
FREDHOLM EIGEN VALUE PROBLEM FOR
GENERAL DOMAINS

BY MlTSURU OZAWA

1. Formulation of the problem.

Let D be a general planar domain and {Dn} be its exhaustion in the usual
sense. Let L2(Dn) be a class of single-valued, square integrable, analytic
functions having a single-valued indefinite integral in Dn. In L2(Dn) we shall,
as usual, introduce the notion of the inner product (φ,ψ)Dn by an integral

φ(z)ψ(z)dτZ9

I

then L2(Dn) forms a complete Hubert space. In this space L2(Dn], there are
the so-called reproducing kernel Kn(z, u) and its adjoint ^-kernel ln(z, u) which
satisfy the following identities: for any f(z) e L2(Dn),

(/(«), Kn(Z, U»Dn = /(U), Kn(Z, U) = Kn(U, Z)

and

ln(Z, U) = ln(U, Z), (ln(Z, U), ln(u, w))Dn = Kn(Z, w) - Γn(z, ϊϋ),

where Dn

c denotes the complementary set of Dn. The kernels Kn(z, u), Γn(z, u)
and Kn(z, u) — Γn(z, u) are all positive definite and hermitian. For these, see
[2] and [3], Kn(z,u) and ln(z,u) converge strongly and hence uniformly in
the wider sense to K(z, ΰ) and l(z, u), respectively, when n tends to the
infinity. For these, see [5] and [8]. Therefore we have the corresponding
identities:

( f ( z ) , K ( z , ΰ ) ) D = f ( u )

for any f ( z ) e L2(D) and

(l(z, u), l(u, w))D = K(z, ϊv) —Γ(z, w), l(z, u) = l(u, z),

where we put

Γ(z, w) =\({ r fj; -2- - lim Γn(z, w).
* 2 2
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And Γ(z,ϊϋ) belongs to the class L2(D). In fact, we have

0 g ί ( \Γn(z, w)\2dτz rg Kn(w, w)
JJ&n

for any n by the eigenfunction expansion of Γn(z, w) and a fact that each
eigen value Λ?°2 of the Fredholm eigen value problem

λ^\ψv(U\ Kn(U, Z) - Γn(U, Z))nn = ψv(z), ψv(z) GΞ L2(Dn)

for Dn is greater than 1. For these, see [2], [3], [6] and [7]. By Fatou's
theorem we have

0 rg ί f \Γ(z, w)\2dτz ^ ίϊm ί ί \Γn(z, w)\2dτz ^ K(w, w),
JJD n+°°JJ0n

which shows that Γ(z, w) e L2(D).

Evidently the kernels K(z, u), Γ(z, u) and K(z, u) — Γ(z, u) are all hermitian
positive definite. We shall now consider the Fredholm eigen value problem

for D defined as follows: To seek for any constant p and the corresponding
function ψ(z) satisfying a homogeneous integral equation of the Fredholm type

( 1 ) (<P(u\ K(u, z) - Γ(u, *)) - p*φ(z).

When p2 and φ(z) satisfy the equation (1), then we call φ the eigenfunction to
a spectrum p2 or an eigen value 1/p2. And any non-trivial eigenfunction can
be normalized by the normalization

Let T be a transformation of L2(D) into L2(D) defined by the left hand side of
the equation (1). This transformation T is hermitian self-adjoint and positive
unless the kernel K(z, u) — Γ(z, u) vanishes identically. Moreover T satisfies the
half-boundedness

(rφ, ψ) ̂  (<p , <p )

for any ψ e L2(D), which is obtained by the reproducing property of K and
the positive definiteness of the kernel Γ(z, u). Therefore by Neumann's theory
of hermitian operators in Hubert space we have a unique spectral decom-
position

ϊ = Γ
J-o

where E(p) is a resolution of the identity corresponding uniquely to the T.
If there are only the point spectra, then we have an orthonormal complete

system {φv} of the eigenfunctions of (1) such that for any element φ e L2(D)
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<P(t) = Σ avψv(z)9 av = (φ, φj.
v = l

Evidently we have

by its reproducing property. Let λv

2 = l/pv

2 be the eigen value for <ρv(z), then
we have

Γ(z, w) =
y

These relations are formally equivalent to those in [2], However we can
recognize that several differences lie between theirs and ours. For example,
the first eigen value Λi2 may be equal 1 in our case. And secondly, the sum

does not converge in our case. A simple example illustrating these phenomena
is a domain D excluding a straight line segment [ — 2, 2] from the whole
complex plane. For this domain D we have

Γ(z, w) = 0, K(z9 w) = Σ Ψ»(z)ψM> Ψv(*ϊ = i~ z~v+1(*2 - 1)"1,

which shows that all the eigen values are equal to 1. In Bergman-Schiffer's
case [2], the above domain D is excluded by their analyticity assumption for
the boundary curves.

2. Fredholm eigen values and the class JV$.

Let us now define a notion of the Fredholm null-set. Let E be the comple-
mentary closed set of D, that is, E = DC.

DEFINITION. E^NF means that all spectra of the Fredholm eigen value
problem (1) for D concentrate on any non-negative number.

THEOREM 1. NF = N^f

where E^N<% means

Proof. Assume that E<=N®. Any function φ(z) e LZ(D) and its indefinite
integral Φ(z) can be continued analytically onto E, and hence Ψ(z) = const, or
equivalently φ = 0. Thus the equation (1) is satisfied by any real non-negative
number, which shows E e NF. Conversely we assume that E e NF. Let a be
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a real non-negative number on which all spectra concentrate. Then there is
an orthonormal complete system {<f>v} of eigenfunctions of the equation (1).
And hence we have

K(z, w) — Γ(z, w) = a __
v—j

and

Γ(z, w) =

However, since a is arbitrary, Γ(z, w) = Q putting a = 1 and hence K(z, w) = Q
putting a = 0. On the other hand, it is well known that K(z, z) = 0 is equi-
valent to E(ΞN® [1]. Thus E^NF implies that E<=N®.

THEOREM 2. If all the spectra are equal to zero for D and the two-
dimensional measure of E is equal to zero, that is, m(E) = 0, then

Proof. Since all the spectra are concentrated at zero, we have

And m(E) — 0 implies Γ(z, w) = 0, whence follows K(z, w) = 0, that is,

In the theorem 2 the assumption m(E) = 0 cannot be excluded, since we
have l(z, w) = 0 for the exterior of the unit circle, which does not belong to
the class N<&.

LEMMA. Let Dr be a domain and Kzy(z,w) be the reproducing kernel of
Lz(Dr). Assume that K&(z, w) has the local expansion

oo

Σ kμv(z — zQY(w — Zo)υ

μ,v=0

around (z0, ZQ) and φ(z) is an analytic function around z0 having the local
expansion

If there holds a system of inequalities

N I 2 2V- 1

for any complex number xμ and any integer N, then φ(z) e Li2(Df), and vice
versa.

Proof. This lemma has already been proved in our previous paper [4] in
a somewhat restricted case, that is, in a case of finitely connected domain Dr
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with analytic boundaries. Since, however, the proof carried previously has
been quite formal, we can extend our lemma to the general case.

THEOREM 3. Let U be a circular disc contained in D. If all the spectra
of the equation (1) for the domain D — U are concentrated at zero and the
two-dimensional measure m(E] of E is equal to zero, then E<^N%.

Proof. Since all the spectra are concentrated at zero, we can choose an
orthonormal complete system {φv} of eigenfunctions of the problem (1) for
D — U. Therefore we have Tφ^Q for any φ<=L2(D — U), that is, KD-u(z,w)
— ΓD-U(Z,~V) is orthogonal to the space L2(D — U). This implies an identity

KD-.U(Z, w) = FD-U(Z, w}.

However /Herm is additive by its definition, that is,

ΓD-u(z, W) = ΓD(Z, W) + Γuc(z, w).

On the other hand, it is well known that luc(z, w) = 0 and hence

KUC(Z, w) = Γvc(z, w).

Since m(E) = 0, we have

ΓD(z,w) = Q

by its definition. Therefore we have

KD,u(z, w) ΞΞ Kπc(z, w}.

Let φ(z) be any element of L2(D — U), then a system of inequalities

i N ' 2 N—1 __

Σ^Λ ^^"Σ kμί,xv+ίxμ+ι, M=\\φ\\D-uz,
μ =-1 fl,»=0

holds for any integer N and any complex number xv, where we put

and

By the equality Ku<s(z,w) = KD-u(z,w), we have the same local expansion of
KUC(Z,W) as that of KD.u(z,w). This implies that φ(z)<^ L2(U°), that is, φ(z)
can be continued analytically onto E, which shows that E <= N<$.

THEOREM 4. If E&N%> and all the spectra are concentrated at 1, then
m(E) — 0. Conversely, if E $ N® and m(E) = 0, then all the eigen values
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are equal to 1, or all the spectra are equal to 1. In other words, if m(E)
= 0 and if there is at least one spectrum less than 1, then E^N^.

Proof. This theorem 4 may be regarded as a precision of theorem 2. By
the assumption, we have

K(*> ^) = Σ ψ&ϊψM = K(z, a>) - Γ(z, w)
v =1

for an orthonormal complete system {φv} of eigenf unctions. This implies that
Γ(z, w) = 0, that is, m(E) = 0. Let φ be an eigenfunction corresponding to a
real number λ2 = I//?2, then we have λzTφ = φ. From this we have

11^11* = λ2(φ(u), (<p(w), K(W, u) - Γ(W, U))D)D.

By m(E) — 0, we have Γ(w, u) = 0, and hence

φ(W\ K(w, U)}D)D = λ2\\φ ||2,

by the reproducing property of the kernel K. This implies the desired result
λ2 = 1. By m(E) = 0, we have that the ϊφ coincides with (φ(u), K(u, z))D. Thus
we have E(p) = 0 for ρ<l and = I for p^l in the spectral decomposition of
the transformation T.

/\
We can consider another Fredholm eigen value problem: Let K(z, u) be

the Bergman kernel function in the class SZ(D), whose elements are all single-
valued analytic functions square integrable on D. Then the problem to be
considered concerns with the equation

p2φ(u) = (ψ(z), K(z, u) - Γ(z, u))D,

where ψ(z) belongs to the class 22(D). This problem contains the earlier problem
as its part and leads to another Fredholm null-set corresponding to a class
0HD> Details are omitted here.
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Added in proof. Recently, Mr. N. Suita has pointed out that our Theorem 3 can
be improved. In fact, it is shown that our assumption with regard to the two-dimensional
measure of E may be eliminated.




