ON RECURRENT MARKOV PROCESSES

By TapasHi UENO

Introduction.

There are intimate relations between the behavior of Brownian motions
and classical theory of potentials. Such relations can be naturally generalized
to a wider class of Markov processes, as Hunt [5] studied systematically.
Here, we try to study a generalization of classical Green potentials for a class
of recurrent Markov processes. The recurrence assumption much simplifies the
situation, where the system of hitting measures for subsets of the state space
and a system of measures determined by mean sojourn time on subsets play
the essential role. They determine the system of Green capacities, equilibrium
distributions, Green kernels and the invariant measure of the process, uniquely
up to a constant factor. It seems to be important that some of these quanti-
ties depend only on the system of hitting measures. By making use of these
quantities we have a representation of the generator of the process. Follow-
ing is the outline of this paper, where rigorous definitions, assumptions, and
justifications of some quantities are referred to §1.

Let {X(t, w), t=0, we W} be a Markov process taking values of a topo-
logical space R, where the path functions are right continuous and have left
limits and W is the probability space. P.(-) is the probability of the event -
under the condition that the path starts at 2. The hitting time ox(w) for an
open or closed subset K of R is given by

ox(w)=inf {t = 0| X(¢, w)e K}, if such t exists,
= oo, otherwise.
The hitting measure h¥(x, -) on K is defined by
h(®, ) = Po(X(ox(w), w) € ).

The Green measure GE%(x, -) for the set R — K is given by
o (W)
Gz, E) :E’(S (X, w))dt), ECR,
0

where Xz( ) is the characteristic function of £ and E.(F'(w)) is the expecta-
tion of F'(x) with respect to P,(-). The fundamental assumption is that of

Recurrence. The process hits any set A having an inner point with
probability one, starting at any point x € R, t.e.

P (X, wye A for some 0=t<x)=1, 2x<R.
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Let & be the family of all {K, L}, where K and L are mutually disjoini
closed sets in R with inner points and satisfy the conditions in §2. There is
a unique pair of measures u;%X and ux” on K and L respectively with total
mass 1, satisfying

L) = SLMK%dx)hK(x, 9,

() = SK#LK(dw)hL(w, 9,

called equilibrium distributions on K and L with respect to R—L and R—K
respectively. When X (¢, w) is the 2-dim. Brownian motion and K is contained
in one component of R —L, x4 coincides with the equilibrium distribution on
K with respect to the classical Green function of the component.

Define a measure mg,; on R by

M, o() = jKMLKuw)GR-L(x, D+ LM(dw)GR-K(x, .

This is the nvariant measure for the process X(t, w), as Maruyama and
Tanaka [2] proved. It is also proved that mg,; depends on the choice of
{K, L} only up to a constant factor. The proof of the latter assertion leads
naturally to the definition of Green capacities.

To study a relation between two pairs of measures {u.%, ur*} and {u, %,
ML}, consider a special case K'C K and L=L’. Then, we have

Cox, oK', L) pr X () :j i (da)hE M, B),
K
FEcK,

K
oy , where
S, K L G (K", L) = | s da)h="“5z, KC)

is the normalizing constant. Ck,1,(K’, L’) in this
special case can be extended uniquely to a positive
valued function defined on FXF satisfying

C(Kl, L1)(K27 LZ)'C<K2, Lz>(K3, Ls) :C<K1,L1)(K3, L3),
C k1, 1Ky Lg) = Cxy, 19)(Ky, Ly)™L.
We note that this function depends only on the system of hitting measures
and that it is characterized by
mg, ()= C(K, (K, L')mK/, z(*).

Fix any {K,, Lo} €% and put C(K, L)=Cx, (K, L) and call C(K, L) the
Green capacity of K with respect to R — L, since the function C(K, L) depends
on the choice of {Kj, Lo} only up to a constant factor. When X(¢{, w) is the

1) A different proof is obtained in Maruyama and Tanaka [7], independently of the
present author, by making use of an ergodic theorem.
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2-dim. Brownian motion and K is contained in one component of R —L, C(K, L)
is the classical Green capacity of K with respect to the component, and m
=Mk, 1, is the Lebesgue measure, where Ky ={z| |2/ <1} and L,={z!|lz| =e}
with e=2.718---. Note that C(K, L) ! increases when K and L shrink, or get
far apart, and decreases when K and L expand, or get near, a little like a
distance. In the case of 2-dim. Brownian motion this coincides with the ex-
tremal distance®? of K and L with respect to the domain between K and L.
We can prove that m = mg,, 1, takes a positive value for a non-empty open
set and a finite value for a compact set, and that every G¥ X(z, -) is absolu-
tely continuous relative to m. Fix a version of the densities {g% ¥z, y)} of
GF-X(x, -) relative to m, and call it the system of Greem kernels induced
by {X(¢, w)}. In the case of 2-dim. Brownian motion we can take the classical
Green kernel gr «(x, y) for g% ¥(z, y). But in general case g% *(z, y) is not
necessarily symmetric in z and y.
W. Feller [3] obtained a representation
d d*
Gf= dm ds
of the generator of linear diffusion processes, which has an intrinsic meaning
for the behavior of the process. This was generalized by Ito and McKean [6]
in the case of multidimensional diffusion processes with Brownian hitting mea-
sures, by making use of the classical Green kernels. We note that the formal
use of the kernels defined above leads to a representation of the generator
G of X(t, w), that is, for each f in the domain D(G) of G, there is a unique
sigma-finite measure m; on R satisfying
_ dms
Gr= dm

j W, dy)f (@) —F@) = U e-x(a) = j 055, y)my(dy).

(in the sense of Radon-Nikodym),

But we note that it is necessary to check, in which case this formal represen-
tation keeps the intrinsic meaning of the original definition cited above.

The author wishes to express his hearty thanks to Prof. H. P. McKean for
his kind and useful opinions to the manuscript and to Mr. Keniti Sato for his
kind help and encouragement.

§1. Notations and Assumptions.®

Let R be a separable locally compact space containing at least two points
and satisfying

(R. 1) For each point x €R, we can take a base of neighborhoods U, of z
consisting of arcwise connected open sets,

2) Defined by Ahlfors and Beurling [1].

3) The general set up in this section, excepting the special assumptions (X. 1), (X. 2),
(X. 8), (X. b5) are due to the Lectures given by Ito and McKean in 1957~8, and to
Watanabe [10]. The propositions stated without proofs in this section are to be con-
tained with proofs in K. Ito and McKean [6] and Watanabe [10].
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(R. 2) R is connected.
We denote by B the topological Borel field of the subsets of R. For a formal
convenience, we add an extra point w to R as an isolated one and get a topo-

logical space R =R {w} and the corresponding Borel field B.»
For a measurable function w(t) from [0, + o] to R, we define
go(w)=1Inf {t = 0| w(t) = w}, if such ¢ exists,
= oo, otherwise.

Let W be the space of all functions w(t)’s satisfying

(W. 1) W(t)=w for t=o,(w),”
(W. 2) w(t) is right continuous and has left limits at each
0=t <o(w).

We call W the space of path functions. X(t, w) (or simply X(¢)) is a func-
tion on W defined by X(t, w)=w(t), t=0. The hitting time o4 for a set
A B is defined by

csw)=inf{t=0|w(t)sAd}, if such ¢ exists,
= oo, otherwise.

We denote by B, the smallest Borel field of subsets of W containing
{w| X, w)ye A} for all Ac B and t=0. In order to use hitting times for
closed sets freely, we use another Borel field B generated by all elements of
B and the sets {w|a.(w)>t} for all closed sets A and 0Lt < .9 For a B-
measurable function (random time) o taking values in [0, o], we define the
stopped path w," and the shifted path w,” by

w,~(t) = X(min (¢, o(w)), w), 0=t <oo,
=w, t =007,
w, () = X(t + o(w), w), 0=t=<co.

Let B, be the smallest Borel field containing {w|w,” = B} for all Be®B. It
can be proved that the mapping w—w,” and w—w,* are B-measurable, and
hence that B, is a subfield of B.

A random time o is called a Markov time, if

{wlo(w) <t} =B, for 0Zt< oo,

It can be proved that a hitting time o4 for a closed or open A is a Markov

4) Since the process in this paper is recurrent, we can make the following discus-
sions without adding ®. The main reason to use this formulation is the reference to
[10].

5) This condition means that the path does not come from w into R once it arrives
at .

6) This aritificial set up owes to the fact that o, for open A is B-measurable and
satisfies necessary regularities, bnt for closed A this is not known.
7) This is to guarantee W,- W,
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time,® and that X(o) is B,,-measurable for a Markov time o, where B,,
=N ::1%0-}1/11-

Let {P.(-), x € R} be a system of probability measures on B satisfying

(P. 1) P4E) is a B-measurable function of x for each E= B,

(P. 2) P,({w| X0, w)=2})=1 for each xR,

(P. 8) if {o.} is a sequence of Markov times increasing monotonely with
P,-probability 1, then we have

Po({w l}im X(an(w), w) = X(0w(w), w), du(w) < 7u(w)})
= z({w I Jw(w) < dw(w)});

where go(w) =lim, s (W),

(P. 4_2 Markov property: for any bounded B-measurable function F(w)
and 2 €R, we have

E(F(w*)|B)=E,q () with P,probability 1,

where FE,(-) is the expectation of - with respect to P., and E.(-|B,) is the
conditional expectation with respect to the Borel field %B,.

We call the system {W, B, P.(-)} a Markov process on R and sometimes
denote it by {X(t)}. We use the abbreviation P,(A) instead of P,(L) for L
= {w|w satisfies the condition A}.

B(K) is the space of all bounded functions defined on K& B, measurable
with respect to the topological Borel field of K, and taking the value 0 at w
when we K. C(K) is the space of all bounded functions on K, continuous with
respect to the relative topology and taking the value 0 at w when w € K. The
norm on both these spaces is given by | f| =sup.ex|f(x)|. We write

P, x, A) =P(X (¢, w) € A), for A€ B,
(@) =E.(f(X(t, w))), FEB(R),
Gof (@) =E(j et F(X(t, w)) dt)
= re-wnf(x) dt, FEB(R), a>0.

Now, we introduce assumptions on {X(¢)}.
(X. 1) Recurrence. The process hits any set A =B containing an inner

point with probability 1, <.e.
P(X(, wye A, for some 0=t<oo)=1, for any x<R.
Since o4 is B-measurable when A is closed or open, we define the hitting mea-
sure h4(z, -) for such ACR by
hi(x, S) =P, (X (0 4(w), w) E S, o4(w) <o), xR, SEB.
We sometimes use the restriction
ha*(x, S)=h*x, S~A4’), A'cA, A €B.

8) The conclusion for closed A depends upon the artificial definitions of B and %B; ete.



114 TADASHI UENO

We write
h"f(x)zsjh"(x, dnf(y), feB®R) or feB(A).

(X. 2) For any feC(K), h¥f(x) is continuous in R —K, where K is a
closed set in R containing an imner point.

(X. 8) Maximum principle. For any non-negative feB(K), hXf(x) is
either strictly positive, or 0 for all points x of any one componet of K —K,
that s, h*(x, ) are equivalent for all x of any onme component of R—K,
where K 1is a closed set in R containing an inner point.”

(X. 4) G, maps C(R) into C(R) for each a>0, that is, Gof(x) i conti-
nuous on R and 0 at w, if f is in C(R).

(X 5.) There is mo point of positive holding time, that is, there is no such
xR that

P,(a>0)>0, o=inf{t=0|X(t)eR — {x}}.
The assumptions (X. 1)-(X. 4) are assumed in §§2, 8 and 4, and (X. 5) is
assumed in §4.
We prepare the following implications of (X. 4):
1. The process {X(t)} has the strong Markov property, that is,
1.1) E(F(ws*)|Bs,) =Ey . (F) with P,-probability 1,

for any B-measurable function F' and a Markov time o.

2. The generator G of {X(t)} is defined as follows: By (X. 4) we can
consider G, as an operator on C(R). Since the resolvent equation
Go— G+ (a—P)G.Gs=0
holds, the range and the null space of G, do not depend on the choice of a.
We denote these spaces by R and R respectively. Since we can prove that

N = {0} from the right continuity of path functions, G, is a one to one map-
ping from C(R) onto . Hence, the generator G of {X(t)} is defined by

Gf=(a—Gh)f, for fef
independently of the choice of «. We have
1.2) (¢ — @G f =f, for feC(R).
We write (@) for R.
3. For a Markov time o, we have Dynkin’s formula
(L.3) E(e= {0 ~f@) =~ B | oo~ O X (0) dt
for f€ D(G) and « >0. When o has the finite expectation F,(s) < oo, we have

9) We say that measures y and ¢ are equivalent, if they are absolutely continuous
relative to each other.
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(L.4) E(f(X(o)) — F(x) =EZ{S:Gf<X<t» dt}, FEDG).
It can be proved from (X. 1) and (X. 4) that
Piloo(w)=00)=1 for any z€R,

using Watanabe [10, Th. 4. 1]. Hence, we mean A CR when we say a set A,
unless specifically mentioned.
Now, we introduce

GR-K(g, A):E,(f”‘x,i(xu))dt) for zcR, AcB,
0

for any closed set K containing an inner point, where %, is the characteristic
function of the set A. We call this, considered as a measure in A, the Green
measure of R—K with starting point # = R. This is actually a sigma-finite
measure on R according to

Lemma 1.1. (X. 1) and (X. 4) imply
(1.5) GE ¥, A)< M(A, K) < o, rER

for any closed set K containing an inner point and any A €B with compact
closure.

Proof.t® Take a closed set K, K, which contains an inner point and
consists of inner points of K. Let g = C(R) satisfy g(x)=1 on R, g(x)=1 on
K° and gx)>1 on K,.!® Write f=G.g = ®D(G) for some fixed a>0. Then,
we have

Gf (@)= (& — Ga)Gat(®) = aGag(®) — g(&) = E{aj "ematg(X(t)) dt — g(w)}
= aEx{Swe‘"‘(g(X(t)) —1 dt} >0, for zek,

where the last inequality follows from (X. 1). Since A cK implies GE %(z, A)
=0, we assume A—K+#¢. A—K being compact, we can define fo(x)= {inf,
=G f(x)} ! f(x) which satisfies fo(x)>0 on R, Gfo(x)>0 on K° and Gfo(x)
>1on A—K. Noting that P(Gfy(X(t)>0,0<t<0x) =1 for any z € K°, we
have (1.4) for 6 =0x and f=f € DG) by letting al0 in (1.3). Hence, we
have

GF Xz, A) < GFX(z, A) = G*¥(z, A—K) :E,(&"me(.x'(t)) dt)
(1.6) = Ex(S:KGf ol X(2) dt) =FEfo(X(ax)) — fo())
= Ifoll = fol®) =21 fo (| < o0,

10) The proofs of Lemma 1.1-2 are slight modifications of the techniques in Ito and
McKean [6].
11) We sometimes write A°=R —A.
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for each x R, completing the proof.

LEMMA 1.2, (X. 1), (X. 4) and the continuity of path functions imply
(X. 5).

Proof. It is sufficient to prove that there is no point of positive holding
time when the above conditions are satisfied. Take any point z,= R and
FeDG) satisfying G f(x,) >0. Putting o =ozye and =2, in (1.3) and re-
peating the same procedure in the proof of Lemma 1.1, we have E,(s)< co.
Continuity of path functions implies P, (X(s) =) =1 and hence

0= f (o) — f (o) = Er(f(X(0))) — f(20) = Ex, (j’:Gf (X(t))dt) =G f(20) E(0),
that is, E. (o) =0, completing the proof.

REMARK. (X. 1)~(X. 4) do mot imply (X. 5). In faect, take R=[0, 1]
and put

Tf(m)= e f(z)+1— e j fayde,  t=0.

{T,, t=0} is a semigroup on C(R), strongly continuous at t=0. It can be
proved that this is realized by a Markov process, where a particle at any
point x at time ¢ =0 stays there for an exponential holding time o with E.(s)
=1, and then jumps into R — {x} with uniform distribution, or Lebesgue
measure on [0, 1]. It is easy to prove (X. 1)-(X. 4), but (X. 5) is not satisfied.

§2. Fundamental lemmas.

Let § be the family of all {K, L} satisfying the following conditions:

(. 1) K and L are closed subsets of R and contain inner points,

(®. 2) At least one of K and L is compact,

(F. 8) At least one of following a) or b) holds. a) K is contained in
one component of R —L. b) L is contained in one component of R —K.

For a pair {K, L} €%, define T*(x, -) for x €K by

TX(g, E):( Wiz, dphE(y, B), w<K, EcB, ECK.
Jr

{T%(x, -), x €K} is a system of transition probabilities on K, since T¥(x, K)=1
by (X. 1). T, -) defines an operator 7'¥ on both B(K) and the space B*(K)
of sigma-finite measures with supports contained in K, by

TXf(x) = L T¥w, dp)f(y), =K, feBK),

@.1)
¢TK(A):§ o(dx)T5x, A), AcK, AeB.

12) The result of Ito and McKean [6] is sharper: the holding time at any point x
&R is 0 or oo with P,(-)-probability 1 under the assumption (X. 4) and the continuity
of path functions. This implies the conclusion trivially.
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TX maps C(K) into C(K), since by (X. 2) h*f(x) is continuous in B —K for
feC(K) and hence TXf(x) is continuous in B —L. We note that 7%z, :) s
equivalent for all x <K, since h™(x, -) are equivalent for all x =K by (X. 3)
if a) in (§. 3) holds and h%(x, -) are equivalent for all x €L otherwise. T” is
defined similarly. Applying an ergodic theorem to 7% or T% we have

LEMMA 2.1.%%  For each {K, L} € there is a unique pair of measures
u% and pxt with total mass 1 on K and L respectivily, satisfying

() = ) = [, ),
2.2) -
() = p KR = jKuLI%dx)hL(x, .

Proof. To fix the notation, let K be compact. We say that ¢ is an in-
variant measure on K, if it is a measure on K with total mass 1 and is in-
variant by T%. Yosida [11, pp. 100-1017] proved that a necessary and sufficient
condition for the existence of an invariant measure on K is

(2.3) lim sup ;1; fj_l(TK)"‘f(x) >0, for some zcK, feC(K).

The left hand side of (2.8) is identically 1 for f=1=C(K) by (X. 1), and
there is an invariant measure.

To prove the uniqueness we use the decomposition of K in [11, p. 102]:
there is a Borel subset K’c K and a system of invariant measures {¢.(-),
xeK'} on K satisfying ¢, (K’)=1. Every invariant measure ¢ on K is re-
presented by

(2.4 o) = _eldg)

The system of measures {¢,} determines a classification {E;, 1€ A} of K’ by
the relation ¢,(:)=¢,(-), and we have

eE)=¢(K)=1 for xcE,.
For each E; there is a Borel subset Ez satisfying
(2.5) TX(x, B)=1 for wxekE,.

In our case there is only one class E; =K’. In fact, if there are two classes
-E;, and E, T*(x, E'h) =1 on EA’M and 0 on 17:’12 by (2.5), which is impossible by
the equivalence of T%(x,-), =K. Hence, there is only one 7T%-invariant
measure M4;% on K by (2.4). Since any T*-invariant measure u induces a T%-
invariant measure ph“ and conversely, we have a unique T*-invariant mea-
sure iz’ = u,Fh* satisfying (2.2).

13) H. P. McKean advised the author to check the connection between Nelson [7]
and this proposition in a private communication. The result of the check is contained
in Appendix I.
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LEMMA 2.2 If {K, L}, and {K’, L} belong to & with K'CK, then
(2.6) v(+) = MrBhg X E(-) =j M) hg X (2, -)
K

18 a non-trivial measure on K’ satisfying
(2.7 w(+) =u(K")- m ().
The counterpart v/ on L of v is given by
2.8 VI(-) = vhE(:) = px"(-) — L ERLFTEC).
Proof. To see the invariance of v under the transformation (A%'h%)(x, -)
we note, for Ec L,
h*(z, E) = P(X(c,EE))
=Py X(o1) EE, 0, <o)+ Po(X(3.) EE, 0,> 0x7)
=Py X(s,-x) EE,0, < o) +P(X(0L) EE, 61> 01-x7)
=h""E(x, E) + EP,X(0.) EE /By, rs)y 01> 0rkr)
=h "% (@, E) + Ex(Popopn(X(or) EE), 01> 01x7)
=h""%(z, E)+ 5 ,hKfLVK’(x, dy)h*(y, E)
=h, "% (x, E)+ (ifK,L‘“K’hL)(x, E).
Hence, by (2.6), we have
Mk B) = p W (E) = p b, (B ) + phe"" B (E)
=150 () + (b YE),
which implies
(2.10) PR () = R PR R () + v PR ().
Similar calculations for A%'(-) shows
hE (m, )= b P % (%, ) + B 2K RS (2, ).

(2.9)

This implies
Mg"RE (2) = p"hERE(2) = u KR ()

(2.11) ) o
= UL R () o U PR R =) iR R,

Comparing (2.10) and (2.11) we have the invariance of ». (2.9) shows that
the counterpart of v on L is given by (2.8). By the uniquess of the AZh%'(x, -)-
invariant measure up to a constant factor we have (2.7).

To prove that v is non-trivial, assume the contrary, or »(K’)=0. Apply-
ing (X. 3) for L and

j WXz, dy) ="y, K') = j 15z, dy)P,(ox: < o1)
K K

in the case a) in (§. 3), we know
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TEpH(a, K/)=5 T, dy)h™ "y, K’)=g h(, dy)j h5(y, d2)h*"""(z, K')
K L K

is positive for all x€K or =0 on K. Since, in the case of b),

S WS, dy)h=" Xy, K')
K

is positive for all x €L or =0 on L by the application of (X. 3) to K and
hE~I(y, K’) on K, we have the same conclusion for T*r*"~Z(xz, K’) on K. But
WK = f B HE) = (KT KD = ST D (K

2.12
@12) = [ sumaaxrs e e, K)
K
implies the latter case, i.e. T¥A%X"~%(x, K)=0 on K. (2.12) also shows that

S hX(x, dy) k<" Xy, K) =0
K

for a set of x €L with uxP-measure one. Fix such a point x, L.
Define the following sequence of hitting times.

01 = 0k,
T, =inf{t > 0, | X(t) e L}, when such ¢ < oo exists,
= oo, otherwise,
one1 =inf {t > 7, | X(t) € K}, when such ¢ <oo exists,
= co, otherwise.

By the assumptions on the path functions the definition is possible, and using
(X. 1), we find that

01 <11<0: <1<+,
Px(}irg Op = 00) = Px(}lijgfn =o0)=1.
Then, for z, above, we have
1= Prf0x < 00) = 31 Paon S 030 < < o)
= Eo{Poco (o <o)} + g BafPocoy (11 < 02 < 0x0 < 73), Gns < 050}

=j W@, dy)h™" " "(y, K')+ ZZExo[Ean_p {Prceplox S ogr < 13),
x n=
71 < Ogr}y Ono1 < Oxr]

0 +”2:;1 ExOEEx(m){ExwL))Px(aK)(”K' <ar))}, on<0oxs]

A

I
Ms

B, { thK(X (o), dx)LhL(w, dy)thK(y, d2)Pox < 01), 00 < o'K,}

n=1

1]

Il
Ms

B, { j WX (), de TR, K, 7, < aK,} =0,

n

contradicting (X. 1). This completes the proof.

I
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For a pair {K, L} €, define
mx, o(+) = (MFGE ) ) + (" GEF)(+)

(2.13) — jKﬂLK(dx)GR_L(xr 2 +§LMKL(dw)GR—K(x, ).

This is a sigma-finite measure on (R, B) by Lemma 1.1. We note for a
later use that there is a compact set K, for which 0 <mg, (Kp) < oo, because
GE Lz, R)=Eo.) >0 for each x =K by the right continuity of paths and so
0 < u %GR Y(R) < mg, 1(R) < oo, which, together with the existence of a sequence
of compact sets K,T R, implies the existence of such K, =K,

LEMMA 28. If K, L, K’, v and v are the same as in Lemma 2.2, then
(2.14) mg,1(+) = (K" Ymgs, (+).
Proof. For x=K and E B, we have

G®-X(z, B) =E, (S”LXE(X(t))dt>

9z, 14
/1, oL, <0'Kf> Ez<§ I, 01> O'Kr> +Ex<\y I, o> O'K/)
0 o’

S +
j:LvK > <S 1", o> UK,>

g:” ) Ex(Exq Ny /%om), op> (rK,>
J (

x LK’ >+Ex Ex(UK/)<5' > 0'L>O'K/>
0

= GR- 4K, E) + S WP (a, dy)G* Xy, B).

K’

(2.15)
=FK,

=5
=Ex<
(
=5

Similarly we have
2.15) Ex(suK,xE(X(t)) dt) = GF-IVED (g, ) + 5 hEEi (s, dy) GE-5(y, B).
0 L

(2.6) and (2.15) imply
j 1 X(de) G*Ha, E) =j i 5(da) GE-FE (g, B)
K K

2.16) +jKuLK<dx>j hEE(, dy) Gy, B)

= | puram e, B | tdn @, B).

14) We use the abbreviation Ex< f f// s /l) or Ex< f o /%,,.1.) ete. for Ez< f tX AX (@))dt, /1)

or Ex< f tXA(X (t))dt/SBa.y) ete. when no confusion is expected, where ¢ and v are

Markov times and / is a B-measuaable condition.
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On the other hand we have

G ¥y, B)=E, (S"K'xE(X(t)) dt> ~B, (5’{ " > +Ex(S”K'//>
0 . -

@.17) —E, (50’{ //> tE, (Ex(,,m(ﬁK,// ))

= G* Xz, E)+ } Wi, dy)Ey< rK’XE(X(t)) dt>.
(2.8), (2.15’) and (2.17) imply
S V(d2)GEE (x, B)

=jLﬂKL<dx>GR-K'<x, E) —jK#LK(dw)LhLVK'(% dy)GEX(y, E)

(2.18)

I

1 {da) GE-K(z, )+ LﬂKL(dac) Lm, dy) {GH*‘L“K’)(y, B)

+

I
j REE (y, d2)GRE (2, E)} - LuLK(dx)thLVK’(w, dy)G"*'(y, E)

L

=§ pH(dr)GE E>+j () G B0 (i, ).
L K
Hence, by (2.16) and (2.18), we have
j w(dw) G H(a, E>+j V(d2) G (w, B) = my, (E),
K’ L

where the left hand side is clearly »(K')mg., (E) by (2.7).
Now, we introduce, without proof, an important property of mg,; thus
constructed:

THEOREM. (G. Maruyama and H. Tanaka) mgk ;. is an invariant measure
for the process X(t), that ts,

e, o(+) =LmK,L(dx)P(t, o), for each t>0.

The proof is the same as that given in [7] which is based on a slightly
stronger condition than (X. 2). An intuitive explanation of the invariance is
found in the proof of the corresponding result for temporally discrete case.
The reader, if interested, can consult Appendix II.

For an application in §5, we consider now the convergence of w(T%)", n
=1,2, --- to 4% for an arbitrarily given measure ¢ on K with total mass 1.
In the place of (X. 2) in §1, we use here a stronger condition

(X. 2. If {fi, A€ 4} is a uniformly bounded class of functions of
B(K), {h¥f:, A€ A} is equicontinuous on each fixed compact subset of R —K,
where K is a closed set (#R) with an inner point.

Note that this is satisfied in the case of the Brownian motion.
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PROPOSITION 2.1. In order that the measure h¥(x, -) varies continuously
m xR —K with respect to the norm of total variation, it is necessary and
sufficient that (X. 2’) holds.

Proof. Since the necessity is clear, we prove the sufficiency. Assume the
contrary, i.e. assume the existence of a sequence v, R—K, n=0,1,2, -
and an & >0 with limese 2, =2, and || A% (@, +) — h%(®0, )| = & for n=1. Fix
a compact neighborhood L cR—K of x, and assume without the loss of
generality that all x, are in L. Let K," and K,~ be the sets of positive part
and the negative part of K with respect to the Hahn-decomposition of A¥(x,, )
— h&(x,, ), =1 respectively. Define %, on K by X, (x)=1 for = K," and
X(x)=—1 for xK,”, and f, on L by fu(x) = h¥x,(2).

Since %[ =1, {fulx),n=1,2, ---} is a class of equicontinuous functions
in C(L) by (X. 2’), and hence there is a subsequence {f»} and a continuous
function f, on L with

lim [l —foll =0,
according to the Ascoli-Arzela theorem. This, with the continuity of fy, implies
0<e = lim [ A5(@w, -) — b (#,, -] = lim L{h’{(wun dy) — ¥ (o, dy)}an(y)

= Iim (fur(@w) = fol@a)) < T {1.fw (@) = fol@w) | + | fo(w) —folwo) [}
= lim {|.fw = foll + | fo(@w) = fol@o) [} =0,
which is a contradiction.

PROPOSITION 2.2. Assume that (X. 2’) holds. For any measure u on K
and v on L with total mass 1, w(T*)*, (T, n=1,2, -+, converge to the
unique limit X and ux® respectively, with respect to the nmorm of total
variation, and exponentially fast.

Proof. Since h*¥(z, -) and h%(z, -) vary continuously in x by Proposition
2.1, so do Tz, -) and T*(x, -). In fact,

\T5(x, -) =Ty, )| = sup S {TX(z, dz) — T(y, d2)} ()
FE€EBIXK) )k
@19 = sup j {h*(w, dz) — h™(y, d2)}h"f(2)
fEBIK) ) L
< |h*(x, ) —h*(y, )|+ sup {sup |R*f(2)(} < | hE(x, <) — hi(y, ),
FEB(K) =EL

where Bi(K)={fB(K)||fl<1}. To fix the notation, let K be compact.
We now prove

(2.20) QTR)= sup [Tz, )= T, )1 <1,

which, by [9, pp. 454-5], implies the conclusion for {u(T*)*}. If we as-
sume the contrary, there are two sequences {x,=K} and {y,€K} with
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limnso | T% (%0, -) — T5(Ya, -)| =2. Since K is compact, there are subsequences
{z»} and {y,,} with limits x, and ¥, in K. By the continuity of 7%(z, -) in x
we have

1750, ) =T, )| = lim [ T, ) =T W, ) |=2.

By the Hahn decomposition of T%(x, -) —T%(yo, -) we have two mutually dis-
joint subsets K* and K-B with K*N K =R, for which we have

(2-21) TK(xﬂr K+) = TK(yO, K—) = 17 TK(xOy K—) = TK(yO’ K+) = 07

contradicting the equivalence of T%(xo, -) and T*(yo, -). For the convergence
of {¥(T*)"}, we can prove that Q(T%)?) < Q(TX) by a computation similar to
(2.19), and then infer the proposition from [9, pp. 4564-5].

83. The system of Green capacities and the measure m.'®

For later use we say that {K, L} =& belongs to §, if {K, L} satisfies both
a) and b) in (§. 3) of §2. Given {K, L} and {K, L'} in &, we write

3.1) {K, L}~{K, L'} when {K, L~ L'}ef.

If, for {K, L} and {K’, L’} in ¥, there is a sequence «=({Ki, L}, {K;, L.},
.-+, {K,, L,}) of & satisfying {K, L}~ {K;, Li}~---o{K,, L.}~ {K’', L'}, we
write

8.2 {K, L}<{K', L'}.

LEMMA 3.1 For any two elements {K, L} and {K’, L'} of & there is a
sequence a=({K;, L}, {Ks, Ly}, ---, {K,, L,}) consisting of elements of T
satisfying (3.2).

Proof. Since a) or b) holds for {K, L}, let a) hold to fix the notation and
take one component V of R —K which contains an inner point of L and put
L,=L~YV. Then, {K, L;} clearly belongs to %, and satisfies {K, L} < {K, L;}.
By the same consideration applied to {K’, L'}, we know that it is sufficient to
prove the lemma only for {K, L} and {K’, L'} in %, Hence, we assume this
condition in the following.

Let K be a closed set in R and let {V,} be the family of all connected
components of R — K, we note that for each V,, there exist two points 2V,
and ¥y €K and an are, contained in K~'V,, joining « and y. To show this let
U’V, be the union of all V,, for which two points and the are cited above
exist. Since R'=K“~(U’'V,) is a non-empty closed set and R is connected, it
is sufficient to prove that R’ is open, or R=R’. If xR’ is in U’V,, it is an

15) The author owes main part of this section to Keniti Sato; more precisely, the
topological set up and the idea of using m to establish the system of capacities are his.
His help ameliorates the condition on the topology of R and simplifies the author’s ori-
ginal proof, which was tedious and restricted to processes on the union of a domain in
R" (n=2) and measurable subset of its boundary.
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inner point of U’V, and hence of B’. When xR’ is in an arcwise connected
neighborhood V of «. Then, V is contained in R’. In fact, if a point x,
eV~ K° exists, then there is an arc w={f(¢),0=¢t=<1} in V with f(0)=x,
and f(1)=2. For t;=inf {t|f(t)eK}, z,=f(t,) K and {f(t), 0=t <t} lie
in one component V,, implying x, €R’. Hence R’ is open.

First, assume K=K’ and that L and L’ are in the same component of
R —K. Taking a connected open set G CK and a compact subset K, thereof
with an inner point, we have {K,, L™~L’} €%, and hence {K, L} {K,, L} <
{Ko, L'} - {K, L'}.

Secondly, assume K=K’ and that L and L’ are in different components of
R—K. For a compact subset Ly, of L with an inner point, we have clearly
{Ly, L'y €¥. Moreover, we see that K and L, are in the same component of
R—L’. In fact, for the connected component V of R—K containing L,, there
is an arc in K~V joining a point of V and a point of K as we have shown
above. This means that L, and K are in the same connected component of
R —L’, and hence there is a sequence «; consisting of elements of &, with
{ L, L’}«;{{K, L’} as we have discussed above. Similarly, K and L’ are in
the same component of R —L,, and we can find a sequence a. consisting of o
with {K, Lo}‘;;{Lo, L’}. Hence, we have {K, L} {K, Lo} ‘;;{Lm L’}<a—1>{K, L'},

Now, consider the general case. Take inner points x; and % (x; # x») of K
and K’ respectively, and let Vi, V, be connected open neighborhoods of =«
and x, respectively with V;~V,=¢, and then fix two compact neighborhoods
KicV; and K.V, of x; and 2, respectively. Clearly {Ki, L}, {Ki, K3}
and {K,, L'} are in $,. Hence, by combining above two special cases, we can
find two sequences a; and a. consisting of elements of &, with

{K) L}H{Klr L}(a_l){Kly KZ}‘Q{K% LI}H{KI7 L/}y

which completes the proof.

To describe the relations among {#;*} and {mg } for {K, L} €&, we make
the following definitions for {K, L} and {K’, L'} in %, using Lemma 2.2.
0<Cix, 1,(K’, L) = (U=~ )(K") and

C(K', L)(K) L) = C(K,L)(K/, L)_ly when K’'cK.
0<C«, 1, (K, L)=Cx,,(K~K', L)-C xvxr,1,(K’, L),

when {K, L}<{K’, L}.

(3.8") 0<C%x1,(K', L')=Cx,1,(Ki, L1)+Coxcy, 15(Kzy L2)+ - +Cix,p, 1.0(K', L),

when, {K, L} < {K’, L'} with a =({Ky, L}, {Ks, Lo}, - -+, {K,, L,}). Note that
the order of sets, for instance, K and L in C«, 1,(, -) or C,., ..(K, L) does not
make any difference.

(3.3)

3.3

LEMMA 3.2. C*i,1,(K’, L’) does not depend on the choice of a. Hence,
we can define a positive valued function
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Cu,, (K', L)y =C*x,,(K', L),

by any fized choice of a with {K, L}<>{K', L'}. This function satisfies, by
definition,

(3.4) C iy, 1 (Ksy Lo)C iy, 199 (Ks, Lig) = Coxy, 11 (Ks, Lig)

(3.5) C oy, 19 (Kzy L) = C iy, 10y(Kyy L)Y,

and depends only on the system of hitting measures. Moreover, we have
(3.6) Mg, () = Cu,1,(K', L'Ymgr, 1/(+)

which characterizes this function.

Proof. First, we prove (3.6) for some special choice of a, i.e. mx
=C*x,,(K', L"Ymgs 1». By Lemma 2.3 we have my, ;= C%x 1,(K/, LYmg 1 in
the case (8.3). In the case (3.3’) we also have the result, since

mK,L = C(K, L)(K, VK, L)mK/vK,L = C(K, L)(K/\JK, L)C(K/VK’ L)(K’, L)mK/,L

= C(K, (K, LYmgrz.
Now, applying the result repeatedly for « in (3.3'), we have

Mg, L = C(K, (K, Ll)meLl = C(K, (K1, Ll)C(K,, L,)(Kz, L2)sz,Lg

>

3.7 -
=Cu, (K, Ll)'C(Kl,Ll)(KZ’ Ly)+ - Cn, (K, L'YMgr, 1

= Ca(K, L)(K’, LI)mK',L’o
Take a set K, with 0 < mg, 1(Ko) < oo, which really exists by the note just
before Lemma 2.3. By applying (8.7) for two sequences «; with {K, L};—;
{K’, L'} (1=1, 2), we have
0 < mg, 1(Ko) = C%ix, 1,(K', L") Mg, 1,(Kp) < o0 (1=1,2),
which necessarily imply C¢ x,1,(K’, L') = C% g, 1,(K’, L’).

LEMMA 3.8. mg,; takes a positive value for any set in B with an
inner point.

Proof. If V is such a set, we can take an open subset Vo, of V and a
compact set K’ which is contained in one component of V, and has an inner
point. Then, {K’, L'} for L’ =V*. By the right continuity of paths, we
have Po, =oy,>0)=1 for each x €K', and hence

0 <Eos) = E(S""xvmt»dt) =GR (z, Vo) £GP (a, V),
’ for z=K/,
which implies

mx, (V)= Cu, 1,(K', L"Ymgr, 1(V) = Cx, (K, L’)S Mo (da)GR Y (2, V) > 0.
K’
Now, fix any {Ko, Lo} €& and call C(K, L) =Cwx,,.,(K, L) the Green capa-
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city of K and of L with respect to R—L and R —K respectively. By (3.4)
and (3.5) such a function C(K, L) depends on the choice of {K,, Lo} only up to
a constant factor. Writing

vi¥(+) = C(K, L)pn (+),

we sum up the main results in §2 and §3 for later use.

THEOREM 3.1. For each {K, L} in §, there is a pair of measures v.%
and vt on K andL respectively, satisfying
3.8 viERE = ik, veth® =y %
3.9 v = v Ehg"E, and vt =gt — v KR P,

when K'cK, {K, L}, {K, L'} =g.

Such a system ts unique up to the constant factor, and depends only on the

system of hitting measures.
The right hand side of

(3.10) m(-)= LvLK(dx) G (w, )+ L»K%dx)GR-K(x, )

does not depend on the choice of {K, L} €%. The measure m is stgma-finite
on (R, B), takes positive value for each Borel set with imner points, and s
an imvariant measure of the process {X(t)}.

84. Green potentials.

THEOREM 4.1. Ewvery Green measure GE %(x, -) is absolutely continuous
relative to m.

Proof. At first we prove that GE %(zy, A)>0 implies m(4)>0 for any
2o R—K and ACR— {x;}. Choose a monotone sequence of connected open
neighborhoods V,,c R —K of x, converging to #,. Since GF *(xy, AN V,°) con-
verges to GE %(x,, A)>0, there is an n=mn, with G¥F %¥(x,, AN V,)>0. This
shows that it is sufficient to prove the statement for AcCR —V, where V is a
connected open neighborhood of #,. According to

I e X DR (A

= B[ 1) =B (Bre (1)) = [ 17w a6, 4),
aVc 0 ye

we have hV(xy, E) >0, where E={zV*|G® X(x, A)>0}. Then, by the equi-
valence of h"’(x, -) for x € V, we have

h(z, E)>0, for xV.
Hence, by putting x =2, in (4.1), we have

GK(z, A) =j B, dy)GR-5(y, A)>0, for zeV.
VL'
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Then, taking an L’ cCV, such that {K, L'} €%, we have
0< L,uKL’(dx)GR'K(a;, A) < m(4).
To complete the proof, it is sufficient to prove m({xo}) >0 from

(4.2) G (o, {@0}) > 0.

Take the sequence {V,} used above. Considering

43 G5, {zo}) =Ex(j"””cxw<X<t>>dt) | an G, )
0 v e

we have two cases:
4.4 lim Exoqwncx,xo)()((t))dt) ~0 (case 1),

700 0
(4.5) EIOG"V" mw(X(t))dt) Ze>0  (case 2).

0
Case 1. Putting « =z, in (4-3), we have an n =mn, such that the second
summand of (4.3) is positive for x =2, Since this implies
RVno’ (2o, E)>0,  E'={y eV, |G* Xy, {x:}) >0},

we have, by the equivalence of A"»"(x, -) for x € V,,

0< j Pz, dy)GR-K(y, {20}) < G 5z, {wo})  for eV,
ye

no

by (4.3). Taking L'cV,, with {L’, K} €%, we have
0< § v (de)G K, {w0}) < m({a)).
L’
Case 2. Since ovy,c converges monotonically to ¢ =oz-(.,), we have

E. (o) = lim B, (77,0 = lim E;, (S "1at)
700 n>00 0

7->00

21lim B, (| " (X) dt) 2 6> 0,
0

implying that x, is a point of positive holding time. Such a case is omitted
by (X. 5).

Now there is a density function of GZ %(z,-) with respect to m. Fix a
version of this density function and denote it by

4.9) g% (, ), rER.
To discribe a rough but general situation concerning the potentials with kernel

g% %, we give a rather rough

DEFINITION 1. We say that a real-valued function f defined on R is har-
monic in an open set D, if it is B-measurable, h"“(x, -)-integrable for each
domain V having closure V(#R) contained in D and x €V, and satisfies
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(4.10) f@={ 1w aiw,  weV.

In the case of processes with continuous paths, a function defined on D with
the above properties is called harmonic in D.

2. A B-measurable function f defined on R, which takes extended real
values and is bounded from below, is called super-harmonic'® in an open set
D, if it satisfies

@1 f@z| W) zeV,

for V as in 1. In the case of processes with continuous paths, a function de-
fined on D with above properties is called super-harmonic in D.

LEMMA 4.1. Let f be a non-negative, Borel measurable function defined
on R, which takes extended real values. Then

(4.12) GE- X f(x) = LG’“K(x, dy)f(y)

is superharmonic in R—K for each closed K+ R with an inner point. If
(4.12) s finite on R— {K >~ S(f)}, it s harmonic there, where S(f) is the
support of f.

Proof. When f(x) is the characteristic function of a Borel set A, the
lemma holds by the following inequality,

GRXf(x) = GR-X(x, A) =Ez(j°"xA(X<t>>dt> =E(j "+ j"’{ u>

0 aye

(4.13) :Exq:‘/c// > +EI{EI<.,,,C) (S" " )} — G¥(z, A) + Lch"c(x, dy)G-(z, A)

0

zj 1 (, dy) GE-(y, A) =j W, dy)GE K f(@),  for zeV,
ve ve

where V is a domain with VcR—K. If VcR—{K~A}, then P.,(c4=avc)
=1 holds and hence G¥(x, A)=0 for x €V. This and (4.11) imply the equality
sign in (4.13).

For a general f, non-negative on R, we can choose a monotone sequence of
functions {f.}, where each f, is a linear combination of characteristic func-
tions of Borel sets with non-negative coefficients, satisfying limn,efu.() = f(%)
for each x €R. Then, by monotone convergence, we have

6" 5@ = | 6" e, dy)fw)=lim | 6% @, &), ) = lim G+ (a),
and hence

5 Vch”(-’”y dy)GEEf(y) =11‘igSVchV”(w, dy)GE X f(y).

16) This definition is a little more restricted than the classical one.
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These equations and (4.13) for f.(x) imply the lemma. The statement for f
defined on D in the case of processes with continuous paths follows trivially.

THEOREM 4.2. Let n be a sigma-finite signed measure on R, absolutely
continuous relative to m. Assume that the potential

(4.14) Ugn-x(@) = jRgR—K@c, ) n(dy),

is well defined on R, and is h"(xy, -)-integrable for amy x,€V, where
K(#R) is a closed set with an inner point and V is a domain with compact
closure V#R. In order that Urg_x(x) is harmonic in an open set D C R —K,
1t is mecessary and sufficient that n(4)=0 for any Borel subset A of D.

Proof. Let f(x) be a version of the density of #» relative to m. Write
S (@) =max{f(x), 0}, f(x)=min{f(x), 0},
w(y=| fr@man, w)={ s @n)
e S

Then, n* and - are sigma-finite measures on R, and Ulp_x(x) are hV(x, -)-
integrable and

Ug"R_K(x) = U;+R~K(£U) 4 U}”"R-K(x), for zD.

Sufficiency. Since n(A)=0 for any Borel set AcD, f(x)=f"(@)=f"(x)=0
on D excepting on a set of m-measure 0. Then, by Lemma 4.2, U3 r_x(x)
are harmonic in D, and hence Uj'r_x(x) is harmonic in D.

Necessity. First we note that Uy, y(x) =0 on V for each domain V with
VcD. In fact, noting that

GF-5(z, A)=E, ( S 260 dt) :Ex< S :"”// + S"" //>

UVC
=k, (yvc// ) +E’Z{E’X (@opo (5”{ " )}
0 0
= G¥(x, A) +§ 17, dy) P Ky, A)
VC
and using the harmonicity of U z-x in D, we have

0=U2r-x(®)— j LY (z, YU x(y)
VC

= | 675w, asw | 1@ | 65, d)fe)
(4.15) “ ’ .
={ swlem 5w do~{ 1@ 6 an}={ ra)e e, a

= S 9" (x, y)n(dy) =Uyv(x) for weV.
n

Next, we will show that U?y(x)=0 on V with compact closure implies
n(V)=0. Let K,={x&V!infeov p(x,y) =1/}, =1, 2, ---, where p(x, y) de-
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notes a metric compatible with the topology of R. Since K, is compact and in
a domain V, we have {K,, V°} €% for ¢ =1 =min{?| K, + ¢}. Then, we have

(4.16) jK VEi(d) jK G"(x, dy)f(y) = jK m(dy) £ () = n(K)
and

|, | 6" asw)

4.18) ng VEx(da) jv G, Ay W) —Fw)

é 57—1{ m(dy)(f+(y) "f"(’.ll)) = n+(V— Kz) - 'n—(V—Kz).

Since n* and »~ are also sigma-finite, n*(V—K;) and » (V—K,) and hence
n(V —K,) converges to 0 as ¢ tends to infinity. Hence, by (4.16) and (4.17),
we have

(4.18) 0=lim S vyl(dx) Uy () = (V).
nro JK,

Combining (4.15) and (4.18), we know that n(V)=0 for each domain V with
VD, and hence n(A)=0 for each Borel set AcD. Then, the same thing
holds for n* and n~. But n*(D) =lim:;,n*(D;) =0 and n (D) = lim;seon™(D;) =0
for D;={x <D |inf,con p(x, y) >1/4}. This completes the proof.

Now, by making use of the kernel g® %(x, y), we will give a representa-
tion of the generator G of {X(¢t)} defined in §1. The following is an extension
of one given by Ito and McKean [6] in the case of processes with Brownian
hitting measures.

THEOREM 4.3. For each f<D(G) there exists a sigma-finite signed mea-
sure my, absolutely continuous relative to m and satisfying

(4.19) Gf=dm
dm
and
(4.20) Uoh-x(x) = thK(w, ay)f(y) — f(x)

where the right hand side of (4.19) denotes a version of Randon-Nikodym's
density function of m; relative to m, and K is a closed set with an inner

point and with compact R —K. Such a measure m; is determined uniquely.

Proof. For K as above, E.(0X)=GF X, R—K)<oo by Lemma 1.1.
Define

my(+) = j(.)Gf(x)m(dx).

Then, (4.20) follows trivially from (1.4), by
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E, < j ”KGf(Xu))dt) - g G*X(z, dy) Gf (y)
0 R

=jRgR-K(x, VG S @ym(dy) = Upd-x(a).
The uniqueness follows from Theorem 4.2,

COROLLARY. f&D(G) is harmonic in o domain DCR, if and only if
(4.21) Gf(x)=0 for ze€D.

Proof. Let f be harmonic in D. Take any point <D and a neighbor-
hood V of x with compact closure V(#R)cD. Then, f(x) and

|, 7@ dnsw

are both harmonic in V, and hence the potential U,/ (z) is also harmonic in V
by (4.20). Since V is any open set with compact V(# R) C D, m, has its carrier
in D° and hence Gf(x)=0 on D excepting a set of m-measure 0. The conti-
nuity of Gf and Theorem 3.1 imply (4.21).

Conversely, (4.21) implies that the left hand side of (4.20) vanishes on any
V of the form cited above, and hence that f is harmonic in D.

NoTE. G in (4.19)-(4.20) is really a global operator though it looks locul in
the representation. Even when the kernel ¢g#-% and the measure m are deter-
mined locally, the domain ®(G) is of global character.

§5. Example: Processes with Brownian hitting measures on R2.

Following Ito and McKean [6]'”, we say that a Markov process on R? has
Brownian hitting measures on R? if it satisfies (X. 4) and

(X. B) For any closed set K+ R with an inner point and x €K°, h’(z, -)
coincides with the classical harmonic measure of K viewed from x with
respect to the connected component of K¢ containing wx.

It can be proved that (X. B) combined with (X. 4) implies (X. 1), (X. 2/),
(X. 3) and the continuity of path functions.® Hence, combined with (X. 4),
they imply (X. 5).

It is known that the classical Green function gp(x, ¥) of a domain D in R
with compact 0D of positive logarithmic capacity is given by

(5.1) gn(x, y)=log 1~~~S h?2(x, dz)log - 1 —+7p®), x yED,
oD

e lz—y]
where 7p(x) is a non-negative continuous function of x and converges to 0 if
x €D converges to a regular point of the boundary 0D. For any closed set
K=+R with an inner point, we define by ¢g;_x(x, ¥) by making use of (5.1), or

17) The original definition is given for a wider class of processes. Here, we restrict
it for our present use.
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1

———+ T r-x (),
[z —yl

6.2 gnx@ y)=lg L1 — j 15z, dz) log
|l —y| K

where
Tr-x(x) =7p(x), if x belongs to a connected component D of R —K,
=0, otherwise.
Then, we have
9r-x(@, ¥) =gp,(x, ¥), if  and y belong to the same component
(5.3) D, of R—K,
=0, otherwise, excepting on the set of irregular points of 0K.

Next, we denote the Green capacity of a closed set K with respect to the
kernel gp(x, y) of the domain D by Cp(K).

Now, take a pair {Ky, Lo} €& such that B —K, is connected and the clas-
sical Green capacity Cr-x(Lo)=1, for instance, Kiy={z|lx|=<1} and L,
={z||x|=e} where ¢e=2.718---. Define C(K, L)=Cx,, 1,(K, L) for such fixed
{Ky, Ly} . Then, we have

THEOREM 5.1. For each {K, L} €, the following assertions hold.

1. If p is a measure on K with total mass 1, then u(TX)" converges
exponentially fast to u X with respect to the morm of total variation.

If K is contained in one component of R—L, then we have:

2. u % is the equilibrium distribution of K with respect to the classical
Green kernel of the component.

3. C(K, L) is the classscal Green capacity of K with respect to the clas-
stcal Green kernel of the component; i.e.

(5.4) C(K, L) = Cg-(K).
4. If L s not in one component of R —K, then
(5.5) C(K, L)pg™(+) =XEZAC(L2, D©)pupe*a(-),

where {D;, AcA} is the family of all components of R—K containing a
point of L mot irregular for 0L and L,=L~D;.

Proof. 1 is only a restatement of Proposition 2.2. 2. The Green function
of a domain with unbounded boundary and the harmonic measure on the
boundary are obtained from those of a domain with bounded boundary by
making use of a conformal mapping. Hence, we assume that the boundaries
of K and L are bounded. To fix the notation we assume that K is in one
component D of R—L, and L is contained in components D;, A4, of R—K.
We write Ly=L~D;+ ¢.

The path functions being continuous, /“ and u,* are concentrated on the
boundaries 0D and 6D,; A4, and hence we assume R—L=D and R—K
= Uies D; without loss of generality.
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Consider the potentials

U”ILZ (y)=j Me™(dx) gr-x (2, Y)

9
R-K L

56 = LL,MKL(dx){log . L - LLhK(x, a9log oy rR_K(x)}

z—y —yl
= 5 pixE(dz) log - — L — g 1L K(d7) log - — +§ P () n (),
K le—y| oK lz—y| oL
and similarly,

X
Uz (y)= LKuﬂdw)gﬂ-L(x, )

IR-L

/ - & S SR (¥ 1
(5.6) [, oranfion 1 ~{ it dmtog - 2 Tnn(e)
1

K B S L 1 K(q
[, purdmiog L[ pi@niop [ S dTa (e

Adding (5.6) and (5.6’) we have

L 4
0<U,X W) +U,% ()

G.7)
- SaL#KL(doc) F-x(@) + SaKuLK(dx) Frn(@) = C < oo

The convergence follows from the continuity of r'z_x and rz_r on the com-
pact sets 0L and 0K respectively. Since the potentials U;f: L (x) and Ug’;‘f‘_x(w)
are 0 on L and K excepting the sets of irregular points of K and L respec-
tively, UQ;JLZ_L(x) =C on K and Ug’; 1? K(m) =C on L excepting the sets of irregular
points of K and L respectively. Hence, 1.%(+) is the equilibrium distribution
on K with respect to the kernel gr_;(x, %), and the restriction (ux™)z,(-) of

MeE(+) on L; is the equilibrium distribution on L; with respect to the kernel
9p,(%, y) multiplied by rx™(Ly).

3. At first, we consider a special case. Let {K, L} and {K, L’} with
L’'cL be in &, and let K be contained in one component D of R —L. Accord-
ingly K is contained in one component D’ of R—L’. We show

(5.10) Cn(K)-Ck, 1,(K, L") = Cp/(K).
Since

9r-x (@, Y) = gr-x-1/ (2, ¥) +5 hE~E (x, d2)gr-x(2, ¥)
KL

= Grr-1(, U) +j WS, d2)gn-x (2 U),
V24

we have
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Uk (%)= L HeM(du)gr-x (U, %)

Ig-K

(5.11) = Luﬁ(dn)gR-K-y(u, z)+ me(du)j'yhmxu, dv)gr-x(v, @)

L L
=UE @ +Ca (K, L) UE (@),

IR-K-L'

Since Ug’f‘_K_L,(w) tends to 0 as « tends to a regular point of the boundary of
any fixed component corresponding to the boundary function which takes the
value Ug’;f_x(x) on 0L’ and 0 on 0K.

This shows that

K 24
-1 trr . Iy
oK)= ?élIIg UgR—I/(x) _zESLI}BDlUyDl @)
- /AI‘ _ /LK
= Carn(K, L) sup, Up® () =Cuxn(K, L)' sup U7 (@)

:C(K,L)(Ky LI)_ICD(K)_Iy
implying (5.10), where D, is a component of K —K containing an inner point
of L.
To prove the general case, we note that for any {K, L} €% we can take

a sequence {KOr LO}: {Kly Ll}’ ) {Kn+1y Ln+1} = {K’ L} with {sz Li}‘_’{}{“ly
L;.}, t=1,2,.-+, n, in such a way that one of the following relations hold
for each 1,

Kz CKl—f-lr Kz DK’L+1! KlCLi+1y Kz DLi+1y

L;c Ly, LiDLiyy, LiCK,yy, LiDK,,y,
and such that K, and L; are contained in one component of R —L; and R —K,,
respectively, where {K,, Lo} is the fixed pair selected just before the theorem.
Then, we can apply the discussion of the special case above for each step
and get

Cp(K) = Cr-x(Lo)Cix, 1,(K, L)=1-C(K, L)=C(K, L),

when K is contained in one component D of R —L.
4. We saw in the last part of 2 that
(6.12) (Mx")ry(+) = M (L) papy4(+).
On the other hand we have
I ot SARCRE Lol
= s (Ly)-sup U 75, = i L)C@Ds, L),

€L, 902

By (5.12) and (5.13) and px"(+) = Xlies(Mx")ri(+), we have (5.5).
Note. The extremal distance of K and L with respect to the domain be-
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K
tween K and L are known to coincide with the Dirichlet integral of U ;::_L(x) in
the domain, which can be proved to be 27-C(K, L) ! using Theorem 5.1, 3.

THEOREM 5.2. For any closed set K+R with an immer point, we can
take the classical kermel gz x(x, y) for 9% X(x, y) in §4, or

(5.13) GFK(z, E’)=S gnx(@, yym(dy), EcB, zcR.
i

Proof. It is sufficient to show this in the case that R —K is a domain D.
Instead of proving gp(x, ¥) = gP(x, ¥) a.e. m directly, we use the Riesz de-
composition theorem for the classical kernel g, and then compare the measure
of the potential. Let A be a Borel set with compact closure. Writing D for
R—K in (1.6), we have

GP(w, A) SE A fo(X(op)} — o) = Lﬂhm(w, ay)fo(y) — fo(x)

where f, is in D(G). Note that the first summand in the right hand side is
the Dirichlet solution in D for the boundary function fi(y), ¥y €6D. Hence,
GP(xz, A) tends to 0 when z tends to a regular point of 8D from inside D.
Then, the Riesz decomposition of the super-harmonic function G?(z, 4) is
given by

GP(z, A) = Lgn(w, Y)na(dy),

where n4(-) is a finite measure with carrier in D~ A4, since G?(x, A) is har-
monic in D —A. Since G2(x, A) is a sigma-finite measure for fixed z, we can
write the above relation in the form

G2z, A) = jD 9o(a, 1) moldy),

with a measure np(-) depending on D but not on A. To show that n, does
not depend on D, it is sufficient to prove np(A ~D)=np(A~D) when DcCD’.
We know

G (x, A) =GP (xz, A) +j hP(z, dy)G? (y, A) or, what is the same,
D¢

jAADgu(w, y)no(dy) =§ o (dy){gur(oc, Y)— Smh”(w, dz)gpo (2, y)}

~.

= j‘ gD(x, y)'nD’(dy)'
A~D

Then, by the uniqueness of the measure in the Riesz decomposition, we have
np(-)=np(-) on D. Hence, we have a sigma-finite measure n on R, such that

Gz, ->=j<.>gp<x, wn(dy) weD,

where D is a domain with an outer point.
To complete the proof, it is sufficient to show that n(4)=m(4) for any
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open set in any fixed D, and it is enough to prove it for any compact subset
A of D. Fix such an A and take an open DyD>A with compact closure K

=D,cD. Since {K, D'} €% and
g vpe®(dx)gp(z, y) =1, for yA
K

by Theorem 5.1, 1, we have
m<A>=j vpe(d2)GP(ar, A)= j chK<dw>j 9o, Yin(dy)
K K A

= 5 n(dy) j Vo X(da)go(®, ¥) = n(A).
A K

REMARK. In this special case, the representation (4.19)~(4.20) coincides
with one given by Ito and Mckean [6]. Hence, g°(x, y) is determined only by
the system of harmomnic measures, and the measure m is determined locally.

Miscellaneous Notes. 1. It is natural to expect that a Markov process is
determined by two kinds of quantities corresponding to the two factors, one
concerned with the road system on the state space, on which the particle
moves, and the other concerned with the speed of the motion. This idea has
been pointed out by Feller [3, 4] repeatedly. In fact, we find a support of
the fact in Dynkin’s representation of the generater

Gf=1lim M S@ =@

DG).
vylmy  Eilope) Fe)

But a more profound and in a sense complete result was obtained in the case
of linear diffusion, in which the process is characterized by the scale s, the
measure m and the boundary condition, and the probabilistic meaning of those
objects are explained in terms of the two factors cited above (ef. Dynkin [2],
Ito and MacKean [6]).

A part of the result is extended for the processes with Brownian hitting
measures by Ito, MacKean and Tanaka: the generator of a given process with
Brownian hitting measures is represented by the system of classical Green
kernels and the measure m, and the process is obtained from the Brownian
motion by making use of ‘‘time change’ which is determined by m.

The facts suggest that the situation is similar to an extent also in general
cases, that is, a Markov process is (under suitable regularities) characterized
by a system of kernels which is concerned only with the road system and a
measure which determines the local speed of the motion. Hence, we also in-
tended to investigate our special case from this point of view, while the result
is quite unsatisfactory. As a first approach, at least the following two pro-
blems should be answered: to show whether the system of kernels {g® %} in
84 depends only on the system of hitting measures or not, and secondly, to
find the conditions under which the measure m in §3 represents the local speed
of the motion. The answer to the first problem seems to be in the affirmative.
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2. The system of capacities {C, ,(K’, L')} is proved to depend only on
the system of hitting measures, while the proof depends on the measure m.
But, when R is a connected manifold, or the union of a domain and a mea-
surable subset of its boundary in R™ (n =2), we can obtain the system using
(X. 1)~(X. 3) and the strong Markov property.

3. We assumed in (X. 1) that the process hits every neighborhood of any
point starting at any point with probability one. But, if the probability of
this event is assumed to be positive but not necessarily one, and the path funec-
tions are continuous at each 0=<t¢ <o, then there are only two possibilities
in following

PROPOSITION. If X(t) with continuous path functions satisfies (X. 2)-
(X. 4) and

(X. 1°) P (X, w)e A for some 0t < 0)>0, for any xR, then only
one of the following two holds, where A (# ¢) is an arbitrary open set.

Case 1. (X. 1) holds.

Case 2. For each compact set K+R, there is a point x R —K satis-
Sfying

Px (O'K < oo) < 1'

The proofs of the above notes are tedious and omitted.

Appendix I. The uniqueness of the T%-invariant measure.

We note that the uniqueness of the T®-invariant measure u.% on K (in §2)
can be proved also by using a result of Nelson [8] and a simple proposition.
Let S be a separable, locally compact spaec and let Bs be the smallest Borel
field containing all open subsets of S. {P(x, A)} is a system of transition
probabilities on (S, Bs). Define

Pl(x, A)=P(x, A), P"(x, A) zg Py, A)P(z, dy), n>1.

A sigma-finite measure q(-) on (S, Bs) is called an invariant measure for
{P(x, A)} if it satisfies

q(A)zf g dx)P(x, A), for all AcBs.
vs

{F(x, A)} is called irreducible if v,(-)=S"-127"-P*(%, -) are equivalent for all
xeS. A set A=Bgs is called a null set if v,(A)=0 for some x =S, when
{P(x, A)} is irreducible. An invariant measure ¢(-) for irreducible {P(z, 4)}
is equivalent to all v.(:), x=S. We use

ProPosITION (E. Nelson).'® If an irreducible {P(x, -)} with an invariant
measure q(-) satisfies

(L1 STPw, A)=co, xS,  for all non-null set AeBs,
n=1

18) Cf. Th. 5.1 of [8]. The original result is a little more general. Here, we re-
strict it for our present use.
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then any invariant measure for P(x, -) is a constant multiple of q(-).

If we take K, B(K), {T*(x, -)} and u,%(-) in 8§81, 2 for S, Bs, {P(x, -)}
and ¢(-) respectively, all the assumptions in the above proposition are satisfied
excepting (I.1). But, noting that the total mass of u;%(.) is finite, (I.1) is also
satisfied in view of following

PrROPOSITION.'® If {P(z, -)} s irreducible and has an invariant mea-
sure q(+) with finite total mass, then (1.1) is satisfied.

Proof. Take a non-null set A. Since v,(-) and q(-) are equivalent, we
have

0<q(d)= j {i S Pz, A)} g(dw)

n k=1

=1lim H 1S preg, A)} a(dz)

700 " k=1

T“il kid &
gL {}-lfg n ob @ A)} q(dx)

and hence q(E)>0, where
E= {x =

8

lim L 3 P¥(a, A)>o}.
nyroo N k=1

Since q(-) and v.(-) are equivalent, v, (E)>0 and hence there is an #, such
that Pm(xo, E)>0 for any fixed x,=S. Noting that S, P¥(x, A)= oo for
x €FE by definition of E, we have

=1

3P 2,31 P, )= P, ay {$Pw, )

> j Po(ay, dy) { ST Py, A)} = oo
B k=1

for any fixed x, €S, completing the proof.

Appendix II. The invariance of m in the temporally discrete case.

We prove the invariance of a measure correspnding to mg,, in §2 for
temporally discrete Markov processes. The assumption (X. 1) is replaced by
the existence of a pair of measures corresponding to (#;%, ux’), so that the
theorem can be applied also for some non-recurrent cases by a suitable choice
of K and L, for instance random walks in higher dimensions. No other re-
gularity assumptions are needed. The proof depends upon the analogue of the

19) An irreducible {P(x, A)} satisfying (I, 1) defines a recurrent Markov process ‘‘in
the usual sense’” (Cf. Th. 4.1 of [8]). Hence, this proposition can be expressed as: An
arreducible {P(x, A)} with an invariant measure of finite total mass defines a recurrent
Markov process ““‘in the usual semse’’. But we do not use the word recurrence to avoid
confusion.



RECURRENT MARKOV PROCESSES 139

fact that in the Brownian motion process the harmonic measure for a closed
set with sufficiently smooth boundary is obtained by a normal derivative of the
Green function of the complement of the set, multiplied by a suitable constant.
The weak point of the proof is that it seems to be impossible to extend it in
the temporally continuous case without unnecessary restrictions.

Let R be a locally compact Hausdorff space satisfying the second axiom
of countability, B the smallest Borel field containing all opens, € the family
of all Borel sets with compact closures, W the direct product []sz¢ R, of a
countable number of copies R, of R, and B the smallest Borel field of subsets
of W containing all cylinder sets. Define the R-valued function X(n, w) on
NxW for N={0,1, ---} as the n-th coordinate of we W,

Let {P(x, A)} be a system of transition probabilities on R. Kolmogorov’s
extension theorem asserts that there is a Markov process with sample function
X(n, w) with {P(x, A)} as the system of the transitions, i.e. there is a system
of measures {P.(:), x €R} on {W, B} satisfying following conditions.

1) 0P, (E)=1 for E€®B and P,(W)=1.

2) P,(F) is B-measurable as a function of z for fixed E&%2B.

3) P, (X0, w)=2)=1

4) Pw," €F, w,” €E)=E/(P.,»nweF), w,cE) for E, Fe%,
where w,* is the element of W with coordinate X(k, w,*) =X(k + n, w), and w,"
is one with coordinate X(k, w,”)=X(k, w) for k<n and X(k, w,”)=X(n, w)
for k> n.

5) P.(X(1,w)eA)=P(x, A) for AB.
Write, as in §1,

ox(w) =min {n = 0|X(n, w) €K}, KeB,
h¥(x, A) =P, (X(cx) €A), AEB,
(I1.1) Pp(x, A)=P,(X(1, w)€ A, op(w)>1), DeB,.
{Pp(z, A)} is a system of semi-transition probabilities on R, that is, a

system of measures with properties of transition probabilities excepting the
condition Pp(x, B)=1. Noting Kolmogorov-Chapman’s equation, write

Pr(z, A) =P, (X(n)A)
(I1.2) Py, A) =§ Pyt Yz, dy)Pp(y, A) =P.(X(n)EA, apc>n), n=l,
Py(x, A) =P,(X(0) €A, 0pc>0)=ALi~p(%).

max(s pe—1,0)

aL3) G, A)=EJ{ S xA(X(n))}zij)Pb"(x, A)<co, for ACB.

n=0

Then, G”(x, A) is a Borel measurable function with extended real values for
fixed A =B, and is a measure in A for fixed .

THEOREM. Assume that there is a pair of sets K, L €B, with K~L=¢
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and a pair of sigma-finite mesures 4 and v on K and L respectively, satis-
Sfying the following conditions.

1) the measures GE%(z, -) for x €L, GEX(=, -) for x €K, and
MGR-L(->=j Hdz) G Yz, ), G = j Uda)G*K(z, -)
X L

are all sigma-finite.
2) the following equations hold:

p() = vh () = j;(dx)hff(oc, 9,

(IL4) {) =)= || (e, o,
Then, the meas\m'e
(I1.5) m(-) = HGEE(-) +oGE ()
18 an invariant measure for Pz, +), i.e.
m(-) = SRm(dx)P(x, ).
Proof. At first, consider two cases. (i) Let A€ be contained in B —K.

Since P(x, A) =Pz x(z, A) for x€R—K and Pr.x(x,C)=0 for =K and
C B, we have

5 Gy P(y, 4) = j Lu(dx)SRGR‘K(w, dy)P(y, A)
- j @) 3| j Pits(a, dy)P(y, 4)

= o3[ Pisw dPe, 0= w3 Phse, dyPesty, 4)

n=0

= | a0 3 Pix@, 0= wdo){ S Prste, 4)—Phstw, )]
=1GEE(A) — u(A).
(ii) Let A=G be contained in K. For x €L, we have
P (X(ox) €A, ox=n+1)=P(X(n+1) €A, ox>n)
=E,(PA(X(n+1)€A/B,), ox > n) =E.(P(X(n), A), ox>n)
= | Pi-st@, d)P(w, ),

and hence
hi@, A)=P(X(rx) €A) =X P(X(0x) €A, ox=n)
n=1

- i g Pi_x(@, dyP(y, A),
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where B, is the Borel field generated by X(k, w) for k <n. Hence, we have

S;GR-K@, dy)P(y, A) = Lwdw) L @™, dy)P(, 4)

- Lu(dx) EOLPQ_K(% dy)P(y, A) = Lu(dm)k"(w, A) = u(A).

Then, combining these two cases, we have, for general 4,

j VGR-X(da)P(x, A):S VGR-K(d) P(w, A - (R—K))+j VGR-K(dz)P(z, A ~K)

(I1.6)

=vG" A~ (RB—-K)) - A~ (B —K))+ HA~K)
=GP H(A) — u(A) + M(A).

Similarly, we have

(I1.7)

j MG Hdw)P(@, A) = MG HA) — 1(A) + (A),

By (I1.5)-(11.7), we have

Lm(dx)P(ac, A) = {uGP H(A) + (A) — 1(A)} + (VG K(A) + n(A) — v(A)}

=m(A)

and the proof is complete.
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