 4.2. Let n be a sigma-βnite signed measure on R, absolutely
continuous relative to m. Assume that the potential

(4.14) UyR.κ(x) = ( g*-*(x, y)n(dy),
JR

is well defined on R, and is hvc(xQ,-)-integrable for any xϋ e F, where
K(^R) is a closed set with an inner point and V is a domain with compact
closure VΦR. In order that U£R-K(%) is harmonic in an open set DdR—K,
it is necessary and sufficient that n(A) — 0 for any Borel subset A of D.

Proof. Let f(x) be a version of the density of n relative to m. Write

/+(aO = max{/(a?)f 0}, /-(a?) = min{/(s), 0},

>} = { f~(x)m(dx).
co Jco

Then, n+ and n~ are sigma-finite measures on R, and UgR-K(%) are hγc(x, •)-
integrable and

a-s(x), for

Sufficiency. Since n(A) = 0 for any Borel set A cD, f(x) = f+(χ) = f (x) — 0
on D excepting on a set of m-measure 0. Then, by Lemma 4.2, U™* R-K(x}
are harmonic in D, and hence U™R-K(x) is harmonic in D.
__ Necessity. First we note that U£v(x) = 0 on V for each domain V with
FcZλ In fact, noting that

GR~κ(x, A) =Ex({βκ χ.Λ(X(tΊ)dt\ =EX({°VCff + \σK f
\ J O / V J θ Lγc

= Gv(x, A) + ( hv\x, dy)GR-κ(y, A)
Jvc

and using the harmonicity of U K-K in D, we have

0 = E/WaO

, dz)f(z)

(4.15) C

R-κ(x, dz) - ( hv\x, dz) GR-κ(z, dy)\ = { f(y)Gv(x, dy)
jv° J JΛ

= f 9v(x, y)n(dy) = U?r(a>) for x <= V.
JΛ

Next, we will show that U"v(x)^0 on V with compact closure implies
n(V)>0. Let Kt~{xΈ.V\ΐnίy&r p(x,y)^ί/i}, ί = l,2, •••, where p(x, y) de-
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notes a metric compatible with the topology of R. Since Kt is compact and in
a domain F, we have {Kτ, F c}e& for i'^iQ = mm{ί\Kl^φ}. Then, we have

(4.16) [ v*t(dx){ Gv(x,dy)f(y)={ m(dy)f(y)
J^l jκτ Jκl

and

I ( ιξl(dx) ( Gv(x, dy)f(y)
I JK, Jv-Kt

(4.18) ss ^l(dx) Gv(x,dy)(f+(y)-f-(y))

m(dy)(f+(y) -f-(y)) = n\V-Kl)-n-(V-Kl).
JZt

Since n+ and w~ are also sigma-finite, n+(V~ Kί) and n~(V—Kl) and hence
n(V—Kτ) converges to 0 as i tends to infinity. Hence, by (4.16) and (4.17),
we have

(4.18) 0 ̂  lim [ v*?(dx) U%γ(x) = n( F).
w>°° jκn

Combining (4.15) and (4.18), we know that n(V) = Q for each domain F with

VdD, and hence n(A) = Q for each Borel set AcD. Then, the same thing
holds for n+ and n~. But n+(D) = lim^oo n+(Dt) = 0 and n~(D) — lim^oo n~(Dt) = 0
for Di = {x^D mfz(=d£>p(x, y)>l/ί}. This completes the proof.

Now, by making use of the kernel gR~κ(x, y), we will give a representa-
tion of the generator G of {X(t}} defined in §1. The following is an extension
of one given by Ito and McKean [6] in the case of processes with Brownian
hitting measures.

THEOREM 4.3. For each /e®(ίr) there exists a sigma-finite signed mea-
sure mf, absolutely continuous relative to m and satisfying

(4.19) Gf=~f

dm
and

(4.20) U™£-κ(x] = ( hκ(x, dy)f(y) -f(x)

where the right hand side of (4.19) denotes a version of Randon-Nikodym's
density function of mf relative to m, and K is a closed set with an inner

point and with compact R—K. Such a measure mf is determined uniquely.

Proof. For K as above, Ea.((rκ) = GR'κ(x, R~K)< oo by Lemma 1.1.
Define

m/( ) = f Gf(x)m(dx).
Jco

Then, (4.20) follows trivially from (1.4), by
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Ex(('KGf(X(t))dt}={ GR-κ(x,dy)Gf(y)
\h / J Λ

= f g*-*(x,
Jx

The uniqueness follows from Theorem 4.2.

COROLLARY. /e®(G) is harmonic in a domain DdR, if and only if

(4.21) G/(α) = 0 for

Proof. Let / be harmonic in D. Take any point x^D and a neighbor-
hood F of x with compact closure V(^R)c:D. Then, /(cc) and

hvc(x, dy)f(y)
FC

are both harmonic in V, and hence the potential U™v(x) is also harmonic in V
by (4.20). Since V is any open set with compact V(φE)c:D, m/has its carrier
in Dc and hence Gf(x) = 0 on D excepting a set of m-measure 0. The conti-
nuity of Gf and Theorem 3.1 imply (4.21).

Conversely, (4.21) implies that the left hand side of (4.20) vanishes on any
V of the form cited above, and hence that / is harmonic in D.

NOTE. G in (4.19)-(4.20) is really a global operator though it looks local in
the representation. Even when the kernel gR~κ and the measure m are deter-
mined locally, the domain ®(6r) is of global character.

§5. Example: Processes with Brownian hitting measures on R2.

Following Ito and McKean [6]17), we say that a Markov process on R2 has
Brownian hitting measures on R2, if it satisfies (X. 4) and

(X. B) For any closed set KΦR with an inner point and x <^KC, hκ(x, •)
coincides with the classical harmonic measure of K viewed from x with
respect to the connected component of K° containing x.

It can be proved that (X. B) combined with (X. 4) implies (X. 1), (X. 2'),
(X. 3) and the continuity of path functions.2) Hence, combined with (X. 4),
they imply (X. 5).

It is known that the classical Green function QD(%, y) of a domain D in R
with compact ΘD of positive logarithmic capacity is given by

(5.1) gD(x, y) = log — -ί— - ( h*D(x, dz) log —-—7- + TD(X), x,
I B -2/1 J8D \z-y\

where ΪD(X) is a non-negative continuous function of x and converges to 0 if
χ(=D converges to a regular point of the boundary dD. For any closed set

with an inner point, we define by gn-κ(x, y} by making use of (5.1), or

17) The original definition is given for a wider class of processes. Here, we restrict
it for our present use.
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i— - ί-y\ Jj
(5.2) gR-κ(χ, y] = log >

\%-y\ Jjε \z-y\
where

ΪR-K(%) — TD(X), if ^ belongs to a connected component D of R—K,

= 0, otherwise.

Then, we have

9R-κ(%, y)=gDa(%, y), if # and y belong to the same component

(5.3) DaofR-K,

= 0, otherwise, excepting on the set of irregular points of dK.

Next, we denote the Green capacity of a closed set K with respect to the
kernel gD(x, y) of the domain D by CD(K).

Now, take a pair {K0, L0}<=% such that R—K0 is connected and the clas-
sical Green capacity CR-κύ(L0) — 1, for instance, K0 = {x \ \ x \ ̂  1} and L0

= {x 1 1 x I ̂  e} where e = 2.718- . Define C(K, L) = C&0, ̂ (K, L) for such fixed
{jfiΓo, LO} e g. Then, we have

THEOREM 5.1. For each {K, L}eg, the following assertions hold.

1. If μ is a measure on K with total mass 1, then μ(Tκ)n converges
exponentially fast to μL

κ with respect to the norm of total variation.
If K is contained in one component of R—L, then we have:

2. μL

κ is the equilibrium distribution of K with respect to the classical
Green kernel of the component.

3. C(K, L) is the classscal Green capacity of K with respect to the clas-
sical Green kernel of the component; i.e.

(5.4) C(K9L) = CS-L(K).

4. // L is not in one component of R—K, then

(5.5) C(K, L}μκ

L( )= Σ C(Lλ, Dλ°)μDcLi( ),
ΛEΛ

where {Dλ,λ<^Λ} is the family of all components of R—K containing a
point of L not irregular for dL and Lλ=L^D^.

Proof. 1 is only a restatement of Proposition 2.2. 2. The Green function
of a domain with unbounded boundary and the harmonic measure on the
boundary are obtained from those of a domain with bounded boundary by
making use of a conformal mapping. Hence, we assume that the boundaries
of K and L are bounded. To fix the notation we assume that K is in one
component D of R—L, and L is contained in components Dλ, Λ e / l , of R—K.
We write Lλ~L^Dλ^φ.

The path functions being continuous, μκ

L and μL

κ are concentrated on the
boundaries QD and ΘDt, Λ e / 4 , and hence we assume R—L—Ό and R—K

without loss of generality.
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Consider the potentials

Uέ JM = ( l*xL(R-κ J dL

(5.6)

f A«*L

J3κ

y,

ϋί rM = [ ^LK(dx)gR-L(x, y)
JR~L J ΘK

\z-y\

\X~y\ }dκ \Z~y\

and similarly,

(5.60 = f μL

κ(dx)[log -~ f hL(x, dz) log 1— + ΪR-L (x)}
lax I \x-y JdL z-y\ J

= \ μL

κ(dx) log [ μκ

L(dz) log —^~- + f μLK(dx)TR-L(x)
J dK X y J L Z y \ J gjζ

Adding (5.6) and (5.60 we have

(5.7) , '*'* '*~*f

= μκL(dx)ϊB-κ(x) + μL

κ(dx)rB-L(x) = C < oo.
J dZi J dJZ

The convergence follows from the continuity of ϊR-κ and TR-L on the com-
κ t*L

pact sets ΘL and dK respectively. Since the potentials U£L (x) and Ug*_Σ(®)

are 0 on L and K excepting the sets of irregular points of K and L respec-

tively, U£*_£(x) = C on K and U*£_ (x) = C on L excepting the sets of irregular

points of K and L respectively. Hence, μLK(') is the equilibrium distribution

on K with respect to the kernel gR-L(x,y), and the restriction (μκL}n( ) of
μκ

L( } on Lλ is the equilibrium distribution on Lλ with respect to the kernel

gDλ(x, y) multiplied by μκ

L(Lλ).

3, At first, we consider a special case. Let {K, L} and {K, L'} with

Z/cL be in g, and let K be contained in one component D of R— L. Accord-

ingly K is contained in one component Dr of R—Lf. We show

(5.10) CD(K).C<χ,L>(K, LO = CD,(K).

Since

, y) = gR-κ-L'(χ, y) + hκ^L/(x, dz)gR-κ(z, y)
J K^L'

= QR-K-L($, y} + hκ^L'(x, dz)gR-K(z, y),
JL'

we have
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Uf» >>= f P*L(dv)ff*-χ(v> *)^"^ Jz

(5.11) = f μκ

L(dri)gR-K-L,(u, x) + ( μκ

L(du)( hκ^L'(u, dv)gR-K(v, x)
JL JL JL'

L

Since L TgK_κ_L,(%) tends to 0 as x tends to a regular point of the boundary of

any fixed component corresponding to the boundary function which takes the

value Ug*_κ(x) on ΘL' and 0 on OK.

This shows that

cD,(κrι=*vι>ufff (»)= sup u /w
XξK yR-I/ x^L'r^D^ g&l

= CίK,L)(K, L')'1 sup U% (x) = C,K,L,(K, L')-1 sup Uf'j (x)X^L'^D gn-κ x^κ yn-L

implying (5.10), where DI is a component of R— K containing an inner point
of ZΛ

To prove the general case, we note that for any {K, L} e § we can take
a sequence {K0, L0}, {Klf LJ, •••, {Kn+ί, Ln+ί} = {K, L} with {Klt Lt}++{Kl+1,
Lί+i}, i = l,2, * ,n, in such a way that one of the following relations hold
for each ΐ,

and such that Xi and L^ are contained in one component of R—Li and R—Kτ,
respectively, where {K0, L0} is the fixed pair selected just before the theorem.
Then, we can apply the discussion of the special case above for each step
and get

CD(K) = Cx-xίLύCLK, L) = l C(ίΓ, L) - C(K, L),

when K is contained in one component D of R—L.

4. We saw in the last part of 2 that

(5.12) (μ*L)Lλ(') = μκL(Lλ}μSDλ

L*(').

On the other hand we have

C(K, L)-1 = sup u j (x) = sup Uμ*(x)

(5.13) *eK leL λ

= μκ

L(Lλ} mv U '»iλ = μκ

r (Lz )C(dDι, L^1.
x^i λ t>υλ

By (5.12) and (5.13) and ̂ L( ) = Σ^X^L)«( ), we have (5.5).
NOTE. The extremal distance of K and L with respect to the domain be-
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K

tween K and L are known to coincide with the Dirichlet integral of Ug

 L_ (x) in

the domain, which can be proved to be 2π C(K, L)'1 using Theorem 5.1, 3.

THEOREM 5.2. For any closed set KΦR with an inner point, we can
take the classical kernel gR-.κ(x, y) for gR~κ(x, y) in §4, or

(5.13) G*-κ(x, E) = ( gR-K(x, y)m(dy),

Proof. It is sufficient to show this in the case that R— K is a domain D.
Instead of proving gD(x, y) = gD(x, y) a.e. m directly, we use the Riesz de-
composition theorem for the classical kernel gD and then compare the measure
of the potential . Let A be a Borel set with compact closure. Writing D for
R-K in (1.6), we have

GD(x, A) ̂ Ex{f0(X(<rDc))} -/0(aO - f hDC(x, dy)fo(y) ~
J 3D

where /0 is in ®((τ). Note that the first summand in the right hand side is
the Dirichlet solution in D for the boundary function fo(y), y^dD. Hence,
GD(XJ A) tends to 0 when x tends to a regular point of dD from inside D.
Then, the Riesz decomposition of the super-harmonic function GD(x, A} is
given by

GD(x, A) = gD(x9 y)nA(dy),
JΛ

where nA( ) is a finite measure with carrier in D^Ά, since GD(x, A) is har-
monic in D—A. Since GD(x, A) is a sigma-finite measure for fixed x, we can
write the above relation in the form

GD(x, A) = \ gD(x, y)nD(dy),
JΛπA

with a measure nD( ) depending on D but not on A. To show that nD does
not depend on D, it is sufficient to prove nD(A>-D) = nD'(A^D) when DdD'.
We know

GD'(x, A) = GD(x, A) + ί hDC(x, dy)GD'(y, A) or, what is the same,
J&c

i f Γ f 1gD(x, y)nD(dy) = nD,(dy)\gD'(x, y)- \ hD (x, dz)gD,(z, y)\
A^D JA~JD I )DC J

J A^D

Then, by the uniqueness of the measure in the Riesz decomposition, we have
nD( )=nDr( ) on D. Hence, we have a sigma-finite measure n on R, such that

GD(x, •)=! 9o(x, y)n(dy) x<=D,
Jco

where D is a domain with an outer point.
To complete the proof, it is sufficient to show that n(A) — m(A) for any
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open set in any fixed D, and it is enough to prove it for any compact subset
A of D. Fix such an A and take an open Do^>A with compact closure K
=DQc:D. Since {K, Dc} e= $ and

I
J d

vDcκ(dx)gD(x,y} = l, for

by Theorem 5.1, 1, we have

m(A)=\ vDcκ(dx)GD(x, A) = f vDcκ(dx)\ gD(%, y)n(dy)
JSK J SK JA

, y) =i
J 9-

REMARK. /% ί/&is special case, the representation (4.19)-(4.20) coincides
with one given by Ito and Mckean [6]. Hence, gD(x, y) is determined only by
the system of harmonic measures, and the measure m is determined locally.

Miscellaneous Notes. 1. It is natural to expect that a Markov process is
determined by two kinds of quantities corresponding to the two factors, one
concerned with the road system on the state space, on which the particle
moves, and the other concerned with the speed of the motion. This idea has
been pointed out by Feller [3, 4] repeatedly. In fact, we find a support of
the fact in Dynkin's representation of the generator

Gf= lim
U^[x} Ex(ffuc)

But a more profound and in a sense complete result was obtained in the case
of linear diffusion, in which the process is characterized by the scale s, the
measure m and the boundary condition, and the probabilistic meaning of those
objects are explained in terms of the two factors cited above (cf. Dynkin [2],
Ito and MacKean [6]).

A part of the result is extended for the processes with Brownian hitting
measures by Ito, MacKean and Tanaka: the generator of a given process with
Brownian hitting measures is represented by the system of classical Green
kernels and the measure m, and the process is obtained from the Brownian
motion by making use of "time change " which is determined by m.

The facts suggest that the situation is similar to an extent also in general
cases, that is, a Markov process is (under suitable regularities) characterized
by a system of kernels which is concerned only with the road system and a
measure which determines the local speed of the motion. Hence, we also in-
tended to investigate our special case from this point of view, while the result
is quite unsatisfactory. As a first approach, at least the following two pro-
blems should be answered: to show whether the system of kernels {gR~κ} in
§4 depends only on the system of hitting measures or not, and secondly, to
find the conditions under which the measure m in §3 represents the local speed
of the motion. The answer to the first problem seems to be in the affirmative.



RECURRENT MARKOV PROCESSES 137

2. The system of capacities {C &,!,•)(%•', Lf)} is proved to depend only on
the system of hitting measures, while the proof depends on the measure m.
But, when R is a connected manifold, or the union of a domain and a mea-
surable subset of its boundary in Rn (n^2), we can obtain the system using
(X. l)~(X. 3) and the strong Markov property.

3. We assumed in (X. 1) that the process hits every neighborhood of any
point starting at any point with probability one. But, if the probability of
this event is assumed to be positive but not necessarily one, and the path func-
tions are continuous at each 0 ̂  t < σω, then there are only two possibilities
in following

PROPOSITION. // X(t) with continuous path functions satisfies (X. 2)-
(X. 4) and

(X. 1°) Px(X(t, w)<= A for some 0^έ<oo)>0, for any x<=R, then only
one of the following two holds, where A (Φ φ) is an arbitrary open set.

Case 1. (X. 1) holds.
Case 2. For each compact set K=£R, there is a point x e R — K satis-

fying

The proofs of the above notes are tedious and omitted.

Appendix I. The uniqueness of the T^-in variant measure.

We note that the uniqueness of the T*-in variant measure μL

κ on K (in § 2)
can be proved also by using a result of Nelson [8] and a simple proposition.
Let S be a separable, locally compact spaec and let 23<? be the smallest Borel
field containing all open subsets of S. {P(x, A)} is a system of transition
probabilities on (S, 23$). Define

P\x, A) =P(x, A), Pn(x, A) = ( Pn~\y, A)P(x, dy), n>l.
Js

A sigma-finite measure q( ) on (S, %$s) is called an invariant measure for
{P(x, A)} if it satisfies

q(A) = ( q(dx)P(x, A), for all A e ̂ s.
JS

{F(x, A)} is called irreducible if va?( ) = Σ3£=ι2~n Pn(&, •) are equivalent for all
x e S. A set A e %$s is called a null set if vx(A) = 0 for some x e S, when
{P(x, A)} is irreducible. An invariant measure q( ) for irreducible {P(x, A)}
is equivalent to all (̂ )» x^S. We use

PROPOSITION (E. Nelson). 18) // an irreducible {P(x, •)} with an invariant
measure q( ) satisfies

(I.I) 2 Pn(x, A) = oof x<=S, for all non-null set A e 335,

18) Cf. Th. 5.1 of [8]. The original result is a little more general. Here, we re-
strict it for our present use.
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then any invariant measure for P(x, •) is a constant multiple of g( ).
If we take K, B(K), {Tκ(x, •)} and μL

κ( ) in §§1, 2 for S, 23s, {P(x, •)}
and q( ) respectively, all the assumptions in the above proposition are satisfied
excepting (I.I). But, noting that the total mass of μL

κ( ) is finite, (I.I) is also
satisfied in view of following

PROPOSITION.19) // {P(x, •)} is irreducible and has an invariant mea-
sure q( ) with finite total mass, then (I.I) is satisfied.

Proof. Take a non-null set A. Since vx( ) and q( ) are equivalent, we
have

0 < q(A) ={ {— Σ Pk(x, A)} q(dx)
Jsin*=ι J

= lim f (-1- Σ Pk(x, A)} q(dx}
w-»oo j in k=\ }

^ ( -fen — f]Pk(x, A)} q(dx)
js !w-»oo n *=ι j

and hence q(E) > 0, where

lim Σ Pk(x, A) > θ .

Since q( ) and (̂ ) are equivalent, ^0(£r)>0 and hence there is an n0 such
that Pπ<α;o, E) > 0 for any fixed x0 e S. Noting that 2?=1 Pfc(ί», A) = oo for

by definition of E, we have

Σ P*(a?
A=l =«0 + 1

^ f PXa?o,
JE

for any fixed #0 ̂  S, completing the proof.

Appendix II. The invariance of m in the temporally discrete case.

We prove the invariance of a measure correspnding to mκ,L in §2 for
temporally discrete Markov processes. The assumption (X. 1) is replaced by
the existence of a pair of measures corresponding to (PLK, V-KL\ so that the
theorem can be applied also for some non-recurrent cases by a suitable choice
of K and L, for instance random walks in higher dimensions. No other re-
gularity assumptions are needed. The proof depends upon the analogue of the

19) An irreducible {P(x, A)} satisfying (I, 1) defines a recurrent Markov process "in
the usual sense" (Cf. Th. 4.1 of [8]). Hence, this proposition can be expressed as: An
irreducible {P(x, A)} with an invariant measure of finite total mass defines a recurrent
Markov process "in the usual sense". But we do not use the word recurrence to avoid
confusion.
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fact that in the Brownian motion process the harmonic measure for a closed
set with sufficiently smooth boundary is obtained by a normal derivative of the
Green function of the complement of the set, multiplied by a suitable constant.
The weak point of the proof is that it seems to be impossible to extend it in
the temporally continuous case without unnecessary restrictions.

Let R be a locally compact HausdorfF space satisfying the second axiom
of countability, B the smallest Borel field containing all opens, (£ the family
of all Borel sets with compact closures, W the direct product Y\n=oRn of a
countable number of copies Rn of R, and 23 the smallest Borel field of subsets
of W containing all cylinder sets. Define the -R-valued function X(n, w) on
NX W for N= {0, 1, •} as the n-th coordinate of w<=W.

Let {P(x, A)} be a system of transition probabilities on R. Kolmogorov's
extension theorem asserts that there is a Markov process with sample function
X(n, w) with {P(x, A)} as the system of the transitions, i.e. there is a system
of measures {Px( ), x^R} on {W, 53} satisfying following conditions.

1) O^P*(E)^1 for #eS and Px(W) = l.

2) PX(E} is Immeasurable as a function of x for fixed

3) Px(X(Q,w) = x)=l

4) Px(wn

+^F,wn-GE)=Ex(PxultW,(w^F),wn-f=E) for

where wn

+ is the element of W with coordinate X(k, wn

+) —X(k + n, w), and wn~
is one with coordinate X( k, wn~)=X( k, w) for k ̂  n and X(k, wn~) =X(n, w)
for k>n.

5) PX(X(1, w) e A) =P(x, A) for A
Write, as in §1,

hκ(x, A) =Px(X(σκ) e A), A

(II.l) PD(X, A) =PX(X(1, w) e A, <rDc(w) > 1),

{PD(x, A)} is a system of semi-transition probabilities on R, that is, a
system of measures with properties of transition probabilities excepting the
condition PD(x, R) = 1. Noting Kolmogorov-Chapman's equation, write

Pn(x, A)=Px(

(II. 2) PD

n(x, A) = ( PD

n-\x, dy)PD(y, A) =Px(X(n) e A, ̂ c > %), w ̂  1,
J^

P °̂( ,̂ A) =Pα?(-aΓ(0) e A, ^c > 0) = %,ι̂ (̂ ).

(II. 3) G^a?, A) -^JmaX^|] lf\CSr(w))j = ΣPz)n(α?, A) ̂  oo, for A e^.
L ^o J ™=°

Then, G^Cα;, A) is a Borel measurable function with extended real values for
fixed AeJ5, and is a measure in A for fixed x.

THEOREM. Assume that there is a pair of sets K, L^B, with K/~^L = φ
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and a pair of sigma-βnite mesures μ and v on K and L respectively, satis-
fying the following conditions.

1) the measures GR~κ(x, •) for x<=L, GR~L(x, •) for x<=K, and

L( )= f μ(dx)GR~L(x, .), *(?*-*(.) = { v(dx)GR~κ(x, •)
JK JL

are all sigma- finite.

2) the following equations hold:

(HA) v( ) = μhL( ) - (μ(dx)hL(x, - ),

measure

is <m invariant measure for P(x, •)» i.e.

m( )= m(dx)P(x, •).
J Λ

Proof. At first, consider two cases, (i) Let A<Ξ(£ be contained i n Λ — K
Since P(α, A)^PΛ_^(x, A) for ίce^-Jfί and PR-κ(x, C) = 0 for xeίΓ and

?, we have

= f K*)Σ ( PS-iAx, dy)P(y, A)
JL «=OJJR

- [ K^)Σ ( PS-ί(», dy)P(y, A) = { v(dx)Σ ( PZ-K(x, dy)PR.κ(y, A)
JL «-OjΛ-^ JL »=OJJί-K

= { i4dx)%PS-*(x,A)
J L w=ι

(ii) Let Ae(£ be contained in Ĵ . For x^L, we have

P*(^(tfχ) e A, ̂  = n + 1) =Px(X(n + 1) e A, ̂  > w)

=Ex(Px(X(n + 1) e A/93n), ̂  > %) =Ex(P(X(ri), A),

- ( P^_^(x, cZί»)P(y, A),
JΛ

and hence

fc*(α?, A) =P,(X(^) e A) = f;

= Σ
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where $$n is the Borel field generated by X(k, w) for k ̂  n. Hence, we have

( vGR-*(x, dy)P(y, A) = f v(dx} ( GR~κ(x, dy)P(y, A)
J Λ J L JJK-K

= { KdaOΣ f P*-κ(x, dy)P(y, A)= { v(dx)hκ(x, A)
JL n=OJIt JL

Then, combining these two cases, we have, for general A,

vGR-κ(dx)P(x,A)={ »GR-κ(dx)P(x, A^ (R-K)) + { vGR~κ(dx
Jϊ JR JR

v(A^ (R -K))

Similarly, we have

μGR-L(dx)P(x, A) - μGR~L(A) - μ(A) + v(A).

By (II.5HII.7), we have

m(dx)P(x, A) = {μGR~L(A} + »(A) - MA)} + {vGR~κ(A) + μ(A)

and the proof is complete.

REFERENCES

[ 1 ] AHLPORS, L., AND A. BEULING, Conformal invariants and function theoretic
null-set. Acta Math. 83 (1950), 101-129.

[2] DYNKIN, E. B., Infinitesimal operators of Markov processes. Theory of Prob.
and its appl. 1 (1956), 38-60.

[3] FELLER, W., On second order differential operators. Ann. of Math. 61 (1955),
90-105.

[4] FELLER, W., On boundaries and lateral conditions for the Kolmogorov differen-
tial equations. Ann. of Math. 65 (1957), 527-570.

[5] HUNT, G. A., Markov processes and potentials. I, II, III, 111. J. Math. 1
(1957), 44-93, 316-369, 2 (1958), 151-213.

[6] Iτo, K., AND H. P. McKEAN, Diffusion. Forthcoming.

[7] MARUYAMA, G., AND H. TANAKA, Ergodic property of ΛΓ-dimensional recur-
rent Markov processes. Mem. Facul. Sci. Kyushu Univ. 13 (1959) pp. 157-
172.

[8] NELSON, E., The adjoint Markov process. Duke Math. J. 25 (1958), 671-
690.

[ 9 ] UENO, T., Some limit theorems for temporally discrete Markov processes. J.
Facul. Sci. Univ. Tokyo 7 (1957), 449-462.



142 TADASHI UENO

[10] WATANABE, T., Some general properties of Markov processes. J. Math. Inst.
Polytech. Osaka City Univ. 9 (9958), 9-29.

[11] YOSIDA, K., Simple Markoff process with a locally compact phase space.
Math. Japonicae 1 (1948), 99-103.

DEPARTMENT OF MATHEMATICS,
TOKYO INSTITUTE OF TECHNOLOGY.




