
STRATEGIC INFORMATION AND NON-COOPERATIVE GAMES

BY MINORU SAKAGUCHI

The concept of information is one of the chief essentials in the game theory
and it is quite distinct from that of Wiener and Shannon. If one speaks of
information in Wiener-Shannon's sense as ' selective', then von Neuman's sense
could be called ' strategic '.

The theory of games may be viewed as a formal model embodying three
principal elements: (1) the preferences of the players of a game; (2) the
choices or decisions open to them at each move; (3) their information regard-
ijig the choices made by the opponent player at previous moves.

Strategic information in a game-situation is represented by partitions in a
finite set of possibilities, or 'plays'. It is the means of expressing a player's
state of knowledge, at any move of a game, regarding the choices which have
been made at earlier moves. The problem of rational choice of a plan of action
and the existence of equilibrium situations are both closely related to the
nature of the information pattern of the game.

If we set in a game-situation both the choices and preferences for the
players symmetrically, then if, moreover, the information pattern is fair for
all players in the game, that is, if each player, for example, is completely
ignorant of the choices of his opponents, the value of the game is zero and
the optimal strategy, when it existed, is common to all players. If we set the
choices and preferences of the players symmetrically in a game-situation, and
if we let the information pattern be unfair, then symmetry of the game dis-
appears. Consider, for example, the case where the player I must take the
first move in the game and his choice is told to the player II who can use
this information and act optimally at the second move. It is, as our common
sense tells us, clear that the player II stands in favor.

We shall, in this paper, show somewhat numerically this type of infor-
mation-unbalance by examples of continuous poker models. Our method of the
analysis owes to Karlin and Restrepo [1].

EXAMPLE 1. La relance (two-person stud poker with a single bet).
In our model the unit interval is taken as the representation of all possible

hand that can be dealt to a player. Each hand is considered equally likely and
therefore the operation of dealing a hand to a player may be considered as
equivalent to selecting a random number from the unit interval according to
the uniform distribution. The game proceeds as follows: An ante of 1 unit
is required by each of the two players I and II. At the beginning of a play
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they receive fixed hands, x and y, chosen at random from the unit intervals
O^ίc^l and 0^τ/<;i. Then I either bets an amount a or drops out, losing
his ante. If <Γ bets, then II can either see the bet or fold, losing his ante. If
II sees a bet the hands are compared with the higher card winning the total
wager 1 + α.

The above procedure is summarized in the following diagram:

Player Hand 1st Move 2nd Move Payoff to I

τ f drops out —1
I x ι , ,

I bets a ,
j J folds 1

y l sees (1+α) sgn(x-y)

A mixed strategy for I can be described as a function φ(x) which repre-
sents the probability with which I will bet the amount a when his hand is x.
A strategy for II can be represented by a function ψ(y) which expresses the
probability with which the player II will see a bet when he folds the hand y.

THEOREM 1. Let ό = α/(2 + α). The optimal strategies in this model
are as follows:

( arbitrary, but subject to the constraint that
f δ

\ φ*(x) dx = 6(1 — 6), if 0 ̂  x < o,
J oo
1, if b^x^l,

l, if b^y^l.

The value of the game is — (a/ (2 + a))2.

Proof. By enumerating all the possibilities we find that the expected
payoff to the player I is

M(ψ, Ψ)=- ((1 - Φ(x)) dx + [ U(«0(l ~ Φ(y)) dxdy

(1) J

 rf

 JJ

+ (1 + α) I Φ(x)Ψ(y] sgn(# - y) dxdy.
j J

The ranges of integrations are always from 0 to 1. Hence they are omitted
here and hereafter. Common sense tells us to guess that the optimal ψ*(y) is
of the form

(2) 0*fo) = {J' " JJ j ' for some 6.

Under this assumption the part of M which involves φ can be reduced to

(3) (φ(x)L(x)dx,
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where

L( ) _ Γ - a + b(2 + α), if 0 ̂  a; < 6,
1 2(α + l)α - a(b + 1)Γ if 6 ̂  α? ̂  1.

If we set 6 = α/(2 + α), we have

Thus it is clear that if I wants to maximize (3) he must take

Λ*f \ — ί arbitrary, 0 ̂  x < 6,-

The part of M which involves ^ can be reduced to

(4)

where

K(y)~ -

= - (2 + α)[Vθ»)<fo + a[lφ*(x)dx.
J o J j/

It is clear that since K(y) is monotonously decreasing and the function ψ which
minimizes (4) is of the form ψ = 1 if K(y) ^ 0, and 0 if K(y) > 0, we must have
the expression

- (2 + a)(bψ*(x)dx + αf V(») dx = 0,
J θ Jδ

in order to have the minimum of (4) with ψ = ψ* given by (2). We easily have
from (1) and (3)

Thus we have shown that maXίsM(0, ψ*) =M(φ*, ψ*) = minφM(φ*, ψ), completing
the proof of the theorem.

EXAMPLE 2. Le her (two-person draw poker).

This game proceeds as follows: Before the play the two players I and II
receive fixed hands, x and y, each being randomly (and independently) chosen
from the unit interval.

Now if I is content with his hand he may keep it. But if I is not content
with his hand he is allowed to change it for another taken out of the unit
interval at random. The rule of the play is the same for player II, and I has
to take the first move. The main object is for each to obtain a higher card
than his opponent.

This procedure is summarized in the following diagram;
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Player Hand

I x

II y

1st Move

I changes to u — ,
|

2nd Move

f keeps y
{. changes to v

( keβΌS y
1 changes to w . . . .

Payoff to I

. . . . sgn($ — v)

. . . . sgn(% — y)

. . . sg~n(u — w)

Let a(x) be the probability that if I receives x he keeps it. Let β(y) be
the probability that if I keeps his hand and II receives y II keeps it. Let γ(y)
be the probability that II keeps his hand if he receives y and I has changed
his hand. Clearly a mixed strategy for I can be represented by a(x) and that
for II by β(y) and ΐ(y).

THEOREM 2. The optimal strategies in this model are as follows:

X<Xo,

X^Xo,

0, y < 6 = (1 + ^*/ ) =

1,

where ^0^0.56 is the unique root lying in the unit interval of the equation
4ίc3 + 4x - 3 = 0.

The value of the game is

~ T x»*~ TΓ^2 + -7-̂  ~ T-^ ~ ° 015

4 2 4 4

Proof. By enumerating all the possibilities we find the expected payoff to
player I is

M(a; β,r)=\\ a(x)β(y) sgn(α; - y) dxdy + a(x)(l - β(y)) dxdy sgn(x - v) dv

( 5 ) + (1 - a(x)) γ(y) dxdy 1 sgn (u - y) du

+ I I (1 — a(x))(l — β(y)) dxdy sgn (u — w) dudw.

It is natural to guess that the optimal β* and Γ* are of the forms

for some 6, since player II has no opportunity to bluff.
After some calculation the part of M(a\ 0*, r*) which involves a becomes

expressible as follows:
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(7) ϊa(x)L(x)dx,

where

LM = i2te~3/4 x = b>
W " 1 2(6 + l)α? - 26 - 3/4 x ̂  6.

Thus it is clear that if I wants to maximize (7) he must take

a*(x) = { °' !* X < ̂  for some 0 < XQ < 1.
[1, if x ̂  a?0>

Now let us look at the part of M(a*m, β*, Γ*) which involves β*. This is found
to be

f
(8)

where

It is easily seen that we must have 6 > XQ, since II wants to minimize by the
optimal choice of β*. Hence x0 and b must satisfy the equations 2bxQ — 3/4 = 0
and x0

2 + 1 — 26 = 0 respectively.
From the derivations of a* and /3* we know that

M(a*; 0*, r*) - max
« /3

but we must also check that

Λf(^*; P*, r*) = minΛf(^*; ft r).
y3,r

This is found out from (5) by reducing the part of M(α*; β, T) involving ϊ to

[ (1 - «*(»)) dx ί (1 - 2ι/)r(y) dy.

This completes the proof of the theorem.

EXAMPLE 3. La relance with three players.

The procedure of this game is described in the following diagram:

' { bets a

V

Player Hand 1st Move 2nd Move 3rd Move Payoffs

folds . . . (-1, i, i)

Γ folds (i, -1, έ)
I bets α —

IΠ z j Γ folds ( i , i , - 1 )
I sees . . (l+a)(U(x; y, z),

U(y; z, x), U(z; x, y})

Here the function U is defined by
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f— 1, if x<^ma,x(y, z).

Let a(x) be the probability that if I receives x, he bets.

Let β(y) be the probability with which II will bet when his hand is y and
I has bet at the first move. Let ΐ(z) be the probability with which III will
see when his hand is z and I and II have bet at the previous two moves.
Mixed strategies for I, II and III can be represented by the functions a(x),
β(y) and T(z) respectively.

We shall consider the Nash equilibrium strategy-points [2] of this three-
person non-cooperative game.

THEOREM 3. The non-cooperative solution of this three-person model is
as follows:

( i ) // 0<α^3V2/4, there is the unique Nash equilibrium strategy -point:

a*(x) = 1, 0 ̂  x ̂  1,

where c* = V& 7(3(1 + α)). Pσ,yoffs to three players are

(ii) //3V2~/4<;α< oo, there are two Nash equilibrium strategy-points.
These are (a°, β°, Γ°) and (a+, β+, ΐ + ) with

arbitrary, but subject to the constraint that
3(aO dx = --~^-, O^x^c,f«

O,

if

where c=2a/(2a + 3), and

αr + (αO==l,

arbitrary, but subject to the constraint that

(Gβ+(y)dy = }~-c~,
Jo 1 + c

c —2α/(2α + 3).

Payoffs to three players corresponding to the two strategy-points are
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M,(a

o, β°, r) = ---c*-~-c\
4 4

Mt(a°, β°, r0) = ~ |-c + |-c2 + ~ c3,

1 H ' ' ' ~ A Λ '4 4

and

l(a ' ' '~ 4 ° 4 ° 2

4

-7- C--ί
4 4

+, n^M,(aa, βa, Γ)

9% Γ)< 0 < M3(«°, /9°, Γ)

the left inequality becoming the equality when a = 3/2/4. PFe of course have

ΣΛfitα0, /9°, r°) = i]Mi(«+

> r, r) = o.
1 1

Proof. The expected payoffs to players I, II and III are

jMi(α, β,r)=- f (1 - «(*)) (te + -ί f Ux)(l - /9(2/)) da dy

( 9 ) + -ίj f j«(a;)/9(2/)(l - r(«)) rfarfyrf^

+ (l + α)f f fa(*)jS(i/)r(«)£/(a;; j/, z)dxdydz,

Mz(a, β, r) = y f (1 - «(»)) rfα; - f [«(*)(! - /9(y)) rf*d2/

(10) + y f ί ί a(x)β(y)(l - r(z)) dxdydz

+ (1 + a)(\{a(x)β(y)r(z)U(y; z, x) dxdydz

and

Afi(a, A r) = Y ί (1 - «(*)) d« + y ί f α(!B)(l - β(y)) dxdy

(11) - f I f a(χ )β(y)d - T(z)) dxdydz

+ (1 + α) f f (a(x)β(y)r(z) U(z; x, y) dxdydz,
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respectively.
The analysis proceeds as in the previous examples and we may guess that

the form of the optimal strategy for III is

T*(z) = \"' z<c' for some c.

Under this assumption we have

Γ I f fMί(a, β, Γ*) — — I (1 — a(x))dx + 1 I a(x)(\ — β(y))dxdy
(9)' J 2 J J

+ Y [ fαr(α?)β(y) dαdy + (1 + α) f [α(a)0(y) VΊ(a?, y) ίiαcZy,

1 Γ ΓΓMz(a, β, T ) = — 1 (1 — «(»)) do? — I I αr(ίi;)(l — β(y)) dxdy
(ioy J JJ

c f f Γ Γ
H \ 1 a(x)β(y) dxdy + (1 + α) 1 1 a(x)β(y) Vz(x, y) dxdy

2 JJ JJ
and

(11)'
Λf,(α, A Γ*) = -ί f (1 - «(*)) dx + J

^ J ^

ϊ f (α(x)β(y) dxdy + (1 + α) ί fα(aj)/9(ι/) F8(a?, y) dxdy,— c

where

Vi(x,y)=\ U(x; y, z)dz = \ X,, ° ' 1 ,,
Jc L — (1 — c), otherwise,

N Γ1 TT/ N j Γ 3τ/ — 2c — 1, if max(c, cc) < T/,1 'jyi ^^ \ I 111]' ? Ύϊny — ί \ 7 / ^ ^ 7> £// — I U\y, a, JUJU/Z — s . ,
J c I—(1 —c), otherwise,

After some tedious calculations we obtain: The part of Mj.(α, β, r*) which in-

volves α is \α(x)A(x)dx, where

(12) A(x) =
1 1-c
2 2

+ (1 + o)|(3« - 2c -1) Γ/9(»)d» - (1 - c) f

the part of JW2(α> &, ΐ*) which involves β is β(y)B(y) dy, where

(13) B(y) =
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and the part of Ms(a, β, Γ*) involving Γ* is

C(c) = - c(a(x)dx\&(y)dy\ + (1 + α)

(14)
IΛJo / I

+ [ ̂ (2/)[(2 + c - 3#) Γαr(α) eta + f \2 + c -

A strategy-point (α, β, f) is a Nash equilibrium point [2] if and only if

Mι(ά, /3, f) = maxMj(αr, /3, f),
α

(15) M2(ά, β, f ) = max Λf2(ά, β, Γ),
^s

jS, f) = max Λf8(ά, /3, Γ).

By differentiating C(c) partially with respect to c and putting the derivative
equal to zero, we first obtain the relation

(16) ({°rttidx}({00(y)dy}=~0-
 α r([<κ(x)dx}({β(y)dy\

\ J o / \ J o / o(i + a) \J / \ J /

By (12) A(x) is constant for x ̂  c, non-decreasing for cc ̂  c and A(0) ί 0 and
A(l) > 0. By (13) B(y) has the similar property as the function of 0 ̂  y ̂  1.
By examining carefully all the possibilities for every pair of signs of A(0) and
B(ΰ), we can find that there do not exist equilibrium points satisfying (15)
except for the cases

(i) A(0), £(0)>0; (ii) A(0) = £(0) = 0, (iii) A(0)>0 = JB(0).

Let us consider these three cases.

( i ) If A(0), #(0) > 0, then maximizing strategies for I and II must be

since ^L(α?) and Jg(a ) are constant for cc^c and non-decreasing for x^c. Take
c = c* = JάTffi^a)) which satisfies (16) with ^ = α* and β = β*. With this
choice of c* we must have α< 3/2/4 in order to have J5(0)>0. It is easily
seen from (9)-(ll) and (9Y-(11Y that a*(x), β*(y) and T*(z) with c = c* satisfy
the conditions (15).

(ii) Consider the case -4(0) = 5(0) = 0. Since 5(0) = 0 and A(l)>0, we have

c = 2α/(2α + 3). It follows that (β°(y)dy=l for the equilibrium strategy β°(y)

of player II since A(0) = 0.

We get then /9°(ί/) = 1, (0 ̂  y ̂  1), and with this choice of β(y) we obtain
A'(c) > 0 and hence

ao(χ] = Γ arbitrary, 0 ̂  x ̂  c,
L i ,
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for the equilibrium strategy of player I. The condition (16) for the optimal

choice of c for III requires the constraint

ί • 1 — c
a°(x)dx — --, .

o 1 + c

Moreover the obvious condition 0^^°(α?)^l requires that (1 —

from which we get α^3V^/4. It is easily seen from (9) -(11) and (9)/-(ll)/

that a°(x), β°(y) and ϊ°(z) with c = 2a / (2α + 3) satisfy the equilibrium condi-
tions (15).

(iii) We shall at last consider the case A(0) > 0 = 5(0). Since B(Q) = 0 and

A(l)>0 we have c = 2α/(2α + 3). By A(0)>0 we must have a+(x) = l for the

maximizing strategy of I. With this choice of a(x) we obtain B'(c) > 0 and
hence

/o+ΛίΛ _ f arbitrary, 0 ̂  T/ ̂  c,
'̂  11, c < τ / ^ l ,

for the equilibrium strategy of II. From the relation (16) we must have the
constraint

for c which corresponds to the optimal choice for player III. The obvious con-

dition 0 ̂  β+(y) ^ 1 requires that (1 - c)/ (1 + c) ̂  c, i.e., α ̂  3/2/4. It is easily

seen from (9) -(11) and (9)'-(ll)' that a+(x), β*(y) and r+W with c = 2α/(2α + 3)
satisfy the equilibrium conditions (15).

It should be added that the bordering case between (i) and (iii) corresponds

to the case where α = 3V2/4. In this case the two strategy-points (a*, β*, Γ")
and (a+, β+, T+) coincide and we have

a*(x) = a+(x) = 1, 0 ̂  x ̂  1,

The proof of the remaining parts of the theorem will be omitted. As to
payoffs to three players corresponding to the three strategy-points (a*, β*, r*),
(a°, /9°, T°) and (a+, β+, T+), straight-forward calculations will yield the result.
Thus we have completed the proof.

Theorems 1 and 2 show that player I stands unfavorable who must
move first and inevitably gives information about his true hand to his oppo-
nent. Our Theorem 3 shows an interesting point. In this three-person game
model player I must move first, player II moves next, and player III moves
at last. Of course, the choices and preferences of the players are quite sym-
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metrically defined in the game, and so, if they must move simultaneously
values of the game to the players are (0, 0, 0). Theorem 3 shows that in this
non-cooperative game model, players I and II symmetrically have an unfavor-
ability against player III.
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