
A REMARK ON THE EXPECTATIONS
OF OPERATOR ALGEBRAS

BY M. NAKAMURA, M. TAKESAKI AND H. UMEGAKI

If a transformation α—>αε defined on a C*-algebra having the identity,
which mapps it into itself, [satisfies; i) linear, ii) indempotent: αεε — αε, iii)
positive: α ε^0 for α^O, iv) unit-preserving: le = l, and moreover (xεy)ε=xεyε,
then ε is said to be an expectation in the sense of [7]. Clearly, the notion of
the expectation is an extension of that of traces, states, Dixmier's centering
ίj etc. The endomorphism of Reynolds [5], which is defined on a functional
algebra, is also an expectation. A detailed treatise on expectations of discrete
finite factors will be found in a recent publication of Davis [3].

Among expectation, in a connection with the theory of probability, the
conditional expectation in the sense of [11] has the special importance. In a
von Neumann algebra A with a faithful normal trace τ, for a von Neumann
subalgebra B of A, the conditional expectation 8 conditioned by B is defined
as an operation which maps a^A to aε<=B such that τ(ab) = τ(aεb) for any b^B.
It is known that the conditional expectation in the sense of the above
coincides with the usual one if the algebra A is commutative (e.g., cf. [7] or
[11]). It is also obvious that the conditional expectation is a projection which
maps A onto B considering A as a pre-Hilbert space introducing an inner product
by the trace as usually.

The present note contains a proof that the conditional expectation in a
not necessarily commutative probability is completely positive in the sense of
Stinespring [8] or positive definite in the sense of [10]. Consequently two
representation theorems on the conditional expectation follow. They will be
proved in §1, and their generalizations on C*-algebras will be discussed in §3
briefly.

The remainder of the note, §2, contains a discussion to generalize Jensen's
inequality for non-commutative probability. A formal extension of the operator
convexity of Bendat-Sharman [1] allows us a formulation for finite continuous
factors, by the help of Davis' theorem [2]. However, the final form still remains
for.

1. Complete positivity of the conditional expectation.

A linear transformation θ defined on a C*-algebra A into an operator algebra
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B is called positive if θ satisfies

(1) ff'^O, for any x^ϋ,

and θ is called completely positive in the sense of Stinespring [8], equivalently
positive definite in the sense of [10], if ff(n):

is positive on nxn matrix algebra over A, for every n.

THEOREM 1. If A is a von Neumann algebra of finite type with a faithful
normal trace π in the sense of Dixmier [4], and if B is a von Neumann
subalgebra of A, then the conditional expectation conditioned by B is com-
pletely positive.

Proof. Consider the matrix algebra C = In®A for finite n and its sub-
algebra D = In®B (cf. Dixmier [4]). In [4], its trace τ is given as usually by

(3) τ[(αtj)]= — Σ>(α«)
n »=ι

whence C becomes a von Neumann algebra of finite type with a faithful normal
trace r. Consequently, the conditional expectation -f- conditioned by D will be
introduced by

for (β^OeC and (δo)eD. By (3),

= — Σ *
7Z- »,*

and this implies τ[(αί</)-(6y)]=τ[(αί})(6ίj)] for every (c^)<=Cand (6ίy)eZ), whence

(5) (α*)-

for all (α^ )eC. Using the positivity of -f- in C, (α^) ̂  0 implies (α*./)~ ̂  0, whence
ίj) ̂  0 by (5), which shows the complete positivity of the conditional expectation.

REMARK. Although Theorem 1 is proved for the conditional expectation,
it remains true for a ^-expectation: If the tracelet space SB in the sense of
[11] is non-void, then a ^-expectation εσ defined by a tracelet σ is completely
positive as a mapping which carries A onto bσB where bσ is the 5-support of σ.

Since the conditional expectation is completely positive by Theorem 1,
Stinespring's theorem [8] implies at once a representation of the conditional
expectation in Neumark's form: Let K be the direct product H®εA in the
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sence of [10] which is the completion of the pre-Hilbert space of quotient space
of the algebraic tensor product H®A modulo the null space with respect to
the inner product:

(6) < Σ £®α, Σ £'®α'> = Σ (ξ, (α*α')Έ'),
" , a,

where ( , ) is the inner product of H, and Σ is the finite sum. Then H®εB
is a subspace of H ®SA and it is equivalent to H by the unitary transformation

Σ £®6-> Σ bξ.

Identifying H®SB with H, H can be regarded as a subspace of H®£ A. Then
Stinespring's theorem implies the following:

THEOREM 2. The conditional expectation s of a von Neumann algebra
A of finite type with a faithful normal trace is representable by

(7) ae = pa#p, for every a^A,

where p is the projection of H®εA onto H which belongs to the commutant
B®r of B#, and where a— >α* is a (* -preserving) representation of A by
operators on H®&A defined by

(8)

The representation of A is continuous ultra-weakly.

Proof. The equation (7) follows from Stinespring's theorem and Theorem 1.
Putting EΈί ® α) = Σf ® α%

α), Σf

and

Furthermore,

/air •> Q"tι

= <( : |> α*~α-
V v O 0^
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, (α*α)
fξl\

-( ]> = Σ,.Xft, (o,*
\sn/

Therefore 1*7 is well defined and is uniquely extended to the projection p on
H®eA, and

and we obtain pe£#'. The ultra- weak continuity is obvious from the definition
of the representation α— >α*.

If the algebra A is commutative, i. e., (A, π) is a pair of all bounded random
variables and the expectation (for instance, cf. [11]), then A (resp. E) is
isometrically isomorphic with the algebra C(Ω) (resp. COT)) of all continuous
functions defined on the compact spectrum Ω of A (resp. Γ of B). Denote the
isomorphism by a— »α(o>) (resp. 6— >(Γ)) between A and C(^) (resp. B and C(F)),
further denote ωr = ω\B, the restriction of ω onto 5 as a linear function of B,
then it is a pure state of .B and is considerable as a point of Γ. The mapping
ω— *ω' is continuous from Ω onto JΓ. Under these notations, we have followings.
Firstly, Theorem 2 implies the following

THEOREM 3. The conditional expectation e of a commutative von Neumann
algebra conditioned by a certain von Neumann subalgebra B is representable
by an integral formulae:

(9) αε = t a(ω)dF(ώ) for every

where dF is an operator measure of Neumark which is defined over the
Borel field of Ω and valued in B.

Proof. The "^representation a—>a# of A is represented by a spectral
measure dE on H®£A:

α* = I a(ω) dEω for every
JΩ

Therefore

(10) = f
JΩ

= f
J Ω
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Putting pEp — F, (10) implies (9). The operators Fs, for every Borel set S in Ω,
clearly belongs to B.

This theorem is a generalization of a theorem of [6]: If h is a linear
functional of A invariant ^ιnder ε in the sense of h(aε) = h(a), then there
exists a regular Borel measure v on Ω such that

h(a) = I (α, ϊ) dv(ϊ) for everyi
where (a, ϊ) = aε(T). Indeed, this follows from Theorem 3, or more precisely
from the following formulae obtained from the formulae (9):

a° = aee= \ aε(ώ)dF(ω) = { (a, T)dF(T)
J Ω J Γ

where dF(T) is the operator measure over the Borel field of Γ induced by dF(ω).

According to the usual language of probability theory, Theorem 3 can be
read as following:

THEOREM 3". // (Ω, 51) is a probability field with probability measure
pr. and if $8 is a Borel subfield of 51, then the conditional probability P(S \ 23)
is expressible as

(11) P(S\ty(.)=((dF(ω)\.) for every SeSl,
\js /

where dF is an operator measure of Neumark whose values are operators
on L2(β, 2t, pr.\

2. Jensen's inequality in non-commutative probability.

If f(λ) is a continuous real-valued function defined on an interval [or, β],
and if α is an hermitean operator:

Γ

=
J

then there is an hermitean operator

(12)

Therefore, if A is a C*-algebra (assuming to have the identity), then the mapping
α-»/(α), defined by (12), carries hermitean elements with the spectra in [>, β]
into hermitean elements of the algebra. This mapping preserves some properties
of / when A is commutative: For example, if / is monotone then

(13) a^b implies /(α) g
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and if / is convex then

(14) f(λa + (1 - X)V) ̂  λf(a) + (1 - Λ)/(δ), 0 g λ ̂ 1,

for every hermitean elements a and 6 having their spectra in the interval.
Whereas, if the algebra A is not commutative, the situation changes. Even
if the algebra A is the total matrix algebra of finite order n, a monotone
[convex] / does not sftisfy (13) [(14)] in general. The class of all (continuous
real- valued) function / satisfying (13) [(14)] is known as Lδwner's monotone
[convex] matrix functions of order n, which is strictly restrictive than the
monotonity [convexity]. When A is the algebra of all operators on an infinite
dimensional Hubert space, the class of all functions satisfying (13) [(14)] are
studied recently by Bendat-Sherman [1]. They showed, among many others,
a continuous real- valued function satisfies (13) [(14)] if and only if it is matrix
monotone [convex] in arbitrary order.

It is troublesome that the operator convexity or monotonity do not coincide
with the usual. For example, there is no way to generalize Jensen's inquality
including both commutative and non-commutative cases. To avoid the difficulty,
the note proposed a trial introducing the following

DEFINITION. A real- valued continuous function f(λ) defined on an interval
is a monotone [convex] operator function with respect to a C*-algebra A,
abbreviatively A-monotone [A-convex], provided that (13) [(14)] holds for any
hermitean members a and b of A having their spectra in the interval.

It is obvious that the following properties are true:

( i ) a constant function is always A-convex,

(ii) /+</ is ^.-convex when / and g are A-convex,

(iii) a convex function is operator convex with respect to a commutative
algebra A,

(iv) an operator convex function in the sense of Lδwner-Bendat-Sherman is
operator convex with respect to the algebra of all operators on an infinite
dimensional Hubert space.

Consequently, (iii) and (iv) imply that the definition covers both cases.
However, it seems hopeless, that the definition yields substantially a new class
of functions, which may be shown by the following example:

(v) If / is operator convex with respect to a continuous finite factor A,
then / is operator convex in the sense of Lδwner-Bendat-Sherman.

This is because of that a continuous finite factor always contains a subf actor
which is isomorphic to a discrete finite factor of arbitrary order.

Except these rather trivial cases (iii)-(iv), it is unable to decide in the
present knowledge that A-convexity coincides with the convexity of Lowner-
Bendat-Sherman or not. This affects to the incompleteness of the following
theorem which seems to the authors a non-commutative extension of Jensen's
inequality:
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THEOREM 4. If A is von Neumann algebra of finite type with a faithful
normal trace which is either commutative or a continuous factor, if f is
operator convex with respect to A on an interval, and if ε is the conditional
expectation conditioned by a certain von Neumann subalgebra of A, then the
following "Jensen's inequality" holds:

(15) /(α

for any hermitean member a of A which has its spectrum in the interval.

Proof. If A is commutative then the theorem is Jensen's inequality itself.
If A is a finite and continuous factor, then it is not less general to assume that
/ satisfies by

(16) /(O) - 0,

by (i)-(ii), whence the theorem follows from (v), Theorem 1 and a theorem due
to Davis [2].

REMARK. If ε is an expectation of a C*-algebra A (having the identity)
in the sense of [7], and if / is a general mapping of A into itself which
preserves also Ae, then (15) holds when ε and / satisfy

(17) /(

since f(aε)ε=f(aε) by the idempotency of the expectation and since f(aε)ε ^j
by the positiveness of the expectation. The case really occurs, as recently
proved by Davis [3], when ε is a "pinching" of a discrete finite factor and /
is Schur-convex.

3. Complete positivity of expectations in a C*-algebra.

Theorems 1-3 are almost valid when an expectation in the sense of [7] is
employed in place of the conditional expectation. Major modification occurs in
Theorem 1 since the presence of the trace is not assumed, whence Theorem 1
in.case of C*-algebras needs to restate and to generalize in the following

THEOREM 5. If A is a C*-algebra with the identity and if ε is an ex-
pectation of A, then ε is completely positive.

Proof. Put C = In® A and D — In®B again, where B is the range of ε.
They are C*-algebras too, and C contains D as a subalgebra. A mapping -f-
defined by

is a projection from C onto D. Put hε(a) = h(aε) for Ae A* and (A*)e = {hε\h& A*},
where E* means the conjuagate of a Banach space E. Then
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II he\\A (the norm as functional of A)

sup [A (α)l/llα||̂  sup
α̂, aξA Oφα, aξ

Since the correspondence ge(A*Y->g\B<=B*, the restriction of g onto B maps
(A*Y onto B*, it is an isometric isomorphism between (A*)' and B*. Therefore
the norm of the mapping -f is one:

= sup

sup
3/7 e/

sup
pye/w*, p/e

^ sup 1 (Σϊfc ® Λ/)CΣX ® aύ 1 / llΣlk ® λy 11 ,
yye/w*, fye4*

because (A*)ε is a subspace of A*,

Therefore ~ is positive by a theorem of Tomiyama [9; Them. 1], which proves
the theorem.

Theorem 2 and 3 (except the ultra-weak continuity of the representation)
are still true for an expectation of a C*-algebra. Their proofs need few modi-
fications, whence they will be omitted here.
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